首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 On arable land, tilled with conventional tillage (CT) and conservation tillage (CS) respectively, plots were compacted by wheeling them 6 times with a 5 Mg wheel load in spring 1995. Immediately after compaction, undisturbed soil monoliths were excavated from the compacted and uncompacted plots. The monoliths were defaunated and inoculated with either Lumbricus terrestris or Aporrectodea caliginosa. One monolith from each plot remained uninoculated as a control. After 6 months the monoliths were defaunated again and then scanned with X-ray helical computed tomography. The data were transformed, the void systems inside the monoliths were reconstructed and visualised, and the parameters total void length, total void volume, tortuosity and continuity were quantified. The parameters' values were generally lower in the controls than in the inoculated monoliths. Differences in burrow construction could be explained by the different life strategies of the two earthworm species. Changes in burrow morphology due to tillage system and soil compaction were minor. Only the continuity of the burrow systems clearly changed: decreasing for L. terrestris and increasing for A. caliginosa. This can be explained by a change in the earthworms' burrowing activity to minimise energy expenditure in compacted soil. By extrapolating field data, we concluded that earthworms have great potential for biologically regenerating the soil structure after a single compaction event. Due to higher earthworm abundances in soil managed by CS the regeneration of the soil structure is assumed to be better in these plots than those tilled by CT. Received: 17 December 1997  相似文献   

2.
New non-tillage or reduced tillage agricultural practises are being increasingly adopted but generally result in higher soil compaction. Due to their recognised physical influence mainly through burrow creation, it is often claimed that earthworm activity could alleviate soil compaction in these systems. To put this assumption to the test, an experimental compaction event was carried out on one plot of arable land. The abundance and biomass of earthworms were evaluated in compacted (under wheel tracks) and non-compacted (between wheel tracks) zones, seven times over a two-year period. In addition, the functional consequences of earthworm activity, defined by burrow abundance assessed in 2D and 3D and water infiltration, were measured three times over the same period. The short-term (less than three months) effects of the compaction were clear: soil bulk density increased from 1.46 to 1.57 g cm−3, the abundance and biomass of earthworms were greatly reduced (−40% and −70% respectively) and the number and continuity of macroporosity were lower under wheel tracks at least until a depth of 30 cm. After these initial detrimental effects, we observed a rapid recovery of earthworm populations with no statistical difference between compacted and control zones more than three months after the compaction. However, the recovery of soil functional properties linked to earthworm activity, macroporosity and water infiltration, was much slower and took between 12 and 24 months. Despite these modifications, there were no significant changes in soil bulk density with time during the two-year period. This study demonstrates that earthworms are important actors in the regeneration of compacted soil. Although the complete regeneration of compacted soil by earthworms is a slow process, agricultural practises that promote earthworm density and activity should be encouraged in reduced or minimum tillage systems.  相似文献   

3.
To test the assumption that changes to earthworm communities subsequently affect macroporosity and then soil water infiltration, we carried out a 3 year study of the earthworm communities in a experimental site having six experimental treatments: 2 tillage management systems and 3 cropping systems. The tillage management was either conventional (CT; annual mouldboard ploughing up to −30 cm depth) or reduced (RT; rotary harrow up to −7 cm depth). The 3 cropping systems were established to obtain a wide range of soil compaction intensities depending on the crop rotations and the rules of decision making. In the spring of 2005, the impact of these different treatments on earthworm induced macroporosity and water infiltration was studied. During the 3 years of observation, tillage management had a significant effect on bulk density (1.27 in CT and 1.49 mg m−3 in RT) whereas cropping system had a significant effect on bulk density in RT plots only. Tillage management did not significantly affect earthworm abundance but significantly influenced the ecological type of earthworms found in each plot (anecic were more abundant in RT). On the contrary cropping system did have a significant negative effect on earthworm abundance (104 and 129 ind. m−2 in the less and most compacted plots, respectively). Significantly higher numbers of Aporrectodea giardi and lower numbers of Aporrectodea caliginosa were found in the most compacted plots. CT affected all classes of porosity leading to a significant decrease in the number of pores and their continuity. Only larger pores, with a diameter superior to 6 mm, however, were adversely affected by soil compaction. Tillage management did not change water infiltration, probably because the increase in macroporosity in RT plots was offset by a significant increase in soil bulk density. However, cropping system had a significant effect on water infiltration (119 vs 79 mm h−1 in the less and most compacted plots, respectively). In RT plots, a significant correlation was observed between larger macropores (diameter > 6 mm) and water infiltration illustrating the potential positive effect of earthworms in these plots.  相似文献   

