首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochar application to soils has received much attention due to the potential for dual benefits of improved fertility and carbon (C) sequestration. Whilst its effect on C and nitrogen (N) cycling in soils has been investigated previously, this has usually either focussed on the bulk soil organic matter, or a single compound such as glucose. Five low molecular weight dissolved organic C (LMWDOC) substrates (three sugars, one amino acid, one organic acid) were selected for a 14C-CLPP experiment from which turnover rate (t1/2) and immediate carbon use efficiency (CUE) of the substrate were estimated. We demonstrated that whilst soil type had the greatest effect on soil microbial function, the addition of biochar also influenced microbial turnover and CUE of the substrates, most notably in the lowest fertility soil. We also identified that the relationship between turnover and CUE of the five substrates differed substantially, and the effect of biochar and soil type was more pronounced in the amino acid than the organic acid. This effect tended to be greatest in biochars produced at 450 °C, and less pronounced with the addition of biochars produced at 550 °C, though these trends were not consistent for all compounds in all soils tested. We conclude biochars and soils interact to manifest non-systematic differences in turnover rates of LMWDOCs, and thus a variety of mechanisms are likely responsible for this observation. As these compounds are most commonly found in the rhizosphere and can contribute a significant portion of photosynthetically-fixed C, and plant roots have been observed to grow preferentially around biochar particles, it is apparent that biochar may significantly affect the flow of LMWDOC through the microbial community in soils.  相似文献   

2.
The effects of pyrogenic carbon on the microbial diversity of forest soils were examined by comparing two soil types, fire-impacted and non-impacted, that were incubated with laboratory-generated biochars. Molecular and culture-dependent analyses of the biochar-treated forest soils revealed shifts in the relative abundance and diversity of key taxa upon the addition of biochars, which were dependent on biochar and soil type. Specifically, there was an overall loss of microbial diversity in all soils treated with oak and grass-derived biochar as detected by automated ribosomal intergenic spacer analysis. Although the overall diversity decreased upon biochar amendments, there were increases in specific taxa during biochar-amended incubation. DNA sequencing of these taxa revealed an increase in the relative abundance of bacteria within the phyla Actinobacteria and Gemmatimonadetes in biochar-treated soils. Together, these results reveal a pronounced impact of pyrogenic carbon on soil microbial community composition and an enrichment of key taxa within the parent soil microbial community.  相似文献   

3.
The aim of this work was to determine the magnitude of the priming effect, i.e. short-term changes in the rate (negative or positive) of mineralisation of native soil organic carbon (C), following addition of biochars. The biochars were made from Miscanthus giganteus, a C4 plant, naturally enriched with 13C. The biochars were produced at 350 °C (biochar350) and 700 °C (biochar700) and applied with and without ryegrass as a substrate to a clay-loam soil at pH 3.7 and 7.6. A secondary aim was to determine the effect of ryegrass addition on the mineralisation of the two biochars.After 87 days, biochar350 addition caused priming effects equivalent to 250 and 319 μg CO2-C g−1 soil, in the low and high pH soil, respectively. The largest priming effects occurred at the start of the incubations. The size of the priming effect was decreased at higher biochar pyrolysis temperatures, which may be a way of controlling priming effects following biochar incorporation to soil, if desired. The priming effect was probably induced by the water soluble components of the biochar. At 87 days of incubation, 0.14% and 0.18% of biochar700 and 0.61% and 0.84% of biochar350 were mineralized in the low and high pH soil, respectively. Ryegrass addition gave an increased biochar350 mineralisation of 33% and 40%, and increased biochar700 at 137% and 70%, in the low and high pH soils, respectively. Certainly, on the basis of our results, if biochar is used to sequester carbon a priming effect may occur, increasing CO2-C evolved from soil and decreasing soil organic C. However, this will be more than compensated for by the increased soil C caused by biochar incorporation. A similar conclusion holds for accelerated mineralisation of biochar due to incorporation of fresh labile substrates. We consider that our results are the first to unequivocally demonstrate the initiation, progress and termination of a true positive priming effect by biochar on native soil organic C.  相似文献   

