首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Purpose

The aim of this study was to evaluate the behaviour of P in saline Spolic Technosols flooded with eutrophic water, with and without plant rhizosphere, in order to assess the role of these soils as sinks or sources of this nutrient.

Materials and methods

Samples were taken from basic (pH?~7.8), carbonated and acidic (pH?~6.2), de-carbonated soils of salt marshes polluted by mine wastes. Three treatments were assayed: pots with Sarcocornia fruticosa, pots with Phragmites australis and pots without plants (bare soil). The pots were flooded for 15?weeks with eutrophic water (PO 4 3? ~6.92?mg?L?1) and pH, Eh and water-soluble organic carbon and PO 4 3? concentrations were monitored in the soil solution. A soil P fractionation was applied before and after the flooding period.

Results and discussion

The PO 4 3? concentration in the soil solution decreased rapidly in both soils, with and without plant, being diminished by 80?C90?% after 3?h of flooding. The Fe/Mn/Al oxides and the Ca/Mg compounds played an important role in soil P retention. In pots with S. fruticosa, the reductive conditions due to flooding induced P release from metal oxides and P retention to Ca/Mg compounds. In turn, P. australis may have favoured the release of P from carbonates, which was transferred to Fe/Mn/Al compounds.

Conclusions

The retention of P by the soil was the main mechanism involved in the removal of PO 4 3? from the eutrophic flooding water but to evaluate the capacity of these systems as long-term P sinks, the combined effect of metals, Ca/Mg compounds and specific plant species should be considered.  相似文献   

2.
The effects of elevated atmospheric SO 4 2? deposition on S cycling in forest soils were assessed in an irrigation experiment using stable S isotopes. Over a period of 20 months, core lysimeters of five acidic forest soils from Southern Germany with different parent material and pedogenesis were irrigated with solutions chemically similar to canopy throughfall. Sulfate deposition in three experimental variants corresponded to 23, 42 and 87 kg S ha?1 yr?1. The SO 4 2? used for irrigation had aδ 34S ratio of +28.0‰ CDT (Canon Diablo Troilite standard), differing by more than +25‰ from natural and anthropogenic S in Southern Germany. A combination of chemical and isotopic analyses of soil and seepage water samples was used to elucidate the fluxes and transformations of simulated wet SO 4 2? deposition in each soil core. Retention of experimentally deposited S ranged from 57±5% in coarse-grained soils low in sesquioxides and clay, to 80±8% in loamy soils with high sesquioxide content. The sesquioxide content proved to be the major factor governing S retention. The ratio of S retained as inorganic SO 4 2? (mainly by adsorption) to that incorporated into organic compounds (presumably by microbial synthesis) ranged from 2 to 4. For the organic S pool, the amount of S retained as C-bonded S exceeded by far that immobilized as ester sulfate in four of the five soils. Application of34S-enriched SO 4 2? appears to be a suitable experimental tool to assess fluxes and transformations of deposited S in forest soils, if aerobic conditions are maintained. In contrast to radioactive S tracers, the concept should be applicable not only in laboratory and lysimeter experiments, but also in long term studies of whole forest ecosystems (e.g., experimental watersheds).  相似文献   

3.
We evaluated the differences in the use of a quartz filter and a polytetrafluoroethylene (PTFE) filter as a first (F0)-stage filter in a four-stage filter-pack method. A four-stage filter-pack method can completely collect sulfur species (SO2 and SO 4 2? ), nitrate species (HNO3 and NO 3 ? ), and ammonium species (NH3 and NH 4 + ) with little or no leakage irrespectively of the first-stage filter used. On the other hand, a seasonal variation was observed in the efficiency of collection between the quartz filter and the PTFE filter depending on the material to be collected. There was no seasonal variation in the efficiency of collection in sulfur species; in contrast, a clear seasonal variation was observed for the nitrate and ammonium species. As for NO 3 ? , the PTFE filter was more vulnerable than the quartz filter at air temperatures below 21°C, while the quartz filter was more vulnerable than the PTFE filter at air temperatures exceeding 21°C. A similar vulnerability for air temperature was observed for NH 4 + , although the threshold air temperature was 23°C for NH 4 + . Consequently, the evaporation loss of NO 3 ? would be mainly attributable to the volatilization of NH4NO3, although it is also partially due to the volatilization of NH4Cl.  相似文献   