4.
《Geoderma》2007,137(3-4):378-387
The burrowing activity of earthworms creates a distinct area around the resulting macropores called the drilosphere, which controls various soil processes. Density and microstructure of the drilosphere were studied and compared with those of the surrounding soil. For this purpose soil cores were separately inoculated with the vertically burrowing earthworm species Lumbricus terrestris. After 70 days some cores were compacted by a hydraulic press (250 kPa) and all cores were analysed by means of X-ray computed tomography. Mean Hounsfield Units were measured for concentric ROI cylinders (ROI = region of interest) of increasing diameters located around vertical macropore sections within selected horizontal slices. Based on these data we estimated stepwise the distribution of bulk density from the inner boundary of the drilosphere to the surrounding soil. In uncompacted soil the bulk density of the drilosphere was increased by 11% over that of the surrounding soil. In cross section, drilosphere and burrow form a concentric area with a total radius up to 2.2 cm. Soil compaction increased the dry bulk density of soil and decreased the diameter of earthworm burrows. Moreover, we found a less dense part of soil between the dense drilosphere and the remaining soil of the compacted core. Scanning electron microscopy revealed that the coarse silt particles of the bulk soil were rearranged to a parallel orientation due to compaction whereas the microstructure of the drilosphere remained unchanged. In any case, the drilosphere revealed a very homogeneous and dense arrangement of silt particles.  相似文献   

5.
The behaviour of earthworms belonging to two different species and ecological types (Aporrectodea nocturna and Allolobophora chlorotica) was studied using two-dimensional (2D) terraria. Two experiments were set up to gain insight into the nature of interactions between these earthworms. Firstly, the evolution of the burrow systems was analysed with the density of the earthworms varying from one to five individuals. Secondly, a burrow system was first established by using one earthworm which was then removed before the introduction of a second earthworm. This second earthworm therefore encountered a burrow system created either by a conspecific earthworm or by an earthworm of the other species. These experiments showed that: (1) intra- and interspecific interactions occur between earthworms, (2) these interactions are dependent on the physical presence of the earthworms, and (3) spatial avoidance can occur (A. chlorotica avoiding burrows created by A. nocturna). The results suggest that earthworm burrow systems are "individual structures", rarely used by other earthworms when inhabited. When abandoned, the burrows may be recolonised depending on the ecological type of the earthworm under consideration.  相似文献   

6.
7.
Although the role of earthworms in soil functioning is often emphasised, many important aspects of earthworm behaviour are still poorly understood. In this study we propose a simple and cost-effective method for estimating burrow system area and continuity, as well as a new and often neglected parameter, the percentage of burrow refilling by the earthworms own casts. This novel parameter is likely to have a huge influence on the transfer properties of the burrow system. The method uses standard repacked soil cores in PVC cylinders and takes advantages of clay shrinkage and the fact that earthworms were previously shown to prefer to burrow at the PVC/soil interface. In this way, after removing the PVC cylinders off dry cores, the external section of the burrow system made by earthworms along the soil walls could be easily described. We applied this method to characterise the burrow systems of four earthworms species: two anecics (Aporrectodea caliginosa nocturna and Aporrectodea caliginosa meridionalis) and two endogeics (Aporrectodea caliginosa icaliginosa and Allolobophora chlorotica). After one month the burrow's area generated by both anecic species were much larger (about 40 cm2) than the endogeic burrow's area (about 15 cm2). A. nocturna burrow system continuity was higher than that of A. meridionalis and both anecic burrow systems were more continuous than those made by the endogeic earthworms. This was partly explained by the far larger proportion of the burrow area that was refilled with casts: approximately 40% and 50% for Al. chlorotica and A. caliginosa, respectively compared with approximately 20% for the anecic burrows. We discuss whether these estimates could be used in future models simulating the dynamics of earthworm burrow systems by taking into account both burrow creation and destruction by earthworms.  相似文献   