4.
Biochar has been widely proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. To quantify the changes in soil microbial biomass and to understand the mechanisms involved, two biochars were prepared at 350 °C (BC350) and 700 °C (BC700) from Miscanthus giganteus, a C4 plant, naturally enriched with 13C. The biochars were added to soils of about pH 4 and 8, which were both sampled from a soil pH gradient of the same soil type. Isotopic (13C) techniques were used to investigate biochar C availability to the biomass. Scanning Electron Microscopy (SEM) was used to observe the microbial colonization, and Attenuated Total Reflectance (ATR) to highlight structural changes at the surface of the biochars. After 90 days incubation, BC350 significantly increased the biomass C concentration relative to the controls in both the low (p < 0.05) and high pH soil (p < 0.01). It declined between day 90 and 180. The same trend occurred with soil microbial ATP. Overall, biomass C and ATP concentrations were closely correlated over all treatments (R2 = 0.87). This indicates that neither the biomass C, nor ATP analyses were affected by the biochars, unless, of course, they were both affected in the same way, which is highly unlikely. About 20% of microbial biomass 13C was derived from BC350 after 90 days of incubation in both low and high pH soils. However, less than 2% of biomass 13C was derived from BC700 in the high pH soil, showing very low biological availability of BC700. After 90 days of incubation, microbial colonization in the charsphere (defined here as the interface between soil and biochar) was more pronounced with the BC350 in the low pH soil. This was consistent with the biomass C and ATP results. The microbial colonization following biochar addition in our study was mainly attributed to biochar C availability and its large surface area. There was a close linear relationship between 13CO2 evolved and biomass 13C, suggesting that biochar mineralization is essentially a biological process. The interactions between non-living and living organic C forms, which are vital in terms of soil fertility and the global C cycle, may be favoured in the charsphere, which has unique properties, distinct from both the internal biochar and the bulk soil.  相似文献   

5.
Biochar is known to ameliorate soil fertility and improve crop production but information regarding soil microbiota responses on biochar amendment remains limited. The experiment was conducted to study the effect of biochars from palm kernel (pyrolysed at 400°C) and rice husk (gasified at 800°C) in a sandy loam Acrisol from Peninsular Malaysia. The soil was amended with palm kernel shell biochar (PK), rice husk biochar (RH), palm kernel biochar with fertilizer (FPK), rice husk biochar with fertilizer (FRH), fertilizer and control soil. Soil samples were taken during maize harvesting and were analysed for physico-chemical properties, microbial biomass, microbial abundance and microbial diversity. Increase in pH, moisture content, CEC, organic C, and labile C were recorded in all biochar amended soils. Microbial biomass C was 65% and 36% higher in RH and FRH, respectively, than control. Microbial biomass N was greatest in FPK and FRH with respective increment of 359% and 341% than control. β-glucosidase and xylanase activities were significantly increased in all biochar treated soils than control. A shift in microbial diversity was not detected. The biochar affects the microbial community by altering the soil environment and increasing labile active carbon sources in the short-term amendment.  相似文献   

6.
生物质炭对不同pH值土壤矿质氮含量的影响   总被引:4,自引:0,他引:4  
为了揭示生物质炭作为土壤调理剂添加后对土壤矿质氮形态、含量等土壤性质的影响,该研究利用芒草分别在350和700℃裂解制得生物质炭,发现2个温度尤其是700℃制得的生物质炭,对NH4+有很强的吸附能力,但对NO3-的吸附能力很弱。将生物质炭分别加入到酸性(pH值为3.8)和碱性(pH值为7.6)土壤中,25℃下室内培养180d。结果表明,生物质炭提高了土壤全氮含量,酸性和碱性土壤分别平均提高了22%和17%;但使土壤铵态氮含量大幅降低至接近仪器检测限水平;生物质炭对土壤硝态氮含量的影响因生物质炭和土壤类型而异。生物质炭对土壤矿质氮形态和含量的影响,显然与生物质炭对铵的吸附作用、提高土壤pH值、增强氨挥发损失,以及形成微生物量氮等密切相关。该研究可为开展生物质炭基氮素新型肥料及制剂等方面的科学研究提供参考。  相似文献   

