首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An endemic hexaploid wheat found in Tibet, China was taxonomically classified as a subspecies in common wheat, i.e. Triticum aestivum ssp. tibetanum. Seven accessions of the Tibetan wheat, 22 cultivars of common wheat and 17 lines of spelt wheat were used for RAPD analysis to study the genetic relationships of the Tibetan wheat with common wheat and spelt wheat, and to assess the genetic diversity (GD) among and within the taxa. RAPD polymorphism was found to be much higher within spelt wheat and the Tibetan wheat than within common wheat. The GD value between the Tibetan wheat and common wheat is lower than that between the Tibetan wheat and spelt wheat. The result of cluster analysis showed that the 46 genotypes were distinctly classified into two groups. Group 1 included all European spelt wheat lines, while group 2 includes all Chinese common wheat and the Tibetan wheat accessions. However, the Tibetan wheat was substantially differentiated from Chinese common wheat at a lower hierarchy. Our results support an earlier classification of the Tibetan wheat as a subspecies in common wheat. European spelt wheat and the Tibetan wheat showed much higher genetic diversity than Chinese common wheat, which could be used to diversify the genetic basis for common wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
H. Tanaka    N. Nakata    M. Osawa    M. Tomita    H. Tsujimoto  Y. Yasumuro  G. Fischbeck 《Plant Breeding》2003,122(3):279-280
The seed storage proteins of wheat flour are the determinants of bread‐making quality. Many cultivars having good bread‐making quality carry the Glu‐D1d allele responsible for the development of glutenin, a major seed storage protein. The Glu‐D1d allele was introduced into four leading Japanese wheat cultivars by recurrent backcrossing and the quality of these near‐isogenic lines (NILs) was evaluated by the sodium dodecyl sulphate sedimentation value of their flour. The values for the NILs were significantly higher than for the corresponding recipient cultivars. However, the values did not reach the level of the cultivar that had been used as the donor of the Glu‐D1d allele.  相似文献   

3.
Near‐isogenic lines carrying the Lr28 gene developed in five genetic backgrounds were tested for 2 years with and without fungicide treatment. The Lr28 gene increased grain yield, 1000‐grain weight and number of effective tillers per plant under heavy leaf rust infection with no negative effects on yield and bread‐making quality in rust‐free plots. Although a reduction in dough development time was found to be associated with Lr28, it can still be used extensively in wheat breeding programmes.  相似文献   

4.
W. Maruyama-Funatsuki  K. Takata    Z. Nishio    T. Tabiki    E. Yahata    A. Kato    K. Saito    H. Funatsuki    H. Saruyama    H. Yamauchi 《Plant Breeding》2004,123(4):355-360
Although it is known that the compositions of low‐molecular weight glutenin subunits (LMW‐GSs) are important factors for bread‐making quality of wheat, it is still not clear which LMW‐GSs confer improved bread‐making quality and how those LMW‐GSs interact with high‐molecular weight (HMW) GSs. Using a hard red winter wheat line with good bread‐making quality and a Japanese wheat cultivar with poor quality as well as their progeny we identified LMW‐GSs associated with the bread‐making quality. One such LMW‐GS, KS2, which had a molecular weight of 42 kDa and was allelic to HS1, was associated with bread‐making quality. Furthermore, by using four recombinant inbred lines with different HMW‐GS and LMW‐GS combinations, KS2 and HMW‐GS 5+10 showed interaction effects on the bread‐making quality. Two‐dimensional polyacrylamide gel electrophoresis (Page) analysis showed that KS2 consists of two protein components and that HS1 is composed of three components. The N‐terminal amino acid sequences of the five components were identical to the most frequently analysed sequence of LMW glutenin components.  相似文献   