8.
To assess the impact of different types of soil tillage on the density, biomass, and community composition of earthworms, a long-term field study was performed in which soils were tilled in different ways for ten years. This study included five different types of tillage: (i) plough, (ii) grubber, (iii) disc harrow, (iv) mulch sowing, and (v) direct sowing. At the end of the experiment the earthworm density, biomass, and community composition, and the SOC (soil organic carbon) content were determined. The results show that density, biomass, and community composition of earthworm populations varied in relation to the type of soil tillage used. The density of anecic earthworm species decreased when soils were managed by conventional ploughing, relative to reduced tillage practices, whereas conversely the density of endogeic species increased. Additionally, the varying types of soil tillage influenced the abundance and biomass of different earthworm species in different ways. The density of Aporrectodea caliginosa was positively influenced by ploughing, whereas Aporrectodea longa, Lumbricus castaneus, and Satchellius mammalis showed a positive relationship to the grubber and Allolobophora chlorotica to direct sowing. We attribute these changes to modifications in the vertical distribution of SOC and varying potentials for mechanical damage of earthworms by tillage. A decrease in tillage intensity modified the vertical SOC distribution in the topsoil and consequently revealed positive effects on earthworm biodiversity, thus sustaining soil functioning.  相似文献   

9.
Research on earthworms in North America has focused on the effects of invasive earthworms, with few studies examining the ecology of native earthworm species. Deer have been shown to influence belowground processes through grazing, trampling, and fecal pellet deposition. We proposed that native earthworms in an oak-dominated forest in Virginia might benefit from increased organic matter provided by deer fecal material. We examined potential interactions between a common aboveground herbivore, the white-tailed deer (Odocoileus virginianus), and earthworms using laboratory and field experiments. In our laboratory experiment, we found that a native earthworm, Eisenoides carolinensis, and an invasive earthworm, Lumbricus terrestris both fared better in treatments with deer pellets compared with the treatment with leaf litter alone. In our field experiment, we used fences to exclude deer from six plots and left twelve plots unfenced to explore the effects of deer activity on earthworm biomass and density. We also examined the effects of deer on soil and vegetation characteristics. After three years, the amount of herbaceous cover was higher on fenced plots compared with unfenced plots. Although we found no other differences for vegetation and soil characteristics between fenced and unfenced plots, many of these variables were important as covariates in our models examining the effect of deer exclusion on earthworms, indicating plot-level (as opposed to treatment-level) variation in these variables. All identifiable earthworms were either E. carolinensis or Diplocardia spp. (both native species), with E. carolinensis making up 90% of the specimens. The total biomass of earthworms, as well as the biomass and density of adult and small juvenile earthworms, was greater on unfenced plots with deer activity compared with fenced plots. This study highlights the importance of above- and below-ground interactions in forest ecosystems by showing that E. carolinensis appears to benefit from the presence of deer and adds to our sparse knowledge of the ecology of this native earthworm.  相似文献   

10.
Earthworms have been termed ‘ecosystem engineers’ (sensu [Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosysem engineers. Oikos 69, 373-386.]) because of the important roles they play in the soil. As a consequence, it is assumed that if earthworms change their behaviour following exposure to pesticides or pollutants this could have a drastic impact on soil functioning. To test this assumption under laboratory conditions, we studied the burrow systems made by two earthworm species (the anecic Aporrectodea nocturna and the endogeic Allolobophora icterica) in artificial soil cores containing imidacloprid, a widely used neonicotinoid insecticide. After 1-month incubation period, the macropores created in the soil core were analyzed by tomography. In order to further characterize transfer properties associated with burrow systems gas diffusion measurements were also carried out. The burrow systems made by the two earthworm species were very different: A. nocturna made more continuous, less branched, more vertical and wider burrows than A. icterica. Some changes to A. nocturna burrow systems were observed after exposure to imidacloprid (they made a smaller burrow system and burrows were more narrow), but only at the highest concentration of imidacloprid used (0.5 mg kg−1). A. icterica worms were more sensitive to imidacloprid and many differences in their burrow systems (length, sinuosity, branching rate and number of burrows) were observed at both concentrations tested (0.1 and 0. 5 mg kg−1). As a consequence, the continuity of the burrow systems made by both species was altered following imidacloprid treatment. Gas diffusion through the A. nocturna soil cores was reduced but no difference in gas diffusion was observed in the A. icterica soil cores.  相似文献   