7.
Due to its high sorption affinity for organic compounds, biochar may interfere with extraction procedures involving such compounds used for microbially-related assays commonly applied to soils. Here we assessed the impact of two biochars (derived from pine bark and produced at 300 and 600 °C) at three concentrations (0, 12.5, and 50 g kg−1) in three distinct arable soils with contrasting textural classes (loamy sand, sandy loam, and clay) on the determination of soil microbial biomass C by fumigation–extraction, fungal biomass by ergosterol analysis, and microbial community structure as defined by phospholipid fatty acid (PLFA) profiling. Biochar did not affect the apparent concentration of soil microbial biomass C and had no significant impact on apparent PLFA profiles. By contrast, the apparent extraction efficiency of ergosterol was affected dependent on soil type, biochar production temperature, and biochar concentration. Nonetheless, ergosterol contents of biochar-amended soils can be accurately estimated by correcting for reduced recovery using an ergosterol spike.  相似文献   

8.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

9.
Oilseed‐derived biochar, a by‐product of pyrolysis for biodiesel production, is richer in aliphatic compounds than the commonly studied wood‐derived biochar, affecting both its mineralization in soil and its interaction with native soil organic carbon (nSOC). Here, we investigated the soil C sequestration potential of three different oilseed biochars derived from C3 plant material: soyabean, castor bean and jatropha cake. The chemical composition of these biochars was determined by elemental analysis (CHN) and 13C NMR spectroscopy. The cumulative CO2 efflux from 30‐day laboratory incubations of biochar mixed with a sandy soil containing nSOC from C4 plants was measured as a proxy for mineralization rate. The relative contribution of each source to CO2 production was calculated based on the 13C‐signatures of total CO2 efflux and the source materials (soil and biochars). Our results showed that: (i) castor bean biochar contained relatively large amounts of aliphatic compounds, resulting in a greater mineralization rate than soyabean and jatropha biochars; (ii) CO2 efflux from the soil‐biochar mixtures originated mostly from the biochars, suggesting that these biochars contain rapidly decomposable compounds; and (iii) all three oilseed biochars decelerated nSOC mineralization. This negative priming effect appeared to be caused by different factors. We conclude that oilseed biochars have the potential to increase soil C stocks directly and increase soil C sequestration indirectly in the short term through negative priming of nSOC mineralization.  相似文献   

10.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   

11.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

12.
Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern US following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 45% and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).  相似文献   

13.
The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2 flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism.  相似文献   

14.
ABSTRACT

The stability of black soil carbon in the deep layers of Japanese volcanic ash soil (i.e., buried A horizons) is often explained by its unique chemical (molecular structure) and physical (associated with short-range-order minerals) recalcitrance. However, the stability of black soil C in buried A horizons may be changed by labile C supply for soil microbes. Here, we hypothesized that the mineralization of black soil C in buried A horizons of Japanese volcanic ash soil could be easily accelerated by a supply of labile C (i.e., a priming effect; PE). To test our hypothesis, we investigated the direction and magnitude of the PE with a buried A horizon in Japan using 13C-labeled glucose (2.188 atom %) in a short-term (21 days) incubation study. We also investigated the effect of mineral nitrogen (N), which could contribute to microbial activity in this incubation study. We found that a positive PE occurred by glucose supply with (182%) or without (181%) mineral N input over the 21-day incubation, and its values were very similar to the PE ratios previously reported in other deep soils. The estimated mean residence time (MRT) of black soil C considering PE was clearly accelerated by glucose supply, regardless of mineral N input, compared with the initial soil MRT. These results strongly support our hypothesis that the mineralization rate of black soil C in buried A horizons is easily accelerated by a labile C supply, and it also demonstrates important implications for the effects of global warming on buried A horizons (e.g., increased root exudation, fine root biomass supply, and N deposition) in Japanese volcanic ash soils.  相似文献   