5.
Q. Sun    Y. Wei    Z. Ni    C. Xie  T. Yang 《Plant Breeding》2002,121(6):539-541
Yellow rust of wheat caused by Puccinia striiformis f sp. tritici has been periodically epidemic and severely damaged wheat production in China and throughout the world. Breeding for resistant cultivars has been proved to be an effective way to resolve the problem. A yellow rust resistance gene, Yr5, derived from Triticum spelta shows immunity or high resistance to the most popular isolates Tiaozhong 30 and 31 in China. Establishment of DNA markers for the Yr5 gene will facilitate marker‐assisted selection and gene pyramiding in the breeding programme. Since the Yr5 gene was cytologically located on the long arm of chromosome 2B, By33, the donor of Yr5, was crossed and backcrossed with the susceptible line 441, and BC3F2 and BC3F3 segregating populations were screened for polymorphism by using 11 microsatellite primers mapped on chromosome 2B. A marker, Xgwm501‐195 bp/160 bp, was found to be linked to Yr5, with a genetic distance of 10.5‐13.3 cM.  相似文献   

6.
Six ‘Chinese Spring/Triticum spelta’ substitution lines for chromosomes 1A, 1D (duplicates), 3D (duplicates), 6D, and one ‘Chinese Spring/ Marquis’ substitution line for chromosome 2B were studied for tissue-culture response (TCR). The results reported here indicate that chromosomes 2B and 6D are critical for TCR, whereas chromosome ID affects callus weight only. Chromosomes 1A and 3D were not found to be critical, however, these chromosomes may carry genes with minor effects.  相似文献   

7.
The unpredictability of the Mediterranean climate causes a large fluctuation in wheat yield and quality but offers the opportunity for the production of high quality wheats which are lacking in the European Union.

This paper describes the effects of nitrogen fertilization rate and timing on five Triticum aestivum L. cultivars differing in bread-making quality, cultivated in six representative Italian sites (years/locations). Nitrogen was applied at each location at two rates, the first corresponding to the amount estimated to maximize grain yield, the second 30% higher. Three timings of nitrogen applications were tested including a late application at the boot stage. Bread-making quality was evaluated with the Chopin alveograph and each sample was assigned to the following qualitative classes of the Italian market: Class 1, improver wheat; Class 2, for direct bread-making; Class 3, ordinary wheat.

Cultivars differed significantly in all agronomic and qualitative traits. Grain yield was highest in the northern location (7.1 t ha−1) and lowest in the south of the Italian peninsula (2.61 ha−1), while in Sicily abundant rains in both years enabled a yield of 6.41 ha−1 to be obtained. As far as bread-making quality is concerned, the greatest proportion of grain samples belonging to Class 1 was obtained from the northern location. The year of cultivation strongly affected quality, particularly with regard to gluten tenacity, in all locations, though the quality ranking of the cultivars remained substantially stable across locations. Nitrogen applications greater than those considered optimal to maximize yield, combined with a better distribution during the life cycle, significantly improved bread-making quality.

It was concluded that high quality wheats can be obtained in a wide range of growing conditions in the Mediterranean climate. However the likelihood of genotype × environment interactions, statistically significant for both yield and quality, call for a more precise management of nitrogen fertilization in relation to the cultivars chosen and the climatic features of each site.  相似文献   


8.
Quality evaluation of D-zone omega gliadins in wheat   总被引:1,自引:0,他引:1  
One-hundred and eighty-one wheat cultivars and breeding lines of diverse origin, together with 409 and 540 Swedish spring and winter wheat breeding lines, respectively, were analysed by electrophoretical methods for D-zone omega gliadins. Correlations were calculated between the D-zone omega gliadin and high-molecular-weight (HMW) glutenin subunit patterns, with Zeleny volume or specific Zeleny volume. The results showed that simultaneous screening of D-zone omega gliadins and HMW subunits of glutenin was possible, and that the variation in Zeleny volume was attributed approximately equally between these protein groups. Both protein patterns can be used as parameters when breeding for bread-making quality. Positive relationships were found between gliadins d7 and d2 d4, and the specific Zeleny volume. Gliadins d11 d12 and the null allele of chromosome IB showed indications of negative relationships. Common D-zone omega gliadin patterns in the Swedish winter-wheat breeding lines were d2d4 and d11 d12 (67% of the lines), and the null allele of chromosome IB and d11 d12 (in 25%). Greater variation was documented in the spring breeding lines than in the winter lines.  相似文献   