11.
《Applied soil ecology》2001,16(2):109-120
Burrow systems of earthworms contained in artificial cores were analysed through X-ray computed tomography and 3D skeleton reconstructions. Gas diffusion experiments were carried out on these cores to characterize soil transfer properties associated with the different burrow systems. Three types of cores were studied: cores in which Aporrectodea nocturna, an anecic earthworm was introduced (treatment 1), cores in which Allolobophora chlorotica, an endogeic earthworm was introduced (treatment 2) and cores that contained both species (treatment 3). Comparisons of the characteristics of the burrow systems of treatment 1 and 2 show important differences: the burrow system of A. nocturna comprises fewer burrows, which are longer, less branched, more vertical and have a lower sinuosity. The burrow system of A. chlorotica is characterized by lower continuity, which however did not result in a lower soil diffusivity. To study the burrow systems made by the two species in the same core (treatment 3), a separation that was based on differences in pore diameter between the two species and that takes into account the burrow orientation was designed. This separation was proven to be efficient since it resulted in low percentages of errors (around 10%) when applied to the burrow systems of treatments 1 and 2. Comparison of the burrow systems from treatments 1 and 3 demonstrated that the burrow system of A. nocturna was influenced by the presence of A. chlorotica: in treatment 3, A. nocturna made burrows that were smaller, more vertical and less branched. However, these interactions have to be confirmed under natural conditions.  相似文献   

12.
Earthworm relationships with vegetation have received extensive attention, and earthworm density has been shown to be related to vegetation types or plant species. However, the factors involved are rarely known. In Congo, we studied the effect of Chromolaena odorata (L) R.M. King & H. Robinson, which invades eucalypt plantations, on soil invertebrates, especially earthworms. In order to investigate relationships between vegetation cover and soil invertebrates, four understory species, including C. odorata, were studied. Also, comparisons were made between plots invaded by C. odorata and plots free from it. The addition of leaf litter on experimental plots was made in order to check its influence. Plant remains were observed in the digestive tract of earthworms. An increased earthworm density was observed under C. odorata. The leaf litter and roots of this species had low lignin/N ratio. The size of leaf fragments found in the digestive tract of the earthworms, and the lack of short-term effect of experimentally added leaf litter, suggested that litter quality could influence earthworm through their feeding on fine particulate top soil organic matter. The amount of soil aggregates, in the size classes that fitted the size range of earthworm casts, was increased under C. odorata. More field experiments are needed to establish a causal effect in the relationships observed between earthworm density and C. odorata. If so, the major drawbacks, such as water and nutrient competition, resulting from C. odorata overrunning the plantations, could be somewhat offset by its positive effects through soil improvement.  相似文献   

13.
Regeneration of compacted soil aggregates by earthworm activity   总被引:3,自引:0,他引:3  
Soil compaction is a problem of modern agriculture, caused by heavy machinery when used in unsuitable, especially moist, conditions. Some regeneration processes in compacted loess soil were studied in a field experiment near Relliehausen, at the edge of the Solling mountains in Lower Saxony, Germany. Conventional tillage (CT) and conservation tillage (CS) systems were compared. The compaction was induced by the use of different wheel loads. The influence of earthworms was determined by comparing soil aggregates and casts with respect to dry and moist porosity, swelling, and water stable aggregation. For visualisation of the microstructure, a scanning electron microscope was used. The casts were obtained from two earthworm species living for 6 months in the laboratory in monoliths, taken on the plots after the wheeling procedure. The casts showed 10-20% higher values for porosity and about 50% higher swelling values than comparable soil aggregates, while the relative water stability was ca. 10% lower. We conclude that casts are looser and less stable than aggregates from the soil the earthworms ingested. To show the ecological relevance of the changes in the casts, the cast production per hectare per year was calculated. It was especially high in the most loaded soil under CS with endogeic species.  相似文献   