15.
Li  Yongfu  Hu  Shuaidong  Chen  Junhui  Müller  Karin  Li  Yongchun  Fu  Weijun  Lin  Ziwen  Wang  Hailong 《Journal of Soils and Sediments》2018,18(2):546-563
Purpose

Forests play a critical role in terrestrial ecosystem carbon cycling and the mitigation of global climate change. Intensive forest management and global climate change have had negative impacts on the quality of forest soils via soil acidification, reduction of soil organic carbon content, deterioration of soil biological properties, and reduction of soil biodiversity. The role of biochar in improving soil properties and the mitigation of greenhouse gas (GHG) emissions has been extensively documented in agricultural soils, while the effect of biochar application on forest soils remains poorly understood. Here, we review and summarize the available literature on the effects of biochar on soil properties and GHG emissions in forest soils.

Materials and methods

This review focuses on (1) the effect of biochar application on soil physical, chemical, and microbial properties in forest ecosystems; (2) the effect of biochar application on soil GHG emissions in forest ecosystems; and (3) knowledge gaps concerning the effect of biochar application on biogeochemical and ecological processes in forest soils.

Results and discussion

Biochar application to forests generally increases soil porosity, soil moisture retention, and aggregate stability while reducing soil bulk density. In addition, it typically enhances soil chemical properties including pH, organic carbon stock, cation exchange capacity, and the concentration of available phosphorous and potassium. Further, biochar application alters microbial community structure in forest soils, while the increase of soil microbial biomass is only a short-term effect of biochar application. Biochar effects on GHG emissions have been shown to be variable as reflected in significantly decreasing soil N2O emissions, increasing soil CH4 uptake, and complex (negative, positive, or negligible) changes of soil CO2 emissions. Moreover, all of the aforementioned effects are biochar-, soil-, and plant-specific.

Conclusions

The application of biochars to forest soils generally results in the improvement of soil physical, chemical, and microbial properties while also mitigating soil GHG emissions. Therefore, we propose that the application of biochar in forest soils has considerable advantages, and this is especially true for plantation soils with low fertility.

  相似文献   

16.
添加生物炭对酸性红壤中玉米生长和氮素利用率的影响   总被引:3,自引:0,他引:3  
Biochar added to soil can improve crop growth through both direct and indirect effects, particularly in acidic, highly weathered soils in subtropical and tropical regions. However, the mechanisms of biochar improving crop growth are not well understood. The objectives of this study were i) to determine the crop responses to biochar addition and ii) to understand the effect of biochar addition on N use efficiency. Seven acidic red soils varying in texture, p H, and soil nutrient were taken from southern China and subjected to four treatments: zero biochar and fertilizer as a control(CK), 10 g kg-1biochar(BC), NPK fertilizers(NPK), and 10 g kg-1biochar plus NPK fertilizers(BC+NPK).15N-labeled fertilizer was used as a tracer to assess N use efficiency. After a 46-d pot experiment,biochar addition increased soil p H and available P, and decreased soil exchangable Al3+, but did not impact soil availabe N and cation exchange capacity(P 〉 0.05). The N use efficiency and N retained in the soil were not significantly affected by biochar application except for the soil with the lowest available P(3.81 mg kg-1) and highest exchanageable Al3+(4.54 cmol kg-1). Greater maize biomass was observed in all soils amended with biochar compared to soils without biochar(BC vs. CK, BC+NPK vs. NPK). This agronomic effect was negatively related to the concentration of soil exchangeable Al3+(P 〈 0.1). The results of this study implied that the liming effect of biochar improved plant growth through alleviating Al toxicity and P deficiency, especially in poor acidic red soils.  相似文献   

