首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter decomposition is a major fundamental ecological process that regulates nutrient cycling, thereby affecting net ecosystem carbon (C) storage as well as primary productivity in forest ecosystems. Litter decomposes in its home environment faster than in any other environment. However, evidence for this phenomenon, which is called the home-field advantage (HFA), has not been universal. We provide the first HFA quantification of litter decomposition and nutrient release through meta-analysis of published data in global forest ecosystems. Litter mass loss was 4.2 % faster on average, whereas nitrogen (N) release was 1.7 % lower at the home environment than in another environment. However, no HFA of phosphorus (P) release was observed. Broadleaf litter (4.4 %) had a higher litter mass loss HFA than coniferous litter (1.0 %). The positive HFA of N release was found in the coniferous litter. Mass loss HFA was significantly and negatively correlated with the initial lignin:N litter ratio. The litter decomposition and N release HFAs were obtained when mesh size ranged from 0.15 mm to 2.0 mm. The HFA of litter decomposition increased with decomposition duration during the early decomposition stage. The HFA of N release was well correlated with mass loss, and the greatest HFA was at mass loss less than 20 %. Our results suggest that the litter decomposition and N release HFAs are widespread in forest ecosystems. Furthermore, soil mesofauna is significantly involved in the HFA of litter decomposition.  相似文献   

2.
Plants are often nutrient limited and soil organisms are important in mediating nutrient availability to plants. Thus, there may be a selective advantage to plants that alter the soil community in ways that enhance the decomposition of their litter and, hence, their ability to access nutrients. We incubated litter from three tree species (Fagus sylvatica, Acer pseudoplatanus and Picea sitchensis) in the presence of biota extracted from soil beneath a stand of each species to test the hypothesis that litter decomposes fastest in the presence of biota derived from soil where that species is locally abundant. We found that respiration rate, a measure of decomposer activity and carbon mineralisation, was affected by litter type and source of soil biota, whereas, mass loss was only affected by litter type. However, litter from each tree species did not decompose faster in the presence of indigenous soil biota. These findings, therefore, provide no support for the notion that woodland plants encourage the development of soil communities that rapidly decompose their litter.  相似文献   

3.
Partitioning of the quantities of C lost by leaf litter through decomposition into (i) CO2 efflux to the atmosphere and (ii) C input to soil organic matter (SOM) is essential in order to develop a deeper understanding of the litter-soil biogeochemical continuum. However, this is a challenging task due to the occurrence of many different processes contributing to litter biomass loss. With the aim of quantifying different fluxes of C lost by leaf litter decomposition, a field experiment was performed at a short rotation coppice poplar plantation in central Italy. Populus nigra leaf litter, enriched in 13C (δ13C ∼ +160‰) was placed within collars to decompose in direct contact with the soil (δ13C ∼ −26‰) for 11 months. CO2 efflux from within the collars and its isotopic composition were determined at monthly intervals. After 11 months, remaining litter and soil profiles (0-20 cm) were sampled and analysed for their total C and 13C content. Gas chromatography (GC), GC-mass spectrometry (MS) and GC-combustion-isotope ratio (GC/C/IRMS) were used to analyse phospholipid fatty acids (PLFA) extracted from soil samples to identify the groups of soil micro-organisms that had incorporated litter-derived C and to determine the quantity of C incorporated by the soil microbial biomass (SMB). By the end of the experiment, the litter had lost about 80% of its original weight. The fraction of litter C lost as an input into the soil (67 ± 12% of the total C loss) was found to be twice as much as the fraction released as CO2 to the atmosphere (30 ± 3%), thus demonstrating the importance of quantifying litter-derived C input to soils, in litter decomposition studies. The mean δ13C values of PLFAs in soil (δ13C = −12.5‰) showed sustained incorporation of litter-derived C after one year (7.8 ± 1.6% of total PLFA-C). Thus, through the application of stable 13C isotope analyses, we have quantified two major C fluxes contributing to litter decomposition, at macroscopic and microscopic levels.  相似文献   