14.
Although reduced tillage is an agricultural practice reported to decrease soil erosion and external inputs while enhancing soil fertility, it has still rarely been adopted by European organic farmers. The objective of this study was to assess the long-term interactive effects of tillage (conventional (CT) vs. reduced (RT)) and fertilization (slurry (S) vs. composted manure/slurry (MCS)) on earthworms and microbial communities in a clay soil under spelt in an organic 6-year crop rotation. Earthworm populations (species, density and biomass, cocoons) were investigated by handsorting the soil nine years after initial implementation of the treatments. Soil microbial carbon (Cmic) and nitrogen (Nmic) were measured by chloroform-fumigation extraction and a simplified phospholipid fatty acid (PLFA) analysis was used to separate for populations of bacteria, fungi and protozoa. Significantly increased total earthworm density in RT plots was mainly attributed to increased numbers of juveniles. Moreover, we found five times more cocoons with RT. Species richness was not affected by the treatments, but tillage treatments had differentially affected populations at the species-level. In addition, cluster analysis at the community level revealed two distinct groups of plots in relation to tillage treatments. In RT plots Cmic increased in the 0–10 cm and 10–20 cm soil layers, while PLFA concentrations indicative of Gram-negative bacteria, fungi and protozoa only increased in the topsoil. Lower bacteria-to-fungi ratios in the upper soil layer of RT plots indicated a shift to fungal-based decomposition of organic matter whereas a higher Cmic-to-Corg ratio pointed towards enhanced substrate availability. Slurry application decreased microbial biomass and enhanced density of juvenile anecic earthworms but overall fertilization effect was weak and no interactions with tillage were found. In conclusion, tillage is a major driver in altering communities of earthworms and microorganisms in arable soils. The use of reduced tillage provides an approach for eco-intensification by enhancing inherent soil biota functions under organic arable farming.  相似文献   

15.
To monitor the effects of liming on forest ecosystems, experimental plots were installed in forests in mid-western Germany. In addition to soil chemical indices, earthworm communities were investigated on these plots about 15 years after first lime applications took place. As a “natural reference”, communities were compared to earthworm records that derived from a beech forest on limestone. In the non-acidified plots that had never been limed only epigeic earthworms were detected in small numbers and low species richness. Forest liming caused higher pH and a higher base saturation in the mineral topsoils. To a large extent, epigeic earthworm species seemed to benefit from this and had increased in number and biomass at all three different locations selected for the investigations. The epigeic dominated communities were completed by anecic Lumbricus terrestris that was rarely found in some of the samples from one location and a number of endogeic species that showed a very patchy distribution in limed plots. In contrast to this, the soil of the beech forest on limestone showed a different community composition. It was dominated by endogeic species in abundance and by anecic species in biomass. On limestone the total biomass of earthworms clearly exceeded the biomass values from all other plots. In conclusion, a long-term support of forest earthworm fauna due to liming was detected. This support was mainly effective for epigeic species, but in some cases for endogeic and anecic species, too.  相似文献   

16.
Summary Column experiments were carried out to quantify the effect of earthworms on compacted soil. The earthworms (Lumbricus terrestris) were able to burrow into soil which was artificially compacted to a pore volume as low as 40%; they may also penetrate an artificial plough pan deep in the soil. The effect of the burrowing activity of Lumbricus terrestris was quantified by measuring hydraulic conductivities and infiltration rates through the whole soil column (19 cm wide, 40 cm long). Morphological parameters, mainly the vertically projected burrow depth, were correlated with the saturated hydraulic conductivity. The amount of casts deposited by Lumbricus terrestris on the soil surface increased with the degree of soil compaction. The bulk density of casts was always less than that of the original soil.  相似文献   

17.
Conventional tillage creates soil physical conditions that may restrict earthworm movement and accelerate crop residue decomposition, thus reducing the food supply for earthworms. These negative impacts may be alleviated by retaining crop residues in agroecosystems. The objective of this study was to determine the effects of various tillage and crop residue management practices on earthworm populations in the field and earthworm growth under controlled conditions. Population assessments were conducted at two long-term (15+ years) experimental sites in Québec, Canada with three tillage systems: moldboard plow/disk harrow (CT), chisel plow or disk harrow (RT) and no tillage (NT), as well as two levels of crop residue inputs (high and low). Earthworm growth was assessed in intact soil cores from both sites. In the field, earthworm populations and biomass were greater with long-term NT than CT and RT practices, but not affected by crop residue management. Laboratory growth rates of Aporrectodea turgida (Eisen) in intact soil cores were affected by tillage and residue inputs, and were positively correlated with the soil organic C pool, suggesting that tillage and residue management practices that increase the soil organic C pool provide more organic substrates for earthworm growth. The highest earthworm growth rates were in soils from RT plots with high residue input, which differed from the response of earthworm populations to tillage and residue management treatments in the field. Our results suggest that tillage-induced disturbance probably has a greater impact than food availability on earthworm populations in cool, humid agroecosystems.  相似文献   