4.
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However, soils differing regarding their characteristics such as the content of Corg, the soil texture or the pH value may respond in specific manners to equivalent changes in soil moisture and N input. Thus, short-term incubation experiments were performed to test and compare the capacity of two contrasting Austrian forest soils to respond to mineral N application at increased soil water contents. Soils from the pristine Rothwald forest (rich in Corg) and the more acidic Schottenwald forest (poor in Corg) were amended with either NH 4 + -N or NO 3 ? -N and were incubated at 40% and 70% water-filled pore space for 4 days. Changes in mineral N pools, nitrite reductase activity and NO and N2O emission rates were measured, and the abundance and structural community composition of the functional group involved in nitrite reduction were analysed via quantitative real-time polymerase chain reaction and terminal restriction fragment length polymorphism analysis of the nirK gene. Rapid and distinct activity responses to increased soil moisture and altered mineral nitrogen availability were observed in two contrasting forest soils. In both soils, nitrogen oxide emission rates were stimulated by N inputs and, depending on the soil moisture status, either NO or N2O emission was prevailing. However, different N cycling processes appeared to predominate in either soil under equivalent treatment. Nitrogen oxide emissions peaked following NO 3 ? application in Schottenwald soils but were the highest after NH 4 + application in Rothwald soils. Denitrifying (nirK) communities differed significantly in Rothwald and Schottenwald soils; however, changes in the community structure were marginal during the short-term incubation. Abundances of nirK genes remained unaffected by N application in either soil. The soil water content affected nirK gene abundances only in Rothwald soil, indicating a distinct reaction of nitrite reducing communities in the two soils.  相似文献   

5.
A simple method is presented and used to estimate the portions of SO inf4 sup2? and NO inf? sup3 that contribute to the strong acidity in weekly precipitation samples collected at three NADP sites in the eastern United States. The method assumes that, in general, the difference between SO inf4 sup2? and NH inf+ sup4 represents acidic sulfate and the difference between NO inf? sup3 and soil-derived materials (the sum of Ca2+, Mg2+, and K+) represents acidic nitrate. Acidic sulfate and nitrate are considered to be the predominant source of H+ (determined from laboratory pH) in the weekly precipitation samples. Most of the acidity for all three sites was attributed to acidic sulfate. The highest fraction of acidic SO inf4 sup2? to H+ wet deposition values was for the east-central Tennessee site (0.95) and the northeastern Illinois site (0.90), and the lowest fraction occurred at the central Pennsylvania site (0.75). The Tennessee site had the greatest acidic fraction of sulfate (0.84) and the Pennsylvania site had the greatest acidic fraction of nitrate (0.59).  相似文献   

6.
Concentrated solutions of copper (Cu2+), dichromate (Cr2O2? 7) and aresenate (AsO4 3?) ions (CCA solutions) are used extensively in the New Zealand timber preservation industry. These ions are therefore, potential soil pollutants at timber treatment sites. Sorption of these three ions was examined by the surface and sub-surface horizons of two free-draining New Zealand soils over a range of soil solution pH values. Copper sorption by both soils increased substantially with increasing pH and was greater in the surface compared with the sub-surface horizons. Less dichromate was sorbed than the other two ions and wa similar in both surface and sub-surface horizons for each soil. Dichromate sorption increased with decreasing pH. Arsenate sorption from solutions containing all three ions was not greatly different to influenced by changes in soil solution pH. Arsenate sorption was generally greater in the sub-surface horizons of both soils. Sorption from solutions containing all three ions was not greatly different to sorption from solutions containing the single metal ions. Sorption behaviour for each ion is related to its chemistry and the soil chemical properties of each horizon. Results suggest that in the event of soil contamination by CCA solution, the immediate leaching potential of the initial ions species present would increase in the following order: Cu2+ < HAsI 4 ? ? Cr2O 7 2? .  相似文献   

7.

Purpose

Nitrate (NO 3 ? ) is often considered to be removed mainly through microbial respiratory denitrification coupled with carbon oxidation. Alternatively, NO 3 ? may be reduced by chemolithoautotrophic bacteria using sulfide as an electron donor. The aim of this study was to quantify the NO 3 ? reduction process with sulfide oxidation under different NO 3 ? input concentrations in river sediment.

Materials and methods

Under NO 3 ? input concentrations of 0.2 to 30?mM, flow-through reactors filled with river sediment from the Pearl River, China, were used to measure the processes of potential NO 3 ? reduction and sulfate (SO 4 2? ) production. Molecular biology analyses were conducted to study the microbial mechanisms involved.

