首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of plant nutrition》2013,36(12):2689-2704
ABSTRACT

Salinity is among the most widespread and prevalent problems in irrigated agriculture. Many members of the family Chenopodiaceae are classified as salt tolerant. One member of this family, which is of increasing interest, is quinoa (Chenopodium quinoa Willd.) which is able to grow on poorer soils. Salinity sensitivity studies of quinoa were conducted in the greenhouse on the cultivar, “Andean Hybrid” to determine if quinoa had useful mechanisms for salt tolerant studies. For salt treatment we used a salinity composition that would occur in a typical soil in the San Joaquin Valley of California using drainage waters for irrigation. Salinity treatments (ECi ) ranging from 3, 7, 11, to 19?dS?m?1 were achieved by adding MgSO4, Na2SO4, NaCl, and CaCl2 to the base nutrient solution. These salts were added incrementally over a four-day period to avoid osmotic shock to the seedlings. The base nutrient solution without added salt served as the non-saline control solution (3?dS?m?1). Solution pH was uncontrolled and ranged from 7.7 to 8.0. For comparative purposes, we also examined Yecora Rojo, a semi-dwarf wheat, Triticum aestivum L. With respect to salinity effects on growth in quinoa, we found no significant reduction in plant height or fresh weight until the electrical conductivity exceeded 11?dS?m?1. The growth was characteristic of a halophyte with a significant increase in leaf area at 11?dS?m?1 as compared with 3?dS?m?1 controls. As to wheat, plant fresh and dry weight, canopy height, and leaf area did not differ between controls (3?dS?m?1) and plants grown at 7?dS?m?1. Beyond this threshold, however, plant growth declined. While both quinoa and wheat exhibited increasing Na+ accumulation with increasing salinity levels, the percentage increase was greater in wheat. Examination of ion ratios indicated that K+:Na+ ratio decreased with increasing salinity in both species. The decrease was more dramatic in wheat. A similar observation was also made with respect to the Ca2+:Na+ ratios. However, a difference between the two species was found with respect to changes in the level of K+ in the plant. In quinoa, leaf K+ levels measured at 19?dS?m?1 had decreased by only 7% compared with controls. Stem K+ levels were not significantly affected. In wheat, shoot K+ levels had decreased by almost 40% at 19?dS?m?1. Correlated with these findings, we measured no change in the K+:Na+ selectivity with increasing salinity in quinoa leaves and only a small increase in stems. In wheat however, K+:Na+ selectivity at 3?dS?m?1 was much higher than in quinoa and decreased significantly across the four salinity levels tested. A similar situation was also noted with Ca2+:Na+ selectivity. We concluded that the greater salt tolerance found in quinoa relative to wheat may be due to a variety of mechanisms.  相似文献   

2.
The reduction in tiller number is a major reason for a decrease in grain yield of wheat. Thus, we hypothesize that the limiting growth of tillering of wheat plant under saline conditions may be due to a different distribution of ions among tillers, which may be tested by tiller removal. Two contrasting spring wheat (Triticum aestivum L.) genotypes were subjected to five levels of detillering treatments under saline or non-saline conditions grown in a greenhouse. Sodium (Na+), potassium (K+), calcium (Ca2+), chloride (Cl?), and nitrate (NO3 ?) concentrations in the top leaves of tillers were determined at plant maturity. Regardless of genotypes, the moderate salinity significantly increased the Na+ and Cl? concentrations in the top leaves and the decreased NO3 ? in the mainstem, subtillers and whole plant. Potassium and Ca2+ concentrations in leaves were not affected or slightly increased by salinity. Under moderate salinity, Na+ and/or Ca2+ concentrations in mainstem, subtillers and the whole plant were increased with a decrease in tiller removal for both genotypes, while there was almost no effect of tiller removal on Cl? and NO3 ? concentration. The tiller removal increased the tolerance of wheat to tissue Na+ content, especially for the salt sensitive genotype. Thus, the salt-specific effects in wheat plant could be alleviated by fewer tillers per plant through the removal for the salt-sensitive genotype. However, our study did not show the competition for the mineral nutrients among tillers under saline conditions. Thus, we speculate that there is a competition for photoassimilates among the tillers under saline conditions, especially for the salt sensitive genotype, which needs to be investigated further.  相似文献   