18.
As a soil dries, the earthworms in that soil dehydrate and become less active. Moisture stress may weaken an earthworm, lowering the radial pressure that the animal can produce. This possibility was investigated for the earthworm Aporrectodea caliginosa (Savigny). Pressures were compared for saturated earthworms (worms taken from saturated soil) and stressed earthworms (worms that had been partially dehydrated by leaving them in dry soil). A load cell was used to record the forces that earthworms produced as they moved through artificial burrows (holes that had been drilled through blocks of aluminium or Perspex). The radial pressure was calculated using the forces exerted and the dimensions of the artificial burrows. There was a negative correlation between burrow diameter and radial pressure, although radial pressure was independent of the length of the block through which the earthworms had burrowed. The highest radial pressures were produced by the anterior segments of the animal. Partial dehydration caused the earthworms to become quiescent, but did not decrease the radial pressure that the earthworms produced. It is suggested that coelomic fluid is retained in the anterior segments while the rest of the animal dehydrates. Dehydrated earthworms became lethargic, and we suggest that lethargy is due to the loss of coelomic fluid from the posterior segments. Coelomic fluid is known to be lost through dorsal pores. In burrowing species of earthworm such as Aporrectodea caliginosa, these pores are only present on the posterior segments.  相似文献   

19.
《Pedobiologia》2014,57(4-6):303-309
By creating burrows, earthworms influence the transfer properties of soils. The effects of endogeic species on soil transfer properties, however, are not yet well understood because these earthworms generally create burrows that are refilled by casts and have no preferential vertical orientation. Thirty soil cores were incubated for various periods (1–3 or 4 weeks) at different earthworm densities (70, 210, 345 or 480 individuals m−2). The cores were then scanned using X-ray tomography and the burrow systems were characterised by measuring the total burrow volume, bioturbation volume (refilled burrows and lateral compaction around the burrows), the number of branches, tortuosity and continuity (assessed by computing the number of burrows with a vertical extension greater than 15, 20 and 25% of the core). We also computed the mean geodesic distance, i.e. the mean distance from the bottom to the top of the core assuming that distances inside burrows are null. Rainfall simulations were carried out on 17 cores chosen to encompass the variations observed in the burrow systems. The water transfer efficiency of each core was estimated by measuring two parameters: breakthrough volume and the percentage of water transmitted after 1 h of rain. Burrow and bioturbation volume increased significantly and steadily with time and earthworm density. We estimated that on average Allolobophora chlorotica burrowed 22 cm per week. All other burrow system characteristics also increased with time and earthworm density except the mean geodesic distance, which decreased significantly. This suggests that intraspecific interactions had no significant effect on burrow system geometry. Univariate PLS regressions were used to understand which burrow system characteristics had the strongest influence on water transfer. These regressions showed that the mean geodesic distance was the most important parameter. This means that in addition to individual burrow characteristics, the spatial arrangement of the whole burrow system also had a major effect on transfer properties.  相似文献   

20.
Dynamics of soil hydraulic properties during fallow as affected by tillage   总被引:2,自引:0,他引:2  
There is limited information on the effects of tillage practices on soil hydraulic properties, especially changes with time. The objective of this study was to evaluate on a long-term field experiment the influence of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on the dynamics of soil hydraulic properties over 3 consecutive 16–18 month fallow periods. Surface measurements of soil dry bulk density (ρb), soil hydraulic conductivity (K(ψ)) at −14, −4, −1 and 0 cm pressure heads using a tension disc infiltrometer, and derived hydraulic parameters (pore size, number of pores per unit of area and water-transmission porosity) calculated using the Poiseuille's Law were taken on four different dates over the fallow period, namely, before and immediately after primary tillage, after post-tillage rains and at the end of fallow. Under consolidated structured soil conditions, NT plots presented the most compacted topsoil layer when compared with CT and RT. Soil hydraulic conductivity under NT was, for the entire range of pressure head applied, significantly lower (P < 0.05) than that measured for CT and RT. However, NT showed the largest mean macropore size (0.99, 0.95 and 2.08 mm for CT, RT and NT, respectively; P < 0.05) but the significantly lowest number of water-conducting pores per unit area (74.1, 118.5 and 1.4 macropores per m2 for CT, RT and NT, respectively; P < 0.05). Overall, water flow was mainly regulated by macropores even though they represented a small fraction of total soil porosity. No significant differences in hydraulic properties were found between CT and RT. In the short term, tillage operations significantly increased K (P < 0.05) for the entire range of pressure head applied, which was likely a result of an increase in water-conducting mesopores despite a decrease in estimated mesopore diameter. Soil reconsolidation following post-tillage rains reduced K at a rate that increased with the intensity of the rainfall events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号