Results and discussion

Simultaneous NO3 ? removal and SO4 2? production were observed with the different NO 3 ? concentrations in the sediment samples collected at different depths. Potentially, NO 3 ? removal reached 72 to 91?% and SO 4 2? production rates ranged from 0.196 to 0.903?mM?h?1. The potential NO 3 ? removal rates were linearly correlated to the NO 3 ? input concentrations. While the SO 4 2? production process became stable, the NO 3 ? reduction process was still a first-order reaction within the range of NO 3 ? input concentrations. With low NO 3 ? input concentrations, the NO 3 ? removal was mainly through the pathway of dissimilatory NO 3 ? reduction to NH 4 + , while with higher NO 3 ? concentrations the NO 3 ? removal was through the denitrification pathway.

Conclusions

While most of NO 3 ? in the sediment was reduced by denitrifying heterotrophs, sulfide-driven NO 3 ? reduction accounted for up to 26?% of the total NO 3 ? removal under lower NO 3 ? concentrations. The vertical distributions of NO 3 ? reduction and SO 4 2? production processes were different because of the variable bacterial communities with depth.  相似文献   

8.
High As groundwater normally contained high concentrations of Cl? and HCO 3 ? . This study examined the effects of Cl?, HCO 3 ? , and As species on As uptake by hyperaccumulator Pteris vittata. Plants were exposed hydroponically to 5.0?mg/L As(III) or As(V) in the presence of 0, 0.5, 1, 2, 5, 10, and 20?mM of Cl? or HCO 3 ? for 10?days. Addition of high Cl? concentrations (>10?mM) slightly inhibited P. vittata growth (biomass), while generally had no significant effect on plant As uptake. High solution pH resulted in reduced plant growth and As uptake, which attributed to the inhibitory effects in HCO 3 ? treatments with the high pH of the high HCO 3 ? concentration. It was speculated that addition of HCO 3 ? (<20?mM) would have no significant effect on plant growth and As uptake. The inhibitory effect of HCO 3 ? on As translocation was less apparent in the As(III) solutions than the As(V) solutions. For the high As groundwater with As(III) as the predominant species, high pH, instead of high concentrations HCO 3 ? and Cl?, was expected to inhibit As uptake. The results suggested that optimum plant growth and maximum As hyperaccumulation could be achieved by adjusting solution pH in the growth media (around 7.2).  相似文献   

9.
At Lange Bramke (Harz) soil solution and runoff concentrations of major elements were observed over 16 yr. During this period acid deposition was high but showed a marked decrease of H+ and SO 4 2? both in concentrations and fluxes over the last five years. Among others, this record reveals the following patterns: seasonality in the signals for SO 4 2? and NO 3 ? in runoff which are synchronous; an accumulation of SO 4 2? in the soil, initially up to 50% of the deposition fluxes; apparently no correlation between runoff and SO 4 2? concentration, and no long-term trend in runoff concentration of SO 4 2? . In this paper we use these patterns in the data set from Lange Bramke to test two established acidification models. The test criterion is that the algorithms employed by the SO 4 2? modules of these models must be able to reproduce these features. To that end, both models need not to be run as it can be shown that even with completely unrestricted parameter values the two algorithms are unable to match the observed SO 4 2? dynamics. The MAGIC model (Cosbyet al., 1985) is unable to reproduce, given the existence of net SO 4 2? accumulation, the constant SO 4 2? concentration in runoff during the last 16 years. The second model, BEM (Prenzel, 1986), is succesful in reconstructing the constant SC>4~ levels in runoff. However, on a monthly time scale BEM predicts a shift between the periodic maximum concentrations of SO 4 2? and NO 3 ? which is not observed in the data.  相似文献   

10.
The effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N transformations and composition of ammonia-oxidizing bacteria (AOB) communities was investigated at the centimeter scale in a microcosm experiment under laboratory conditions. After 28 days, samples were collected from soil treated with urea or urea and DMPP at increasing distance from the fertilizer zone; this distance ranged from 0 to 5 cm in both horizontal and vertical directions. The results showed that DMPP application significantly increased soil pH and NH 4 + -N and mineral N (NH 4 + -N, NO 3 ? -N, and NO 2 ? -N) concentrations but decreased (NO 3 ? + NO 2 ? )-N concentration, and such effect was decreased by increasing the distance from the fertilizer zone. Fingerprint profiles of denaturing gradient gel electrophoresis showed that the number of bands decreased by increasing the distance from the fertilizer zone due to decreasing NH 4 + -N concentrations in the urea treatment. Compared to urea applied alone, DMPP application increased NH 4 + -N concentrations and decreased AOB diversity from 0 to 3 cm but promoted diversity from 3 to 5 cm distance from the fertilizer zone. A phylogenetic analysis showed that AOB communities were dominated by Nitrosospira cluster 3. Therefore, the nitrification inhibitor DMPP modified the composition of AOB communities by increasing the distance from the fertilizer zone and this probably was related to the changes in soil pH and inorganic N concentration.  相似文献   