3.
Poor quality of irrigation water (high salinity) has reduced the yields of pistachio over recent years, especially in Kerman. The effects of four salinity levels [0, 30, 60, and 90 mM sodium chloride (NaCl)] and three calcium (Ca) levels [0, 0.5, and 1 mM Ca as calcium nitrate (Ca(NO3)2.4H2O)] on growth and chemical composition of pistachio seedlings cv. ‘Badami’ were studied in sand culture under greenhouse conditions in completely randomized design (CRD) with four replications. After 170 days, leaf area, leaf number, shoot and root dry weights were determined. Also shoot and root sodium (Na), potassium (K), Ca, and magnesium (Mg) concentrations were measured. Results showed salinity decreased all growth parameters. Ca application increased shoot and root Ca concentrations and root K concentration, while Ca application decreased shoot K concentration and shoot and root Mg concentrations. Salinity decreased shoot Ca, root K, and root Mg concentrations, while salinity increased shoot and root total sodium uptake, and shoot and root Cl concentrations.  相似文献   

4.
Improving zinc efficiency of cereals especially wheat under zinc deficiency is a priority area of research to determine and manipulate the plant factors that govern zinc uptake and utilization. Experiments conducted to ascertain variability and also the contribution of seed zinc (complete seed and half seed) to zinc efficiency in diverse wheat genotypes raised on zinc sufficient and deficient nutrient solution, showed wide genetic variability and general deficiency response such as, increase in root to shoot ratio and decrease in leaf chlorophyll, superoxide dismutase activity, total plant zinc concentration, and uptake. Since difference in zinc deficiency response were more distinct at the initial growth stage, seed zinc could be crucial for determining plant establishment, vigor, and yield. A few exceptional genotypes, where cutting seed zinc supply infect triggered growth, root characteristics, zinc uptake and use efficiency were identified and their zinc uptake capacity on low zinc soil was measured. The difference in zinc efficiency was attributable to phytosiderophore release capacity of the genotypes.  相似文献   

5.
A greenhouse research experiment was conducted to investigate the effect of salinity stress and potassium (K) fertilization on biomass accumulation of roots and shoot of saffron plants. Treatments were four levels salinity in the form of sodium chloride (NaCl; 3.4, 6.4, 9.4 and 12.4 dS m?1) and three levels of potassium (50, 100, and 150 % of Hoagland's nutrition solution base). Results indicated that higher levels of potassium significantly controlled the negative effects of NaCl on length and number of roots as well as fresh weight and number of leaves per plant. Increase in salinity and potassium levels caused a reduction in leaf water content, and enhancement in electrolyte leakage. It seems that in the presence of salinity increasing 50% extra potassium (Based on Hoagland's nutrient solution) in the rhizosphere of saffron can improve damaging effects of NaCl up to 9.4 dS m?1 of soil solution.  相似文献   

6.
Abstract

Fine fescues (Festuca spp.) are generally considered acid tolerant compared to other cool‐season turfgrasses. However, there is little information on aluminum (Al) tolerance of fine fescues at both the species and cultivar levels. The objectives of this study were to identy cultivars of fine fescues with superior ability to tolerate Al, and compare the Al tolerance of endophyte infected and endophyte‐free cultivars in Al tolerance. A total of 58 cultrvars of fine fescues belonging to five species or subspecies [14 hard fescue (F. longifolia Thuill), 25 Chewings fescue (F. rubra L. ssp. commutata Gaud), 15 strong creeping red fescue (F. rubra L. ssp. rubra), two slender creeping red fescue (F. rubra L. ssp. trichophylla), and two sheep fescue (F. ovina L.)] were selected from the 1993 National Fineleaf Fescue Test and screened under greenhouse conditions using solution culture, sand culture, and acid Tatum soil (Clayey, mixed, thermic, typic, Hapludult). The acid Tatum soil had 69% exchangeable Al and a pH of 4.4. An Al concentration of 640 μM and a pH of 4.0 were used in solution culture and sand culture screening. The grasses were seeded and grown for three weeks before harvesting. Aluminum tolerance was assessed by measuring relative root length, shoot length, root weight, shoot weight, and total dry matter. Differences in Al tolerance were identified at both the species and cultivar level based on relative growth were as follows: i) hard fescue and Chewings fescue were more Al tolerant than strong creeping red fescue; ii) within species or subspecies, significant differences were found among cultvars of Chewings fescue, strong creeping red fescue, slender creeping red fescue, and sheep fescue; whereas no difference was observed among the hard fescue cultivars; and iii) the cultivars containing endophyte exhibited greater Al tolerance compared the eudophyte‐free cultivars. The results indicate that fine fescues vary in Al tolerance and there is potential to improve Al tolerance with breeding and to refine their management recommendations regarding soil pH.  相似文献   