9.
10.
Bread-making quality indices (dough strength and dough mixing stability) in relation to flour protein content, glutenin/gliadin ratio, and high-molecular-weight (HMW) subunits of glutenin have been investigated in Triticum aestivum progenies during a three year agronomic trial. Dough strength (W) proved to be a fairly stable characteristic, slightly but positively correlated with flour protein content. High could be associated with a high glutenin/gliadin ratio as well as with the presence of specific HMW. subunits of glutenin, while high protein content tended to favour a balanced dough tenacity-extensibility ratio (P/L = 0.4—0.6). Satisfactory values of dough-mixing stability were frequently observed in association with good expression of W showing that the two quality traits may coexist without much difficulty in the same genotype. From the plant breeding standpoint the data suggest feasible to obtain high dough strength by concentrating in a genotype the HMW subunits of glutenin known to have a beneficial effect on W. However, very high W may present unfavourable P/L ratios. This possibility is enhanced when the flour has a low protein content which often occurs in high yielding genotypes.  相似文献   

11.
The allelic variation of prolamin loci was studied in three F2 progenies from three crosses between the 1BL/1RS cultivar Triana and Yécora Rojo, Pavón and Florence Aurora, cultivars without the translocation. According to the 1:2:1 theoretical proportions observed in the allelic variants of the Glu-B3/Gli-B1 loci of the parent without the translocation, the inheritance as a block of the rye chromosome arm was confirmed. A group of F3-F4 recombinant lines, developed from these crosses was evaluated using the SDS-sedimentation test and the mixograph and alveograph tests. The presence of the 1BL/1RS translocation was not associated with significantly lower grain protein content values or with the optimum mixing time in the mixograph of the genotypes. The effect of the 1BL/1RS translocation on most of the quality parameters was highly dependent on the genetic pool. Significant increases in gluten strength and better mixing properties associated with the presence of some alleles of the Glu-A1, Glu-A3/ Gli-A1 and Gli-D2 loci were detected. The additivity and the interaction of prolamin gene effects with the rye translocation in the 1BL/1RS lines and its possible use in plant breeding are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
S. Gobaa    G. Kleijer    P. Stamp 《Plant Breeding》2007,126(1):1-4
The suitability of wheat varieties for bread‐making depends on their glutenin subunits. The amino acid composition of these gluten building‐blocks have a strong influence on the rheology of the dough and, thus, on the suitability of the variety for bread‐making. This study reports a new x‐type high molecular weight glutenin subunit coded by the locus Glu‐A1 and named 2··. To investigate the impact of this allele on 10 quality parameters, a doubled haploid (DH) population of Triticum aestivum, segregating for Glu‐A1, was created. The statistical analysis demonstrates that, at Glu‐A1, the subunit 2·· is as favourable for quality as the subunit 2*. This is in accordance with results showing that the 2·· open reading frame still has the same number of cysteines as 2*. The small differences in the length of the central domain had no detectable effect on the elasticity, tenacity and baking quality, of the dough.  相似文献   

13.
Forty-two winter wheat varieties and 193 F2 and BC1F2 seeds were screened for Glu-D1d allele encoding the HMW glutenin subunits 5 + 10 using polymerase chain reaction (PCR). The segregating populations originated from crosses involving wheat parents with good and poor bread-making quality. A clear PCR product of 450 bp, representing 1Dx5 of the Glu-D1d allele was identified in 24 varieties and 111 hybrid seeds. Four different Glu-D1 alleles: a (2 + 12), b (3 + 12), c (4 + 12) and d (5 + 10) were detected using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Only genotypes possessing Glu-D1d gave a positive PCR signal, hexaploid triticale and 4 × wheat lacking Glu-D1 locus gave a negative signal. The efficiency of PCR selection for bread-making quality in early generations using half seed is discussed.  相似文献   

14.
Summary The relation has been studied between the high molecular weight glutenin (HMWg) subunit alleles and the bread-making quality of 226 lines of winter wheat (T. aestivum L.), grown in The Netherlands. The lines represented a wide range of genetic backgrounds, and had not been selected for quality, in contrast to the established varieties used by other authors.The variation in HMWg subunit genotypes accounted for about 20% of the total variation in loaf volume among the lines. Most important was the allelic variation at the Glu-D1 locus. The Glu-D1 allele encoding the subunits 5+10 was superior to its allelic counterpart, encoding 2+12. The difference in average of loaf volume between groups of lines containing 5+10 or 2+12 was negatively related with protein content of the flours. When protein content was below 9.2%, no effect of allelic variation at the Glu-D1 locus was present. Epistatic effects between the Glu-I loci also contributed to the variation in loaf volume of the lines: i.e. the effect of allelic variation at Glu-A1 and Glu-B1 depended on the allele present at the Glu-D1. The contribution of the epistatic effects was about half the contribution of the additive effects, and should therefore be included in predictive models for bread-making quality.  相似文献   