11.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

12.
Upland soils are the most important terrestrial sink for the greenhouse gas CH4. The oxidation of CH4 is highly influenced by reactive N which is increasingly added to many ecosystems by atmospheric deposition and thereby also alters the labile C pool in the soils. The interacting effects of soil N availability and the labile C pool on CH4 oxidation are not well understood. We conducted a laboratory experiment with soil columns consisting of homogenised topsoil material from a temperate broad-leaved forest to study the net CH4 flux under the combined or isolated addition of NO 3 ? and glucose as a labile C source. Addition of NO 3 ? and glucose reduced the net CH4 uptake of the soil by 86% and 83%, respectively. The combined addition of both agents led to a nearly complete inhibition of CH4 uptake (reduction by 99.4%). Our study demonstrates a close link between the availability of C and N and the rate of CH4 oxidation in temperate forest soils. Continued deposition of NO 3 ? has the potential to reduce the sink strength of temperate forest soils for CH4.  相似文献   

13.
Data from two national precipitation chemistry monitoring networks, and several regional air and precipitation chemistry networks are used to describe some broad-scale features of acidic deposition in eastern North America. In northeastern North America, the coefficient of variation is shown to increase from 10–16% for annual averages to nearly 100% for daily values. There is a strong annual cycle in H+, SO inf4 sup= and NH inf4 sup+ deposition and some of the other ions although these cycles are not all in phase. The wet NO inf3 sup? deposition contributes relatively more than SO inf4 sup= to the acidity of snow as compared to rain. Wet deposition is highly “episodic” with about 50% to 70% of the total annual deposition of SO inf4 sup= and NO inf3 sup? accumulating in the highest 20% of the days. Estimates made in various ways indicate that, over eastern North America as a whole, dry deposition is approximately equal to wet for both SO inf4 sup= and NO inf3 sup? . Dry may exceed wet in the high emissions zone but drops to about 20% of the total deposition in more remote areas. Deposition via fog or low cloud impaction is an important input to high elevation forests, but more data are required to quantify the magnitude and regional extent of this.  相似文献   

14.
In the absence of SO infin4 sup= and NO inf3 su? in precipitation, the pH of precipitation is primarily a function of CO2?20 equilibria. Soil CO2 and organic acids, acquired during descent through soil profiles, augment the dissolving capacity of the solutions which initially may have a pH of 4 or lower. The recent man-related increase of H2SO4 and HNO3 in rainfall results in a significant lowering of pH in incident precipitation and an increase in corrosiveness of soil solutions. H2SO4 and HNO3 may contribute some Eh buffering capacity. Particularly susceptible to these changes are clay minerals and redox sensitive elements such as Fe, Mn, Ni, and Co. The overall chemical weathering trends associated with increased acidity of rainfall will be de-stabilization and eventual solution of clay minerals (and the loss of their cation exchange capacity), increased rates of chemical denudation, and solution of illuvial Fe and Al oxides and hydroxides. The latter results in the loss of the adsorbed and coprecipitated metal trace elements associated with these highly reactive phases. The general result in soils developed on non-carbonate substrates is a tendency toward extensive podsolization, with associated decrease in clay minerals, loss of cation exchange capacity, and decrease in fertility.  相似文献   