7.
The aim of this study was to determine the salt tolerance of pepper (Capsicum annuum L.) under greenhouse conditions and to examine the interactive effects of salinity and nitrogen (N) fertilizer levels on yield. The present study shows the effects of optimal and suboptimal N fertilizer levels (270 kg ha?1 and 135 kg ha?1) in combination with five different irrigation waters of varying electrical conductivity (EC) (ECiw = 0.25, 1.0, 1.5, 2.0, 4.0, and 6.0 dS m?1) and three replicates per treatment. At optimal N level, yield decreased when the irrigation water salinity was above ECiw 2 dS m?1. At the suboptimal N level, a significant decrease in yield occurred only above ECiw 4 dS m?1. At high salinity levels the salinity stress was dominant with respect to yield and response was similar for both N levels. Based on the results it can also be concluded that under saline conditions (higher than threshold salinity for a given crop) there is a lesser need for N fertilization relative to the optimal levels established in the absence of other significant stresses.  相似文献   

8.
The River Estate Loam in Trinidad is micaceous. It is weakly structured and prone to surface crusting which results in decreased gaseous diffusion, infiltration- percolation, and seedling emergence. Mulching with ‘Encap’ (a liquid petroleum product) increased infiltration but not seedling emergence whereas ‘Krilium’ (sodium polyacrilonitrile) was more effective in improving seedling emergence. Bagasse mulch had a beneficial effect on infiltration but in common with pen manure was not very effective in aiding seedling emergence. Thin section examination showed that the uncrusted soil had an open structure with a large volume of pores, but, on crusting, the particles became densely packed with negligible air-spaces. Soil particles on die surface of the crust showed some degree of orientation but below the surface there was no such tendency, although particles coalesced with negligible air-spaces. The liquid petroleum mulch prevented crust formation and maintained a stable soil structure.  相似文献   

9.
The modes of transport of Cu, Cr and Fe have been studied in the river Lambro, a highly polluted tributary of the river Po. Twenty-one samples were taken over the period November 1990–March 1992. Fe concentration was consistent with the geochemical nature of the drainage basin, while the high enrichment factors for Cu and Cr (7 and 18 respectively) confirmed a major anthropic contribution to the levels of these metals. The influence of flow, suspended matter and other factors on metal transport by the dissolved and particulate phases were analysed. Suspended matter, as expected, was found to be the main metal transport vehicle. Comparison of Lambro partitioning coefficients with those for the Po, and with other published values, revealed that dissolved phase transport was also important, as found for other industrially polluted rivers. Total metal concentrations were mainly influenced by water flow. The annual metal loads for the Lambro were estimated from the data and indicate that the Lambro contributes 20% of Cu, 9.4% of Cr and 3.6% of Fe to pollution loads in the Po.  相似文献   