17.
Subtropical recent alluvial soils are low in organic carbon (C). Thus, increasing organic C is a major challenge to sustain soil fertility. Biochar amendment could be an option as biochar is a C-rich pyrolyzed material, which is slowly decomposed in soil. We investigated C mineralization (CO2-C evolution) in two types of soils (recent and old alluvial soils) amended with two feedstocks (sugarcane bagasse and rice husk) (1%, weight/weight), as well as their biochars and aged biochars under a controlled environment (25 ±2 ℃) over 85 d. For the recent alluvial soil (charland soil), the highest absolute cumulative CO2-C evolution was observed in the sugarcane bagasse treatment (1 140 mg CO2-C kg-1 soil) followed by the rice husk treatment (1 090 mg CO2-C kg-1 soil); the lowest amount (150 mg CO2-C kg-1 soil) was observed in the aged rice husk biochar treatment. Similarly, for the old alluvial soil (farmland soil), the highest absolute cumulative CO2-C evolution (1 290 mg CO2-C kg-1 soil) was observed in the sugarcane bagasse treatment and then in the rice husk treatment (1 270 mg CO2-C kg-1 soil); the lowest amount (200 mg CO2-C kg-1 soil) was in the aged rice husk biochar treatment. Aged sugarcane bagasse and rice husk biochar treatments reduced absolute cumulative CO2-C evolution by 10% and 36%, respectively, compared with unamended recent alluvial soil, and by 10% and 18%, respectively, compared with unamended old alluvial soil. Both absolute and normalized C mineralization were similar between the sugarcane bagasse and rice husk treatments, between the biochar treatments, and between the aged biochar treatments. In both soils, the feedstock treatments resulted in the highest cumulative CO2-C evolution, followed by the biochar treatments and then the aged biochar treatments. The absolute and normalized CO2-C evolution and the mineralization rate constant of the stable C pool (Ks) were lower in the recent alluvial soil compared with those in the old alluvial soil. The biochars and aged biochars had a negative priming effect in both soils, but the effect was more prominent in the recent alluvial soil. These results would have good implications for improving organic matter content in organic C-poor alluvial soils.  相似文献   

18.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg?1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.  相似文献   

19.
Biochar application to arable soils could be effective for soil C sequestration and mitigation of greenhouse gas (GHG) emissions. Soil microorganisms and fauna are the major contributors to GHG emissions from soil, but their interactions with biochar are poorly understood. We investigated the effects of biochar and its interaction with earthworms on soil microbial activity, abundance, and community composition in an incubation experiment with an arable soil with and without N-rich litter addition. After 37 days of incubation, biochar significantly reduced CO2 (up to 43 %) and N2O (up to 42 %), as well as NH4 +-N and NO3 ?-N concentrations, compared to the control soils. Concurrently, in the treatments with litter, biochar increased microbial biomass and the soil microbial community composition shifted to higher fungal-to-bacterial ratios. Without litter, all microbial groups were positively affected by biochar × earthworm interactions suggesting better living conditions for soil microorganisms in biochar-containing cast aggregates after the earthworm gut passage. However, assimilation of biochar-C by earthworms was negligible, indicating no direct benefit for the earthworms from biochar uptake. Biochar strongly reduced the metabolic quotient qCO2 and suppressed the degradation of native SOC, resulting in large negative priming effects (up to 68 %). We conclude that the biochar amendment altered microbial activity, abundance, and community composition, inducing a more efficient microbial community with reduced emissions of CO2 and N2O. Earthworms affected soil microorganisms only in the presence of biochar, highlighting the need for further research on the interactions of biochar with soil fauna.  相似文献   

20.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号