15.
A study on pH and chemical composition of precipitation was carried out in two Italian sites, one urban (site 1) and one rural (site 2), located approximately 30 km far from Bologna, during a 3-year period. No significative site variation was found. In both locations, bulk deposition pH ranged from slightly acid to slightly alkaline, despite the volume weighted mean concentration of acidic species, NO 3 ? and SO 4 2? (67.4 and 118.4 μeq l?1 in site 1 and 88.7 and 103.8 μeq l?1 in site 2), that were similar to those of typical acidic rainfall region. This might be ascribed to the neutralization reaction of the Ca2+, attributed to the calcareous soil and the frequent dusty air mass intrusion from the Sahara. The pair correlation matrix and the analysis of the main components suggested also ammonium and other crustal elements as neutralization agents. The depositional rate of SO 4 2? and NO 3 ? , chemical elements of agricultural interest, amounted to 38 and 28 and 32 and 35 kg ha?1 for site 1 and site 2, respectively. These supplies of nutrient were not negligible and had to be considered on cultivated lands. NH 4 + deposition rate on site 2 was 7 kg ha?1, 23% over site 1, probably due to nitrogen fertilization in the fields around the monitoring station. In site 1, SO 4 2? presented a seasonal trend, indicating that its principal source was the residential heating. Results emphasized that the entity of the bulk deposition acidification is linked not only to the ions local emission sources (fossil fuel combustions, heating, and fertilizers) but also to the surrounding territory and the prevalent wind that transports through kilometers air masses which may contain acidic and alkaline species.  相似文献   

16.
The reversibility of acidification is being investigated in a full scale catchment manipulation experiment at Lake Gårdsjön on the Swedish west coast using isotopes as environmental tracers. A 6300 m2 roof over the catchment enables researchers to control depositional variables. Stable S isotope values were determined in bulk deposition, throughfall, runoff, groundwater and soil-extracted water during one year prior to and two years of experimental control. Data collected prior to experimental control suggest that the inorganic SO 4 2? pool within the catchment has a homogeneousδ 34S value of about+5.5‰. Sprinkling of water spiked with small amounts of sea-water derived SO 4 2? started in April 1991. Theδ 34S value of this SO 4 2? is around+19.5‰. Since April 1991, the SO 4 2? concentration in runoff has decreased by some 30%, however, theδ 34S value have increased by only 0.5‰. This suggests mixing of sprinkling water S with a large reservoir of S in the catchment. Oxygen isotopes in SO 4 2? suggest that less than one third of the SO 4 2? in runoff is secondary SO 4 2? formed within the soil profile. This is, however, no evidence for net mineralization of S. The SO 4 2? in runoff in the roofed catchment is a mixture of SO 4 2? previously adsorbed in the soil, mineralized organic S and SO 4 2? from the sprinkler water. Calculations based on isotope data indicate that the turnover time of S within the catchment is on the order of decades. Since SO 4 2? facilitates base cation flow, the acidification reversal will take a much longer time than concentration decreases of SO 4 2? would suggest.  相似文献   

17.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

18.
Radiotracer experiments on the sorption of I? (iodide) and IO inf 3 p? (iodate) from water by soils such as field soil, rice paddy soil and sandy soil, as well as by some soil components, have been carried out with special reference to the effects of heating and gamma-irradiating the soil. Desorption phenomena of I from soil to various solutions were also studied. The sorption of I? by soil was markedly reduced through treatments of air-drying and heating the soil prior to its equilibration with water. The results indicated that I? sorption was by the soil fraction which was unstable at about 150 °C, while IO inf 3 p? sorption was by the soil fraction which was relatively stable to heating. Gamma-irradiation at 27 kGy affected the sorption to a smaller extent than heating at 150 °C. A very high sorption (or soil-water distribution coefficient, Kd) was found in untreated field soil (andosol) with a low organic C (humus) content, while the sorption by sandy soil was considerably smaller than the other soils. Neither I? or IO inf 3 p? were well sorbed by clay minerals, Al2O3 and quartz sand, while the sorption by Fe2O3 was IO inf 3 p? were desorbed by 1N NaOH solution. By acidifying this solution, only a part of the desorbed I was re-precipitated with humic acid. The desorption by solutions containing K2SO3 or KI was also high, while that by solutions containing HCI, CH3COONH4 or chemical fertilizer was considerably lower. These findings suggested the possibility that I was not directly associated with humic acid itself.  相似文献   

19.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   

20.
A laboratory incubation experiment was conducted to investigate the effects of direct incorporation of either wheat straw or its biochar into a cultivated Chernozem on gross N transformations calculated by the 15N pool dilution technique and nitrous oxide (N2O) production rates. Incorporation of wheat straw stimulated gross NH 4 + (ammonium) and NO 3 ? (nitrate) immobilization rates by 302 and 95.2?%, respectively, suppressed gross nitrification rates by 32.2?%, and increased N2O production by 37.7?%. In contrast, the addition of a biochar produced from the wheat straw did not influence any of the above N cycling processes. Therefore, application of biochar could be a possible management strategy for long-term C sequestration (through soil storage of stable C contained in the biochar) in soils without increasing N2O production rates, but could not effectively immobilize NO 3 ? in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号