10.
Salinity stress is one of the important agricultural problems in the world. A factorial experiment based on completely randomized design with four replications was conducted to evaluate the effects of phytohormones (gibberellic acid and abscisic acid) on the activity of antioxidant enzymes (peroxidase, superoxide dismutase and catalase), rubisco activity and content, and proline in three wheat cultivars (Gascogen, Zagros, and Kuhdasht) under control and salinity stress (3.5 and 7 dS m?1). The results showed that salinity stress (3.5 and 7 dS m?1) decreased the activity of catalase, rubisco, carboxylase, but increased peroxidase, superoxide dismutase activity and proline content. Gibberellic acid caused 58.03% increased in rubisco carboxylase activity in Zagros at 7 dS m?1 in comparison with abscisic acid under salinity stress compared with the control plants in Kuhdasht. Activity of superoxide dismutase in Kuhdasht cultivar at 7 dS m?1 salinity level showed 76.43% increased in Gascogen under salinity stress compared with the control plants with gibberellic acid application. The highest proline content as an osmolyte was found in Zagros at 7 dS m?1 salinity level with abscisic acid (194 μmol g?1 DM) application. Peroxidase activity increased 83.31% and catalase activity decreased 61.27% compared with the control plants in Zagros. Gibberellic acid application significantly prevented reduction in rubisco content under salinity stress. In conclusion, increased in peroxidase and superoxide dismutase activity and proline content decreased the adverse effects of salinity stress on studied cultivars. Also, the foliage spray of gibberellic acid enhanced and improved the growth condition. In this experiment, Zagros cultivar showed more tolerance to salinity stress than the other two cultivars.  相似文献   

11.
Pistachio is one of the most important horticultural crops in Iran. The majority of the pistachio producing regions is located in arid and semi-arid areas with saline conditions. Therefore, selection of suitable rootstocks is important for increasing yield efficiency of this important nut crop. In this study, the effect of four water salinity levels (0.75, 5, 10 and 15 ds m?1) on growth indices and physiological parameters of four Pistacia vera L. rootstocks (Badami-e-Zarand A, Badami-e-Zarand B, Qazvini, and Sarakhs) were investigated under greenhouse conditions. After treatment for three months, leaf dry weight was reduced by about 30-50% at an irrigation water electrical conductivity (ECw) of 10 ds m?1. Badami-e-Zarand B was the most vigorous rootstock at the highest EC. Decreases in root and stem dry weight (average of all rootstocks combined) occurred at water salinity of 10 ds m?1. Chemical analysis of shoot and root indicated that the salinity affected the concentration and distribution of sodium (Na+), potassium (K+), and calcium (Ca2+) in pistachio rootstocks. The concentrations of Na+ and K+ increased with a rise in water salinity levels. Comparison between Na+ concentration of shoot and root showed that all examined rootstocks limited the Na+ transportation to shoot tissue up-to 15 ds m-1, and retained it in the roots. However, this ability was less in the Sarakhs rootstock. Based on measured parameters, Badami-e-Zarand B and Sarakhs could be considered as tolerant and sensitive pistachio rootstocks to water salinity, respectively.  相似文献   

12.
The present study was carried out to increase loquat seed germination with treatments consisting of two soaking temperatures (24 ± 2°C and 38 ± 2°C), chemical agents [control, 0.5% potassium nitrate (KNO3) and 250 mgL?1 gibberellic acid (GA3) each for 20 h], and different moist chilling (MC) periods (1, 2, 3 and 4 weeks under 4–5°C). Compared with 24 ± 2°C, soaking at 38 ± 2°C reduced germination%, mean daily germination (MDG), and mean germination time (MGT), plumule and radicle lengths. Germination percentage, days to 50% emergence, fresh weight and lateral root numbers significantly reduced as MC period increased. KNO3 and GA3 had no significant effect on germination percentage, MDG, MGT and lateral root numbers. KNO3 reduced days to 50% emergence and radicle length, but increased fresh weight compared with control and GA3. Finally, our results suggest the soaking at 24 ± 2°C followed by 0.5% KNO3 each for 20 h plus 1 week of MC or soaking at 24 ± 2°C followed by 250 mgL?1 GA3 each for 20 h plus 2 week of MC.  相似文献   

13.
氮磷钾对甜菜硝酸还原酶与亚硝酸还原酶的影响   总被引:1,自引:0,他引:1  
以当前甜菜生产主栽品种KWS0143为试材,采用"3414"试验设计,探讨了氮磷钾肥对甜菜硝酸还原酶和亚硝酸还原酶活性的影响,及2种酶活性与甜菜产、质量的关系。结果表明,在甜菜生育期间,2种酶活性基本呈双峰曲线变化;随着施氮水平的升高,酶活性增强;磷肥与酶活性在生育中期呈显著或极显著正相关关系;硝酸还原酶活性在甜菜生育中前期、后期与产量、产糖量表现显著或极显著正相关关系,亚硝酸还原酶活性在甜菜生育中期与产量、产糖量正相关关系达到极显著水平。酶活性与含糖率则一直保持着负相关关系。  相似文献   