15.
16.
K. Kato    R. Sonokawa    H. Miura  S. Sawada 《Plant Breeding》2003,122(6):489-492
A dwarfing effect of the 44.1 cM chromosomal region between the threshability gene Q and Xfba068 on the long arm of hexaploid wheat chromosome 5A has been reported. To clarify whether Q or its adjacent region is responsible for regulating culm elongation, two precise genetic stocks of near‐isogenic lines (NIL), a single chromosome substitution line, ‘Chinese Spring’ (CS; ‘Cappelle‐Desprez’ 5A) (NIL‐Q) and a single chromosome recombinant substitution line (NIL‐q) were used. The target segment of NIL‐q included the q allele and QEet.ocs‐5A.1, an earlinessper se gene, from spelt wheat in the CS genetic background. They were grown under 16‐h day length with and/ or without vernalization treatment. Being independent of heading date, NIL‐Q showed shorter elongation in lower internodes and decreased internode differentiation in comparison with NIL‐q. The culm‐length reduction associated with Q was confirmed in the recombinant F5 population derived from the cross between NIL‐Q and NIL‐q. Vernalization promotion had a tendency to reduce this dwarfing effect.  相似文献   

17.
The inheritance of rachis fragility and glume tenacity in semi-wild wheat was studied in an attempt to help establish the taxonomic status and genetic origin of semi-wild wheat. Progenies of crosses and backcrosses of semi-wild wheat with the cultivar Columbus (common wheat) indicated that the fragile rachis and non-free-threshing character of semi-wild wheat were dominant to the tough rachis and free-threshing character of common wheat. F2 and backcross data indicated that the rachis fragility and glume tenacity of semi-wild wheat were each controlled by a single gene in the cross of semi-wild wheat with Columbus. In the cross of semi-wild wheat with Triticum aestivum spp. spelta, the F2 and F3 population did not segregate for glume tenacity, but did segregate for rachis fragility. The F2 and backcross data suggest that three genes interact to control three types of rachis fragility, i.e. semi-wild wheat-type, spelta-type and the tough rachis of common wheat. Semi-wild wheat differs from common wheat in rachis fragility and glume tenacity. This wheat also differs from other wheats with fragile rachis and tenacious glumes (T. aestivum ssp. spelta, macha and vavilovii) in the pattern and degree of rachis disarticulation. We conclude that semi-wild wheat is likely a subspecies within T. aestivum at the same taxonomic level as spp. spelta, macha and vavilovii. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

19.
C. A. McCartney  D. J. Somers    O. Lukow    N. Ames    J. Noll    S. Cloutier    D. G. Humphreys    B. D. McCallum 《Plant Breeding》2006,125(6):565-575
Wheat grain quality is a complex group of traits of tremendous importance to wheat producers, end‐users and breeders. Quantitative trait locus (QTL) analysis studied the genetics of milling, mixograph, farinograph, baking, starch and noodle colour traits in the spring wheat population RL4452/‘AC Domain’. Forty‐seven traits were measured on the population and 99 QTLs were detected over 18 chromosomes for 41 quality traits. Forty‐four of these QTLs mapped to three major QTL clusters on chromosomes 1B, 4D, and 7D. Fourteen QTLs mapped near Glu‐B1, 20 QTLs mapped near a major plant height QTL on chromosome 4D, and 10 QTLs mapped near a major time to maturity QTL on chromosome 7D. Large QTLs were detected for grain and flour protein content, farinograph absorption, mixograph parameters, and dietary fibre on chromosome 2BS. QTLs for yellow alkaline noodle colour parameter L* mapped to chromosomes 5B and 5D, while the largest QTL for the b* parameter mapped to 7AL.  相似文献   

20.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号