14.
The interactive effect of potassium (K) and sulfur (S) fertilization on productivity and mineral nutrition of sunnhemp (Crotalaria juncea L.) was evaluated in a field experiment during 2008 and 2009 cropping seasons at Uttar Pradesh, India. Potassium and sulfur fertilizers increased fiber yield and nutrient uptake of sunnhemp. It was observed that an application of K and S at 40 kg ha?1 each significantly increased the total dry matter, fiber yield, and nutrient uptake of sunnhemp. The crop yield response to the added S was greater than for K and the nutrient use efficiency was also higher at lower levels of fertilizer addition. The increased levels of K and S improved the number of nodules and crude protein content of sunnhemp leaves.  相似文献   

15.
This study evaluated the effects of salinity on thyme (Thymus vulgaris) and lavender (Lavandula angustifolia) plants grown alone and in combination with each other. After transplanting, two-month-old plants received nutrient solutions supplemented with 0, 50, and 100 mM sodium chloride (NaCl) for 21 d. Thyme and lavender grown alone were each more tolerant to salt stress than thyme and lavender grown together. In the 100 mM NaCl treatment, all lavender plants grown with thyme died. In thyme, the carbon (C) and nitrogen (N) contents of the roots increased. Ethylene production in thyme was stimulated by salinity only in plants that interacted with lavender. However, in lavender, ethylene production was not influenced by the presence of thyme. The production of essential oils (EOs) was increased by salinity in thyme plants, whereas the EO production of lavender plants depended on the presence of thyme.  相似文献   

16.
为考察辐照对卷烟品质及微生物数量的影响,采用0、4和8kGy的60Coγ射线辐照卷烟,检测样品中霉菌数、酶的活性和霉变现象,在贮存0、180和360d时检测样品的菌落总数、水分、主流烟气焦油释放量,并进行了感官评价试验。结果表明,采用4和8kGy剂量辐照卷烟,能有效杀灭霉菌,防治卷烟霉变;辐照能降低货架期卷烟中的菌落总数、抑制α-淀粉酶和果胶酶的活力,减缓货架期卷烟感官质量下降,其中,4kGy剂量辐照卷烟在货架期的感官质量比对照稍好;辐照对卷烟的焦油和烟碱释放量及水分含量没有明显影响。因此60Coγ射线辐照是一种保持和改善货架期卷烟质量的有效方法。  相似文献   

17.
短波紫外线处理对采后草莓果实腐烂和抗氧化能力的影响   总被引:2,自引:0,他引:2  
以"凤冠"草莓为材料,研究了0、1.5、3.0和4.5kJ.m-2UV-C处理对草莓果实在10℃,12d贮藏期间腐烂和果实抗氧化能力的影响。结果表明,3kJ.m-2UV-C处理能显著抑制草莓果实采后腐烂的发生和MDA的积累,延缓果实失重、硬度和可溶性固形物含量的降低,促进果实CIRG值的提高,增强果实采后着色能力,从而保持果实的感官和食用品质。同时,3kJ.m-2UV-C处理能促进贮藏期间果实总花色苷、总酚含量和DPPH自由基清除能力的增加,减少草莓果实中抗氧化组分含量的下降,维持果实较高的营养品质。说明适宜剂量的UV-C处理(3kJ.m-2)在草莓果实采后后贮运保鲜和抗氧化能力调控中具有潜在的应用前景。  相似文献   

18.
《Journal of plant nutrition》2013,36(10):2173-2190
ABSTRACT

Poor water management and high nitrogen (N) losses are the key problems faced by rice farmers under rainfed inland valley systems. There is a need to evaluate different N fertilizers so as to identify one that could withstand these problems. The performance of polyolefin-coated urea (POCU) was therefore compared with conventional urea in a pot experiment with indica rice (Oryza sativa L. cv. IR36), using two water management systems: 1) Submerged condition referred to as good water management (GWM), and 2) excessive irrigation (over 4000 mm in 120 days) referred to as poor water management (PWM). The study was carried out during 1997 and 1998 cropping seasons under glasshouse conditions. For PWM in 1997, the pots were subjected to leaching only whereas in 1998, they were subjected to both surface runoff and leaching. For both cropping seasons, POCU-treated plants under PWM had a significantly higher grain yield (377.5 and 343.0 g m?2) than urea-treated plants (316.5 and 260.5 g m?2). In addition, POCU-treated plants had a significantly higher number of grains per panicle than urea-treated plants. In 1998, both the partial factor productivity of applied N and the agronomic nitrogen-use efficiency of POCU-treated plants under GWM and PWM were significantly higher than those of urea-treated plants. It can be inferred that (using sandy soils and under PWM), POCU could perform significantly better than conventional urea. This finding is important, considering the usually high nitrogen losses in rice-growing inland valley swamps.  相似文献   

19.
《Journal of plant nutrition》2013,36(4-5):683-692
One experiment was initiated in the fall of 1991 to evaluate the effect of chloride (Cl) fertilizers on the suppression of take-all disease (Gaeumannomyces graminis var. tritici Walker) in winter wheat (Triticum aestivum L.). Preplant and topdress rates of potassium chloride (KCl) and calcium chloride (CaCl2) (0, 34, 67 and 101 kg Cl ha?1) were applied each year. In 1995, plots were split in half whereby one half received 2.24 Mg of 76% ECCE lime ha?1 to elevate the pH and potentially increase disease incidence. Wheat grain yield was not affected by lime applications in any year (1995–1999). Plots exhibited visual symptoms of take-all in almost all years, however, grain yields increased in only two of eight years by the application of CaCl2 and KCl. Applied fertilizer Cl for take-all disease suppression was inconsistent, even following the application of lime where increased soil pH can increase disease severity.

  相似文献   

20.
The effects of sodium chloride (NaCl) salinity (0 and 200 mM) and ammonium (NH4):nitrate (NO3) ratios (100:0, 25:75, 50:50, and 75:25) on growth, photosynthesis, fatty acids and the activity of antioxidative enzymes were investigated in canola plants. Leaf area and fresh and dry weights of leaves were significantly reduced by the salinity. The reduction in vegetative characteristics varied in both salinized and unsalinized plants according to the NH4:NO3 ratios so that the lowest reduction was observed with the 50:50 (NH4:NO3) ratio. Increased NH4 up to 50 percent (50:50) of total N, promotes the yield at both salinized and unsalinized plants. In both salinized and unsalinized plants, the increased NH4 and NO3 ratio in the nutrient solution reduced the photosynthetic (Pn) rate and stomatal conductance; however, the reduction in Pn rate was severely impaired at a higher ratio of NH4 in the nutrient solution. In both salinized and unsalinized plants, the 75:25 ratio had the lowest potassium (K) and sodium (Na) content; however, the K/Na ratio was the highest in 50:50 ratio. An increase of NH4 in the solution led to a significant increase in NH4 content in both salinized and unsalinized plants. Salinity increased NH4 content so that the salinized plant had nearly twice as high NH4 content in the leaves. The activity of nitrate reductase was increased by increasing NH4 from 0 to 50% and then reduced at a higher ratio of NH4 in the solution. The activities of antioxidative enzymes increased in salinized plants regardless of the NH4:NO3 ratios. In salinized plants, the activities of superoxide dismutase and catalase enzymes were increased by 44.4 % and 97.5%, respectively. Within salinized and unsalinized treatments, the highest activities of all antioxidant were observed in 75:25 ratio, while they remained unchanged for all NH4:NO3 ratios. The increased NH4 content in the solution increased the oil content and the maximum oil content in both salinized and unsalinized plant was obtained in both 50:50 and 75:25 ratios. The percentage of oleic acid was affected by both salinity and NH4:NO3 ratios. The ratios of NH4:NO3 had no effect on the protein content; however, salinity reduced the protein content by 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号