4.
凋落物是植物同化碳的重要产物,是土壤有机碳库的主要来源。为系统了解凋落物分解对土壤碳库影响的研究进展,基于中国知网数据库(CNKI)和Web of Science(WOS)核心合集数据源,利用CiteSpace和VOSviewer文献可视化分析工具,从发文趋势、合作关系(团队、机构、国家)和期刊影响力等方面,对1989-2022年的相关文章进行计量分析。结果表明:国内和国际发文量总体呈增长态势。我国在该领域研究中发文量仅次于美国,占全球发文量的27.8%,表明我国研究者对该领域的研究有重要贡献,但整体影响力低于欧美发达国家(地区),美国和法国综合影响力最高,英国和瑞士论文篇均被引较高。凋落物分解、有机质、气候变化、碳循环和碳储量等关键词是该领域近年来的热点研究主题。未来我国应继续加强国际间合作研究,侧重凋落物分解相关特性对气候变化的响应和对环境污染的研究,提高我国在该领域的研究水平,将研究成果及时转化到碳减排增汇的研究中。  相似文献   

5.
The variability in the net ecosystem exchange of carbon (NEE) is a major source of uncertainty in quantifying global carbon budget and atmospheric CO2. Soil respiration, which is a large component of NEE, could be strongly influential to NEE variability. Vegetation type, landscape position, and site history can influence soil properties and therefore drive the microbial and root production of soil CO2. This study measured soil respiration and soil chemical, biological and physical properties on various types of temperate forest stands in Northern Wisconsin (USA), which included ash elm, aspen, northern hardwood, red pine forest types, clear-cuts, and wetland edges. Soil respiration at each of the 19 locations was measured six times during 1 year from early June to mid-November. These data were combined with two additional data sets from the same landscape that represent two smaller spatial scales. Large spatial variation of soil respiration occurred within and among each forest type, which appeared to be from differences in soil moisture, root mass and the ratio of soil carbon to soil nitrogen (C:N). A soil climate driven model was developed that contained quadratic functions for root mass and the ratio of soil carbon to soil nitrogen. The data from the large range of forest types and site conditions indicated that the range of root mass and C:N on the landscape was also large, and that trends between C:N, root mass, and soil respiration were not linear as previously reported, but rather curvilinear. It should be noted this function appeared to level off and decline at C:N larger than 25, approximately the value where microbial nitrogen immobilization limits free soil nitrogen. Weak but significant relationships between soil water and soil C:N, and between soil C:N and root mass were observed indicating an interrelatedness of (1) topographically induced hydrologic patterns and soil chemistry, and (2) soil chemistry and root production. Future models of soil respiration should address multiple spatial and temporal factors as well as their co-dependence.  相似文献   

6.
Experiments using litter monocultures have indicated that litter decomposes faster on its home site owing to specialised decomposers leading to a home-field advantage (HFA). However, most natural forests, in particular tropical rainforests, harbour more than one species of trees, all of which contribute to the local litter layer. Since interactions among different litter types that cause non-additive decomposition dynamics may prevent HFA, the occurrence of HFA in such multispecies ecosystems is still a matter of debate. Here we studied whether there is an HFA in a highly diverse forest ecosystem in the Atlantic Rainforest of Brazil. We used a litter decomposition experiment using natural litter mixtures with reciprocal transfers among three forest successional stages that differed in their tree species composition and general litter quality. We also investigated the role of soil macro- and meso-invertebrates for HFA and their relative importance along a successional gradient. Results of various statistical procedures failed to demonstrate HFA. A reason for this lack of a HFA may be rapid shifts in the composition of local microbial communities in response to local litter quality. Our experiments indicate a rapid resilience of the microbial decomposition during forest regeneration.  相似文献   

7.
Herbivores can indirectly affect ecosystem productivity and processes such as nutrient cycling and decomposition by altering the quantity and quality of resource inputs into the decomposer subsystem. Here, we tested how browsing by red deer impacts on the decomposition of, and nutrient loss from, birch leaf litter (Betula pubescens), and tested whether effects of browsing on these measures were direct, via alteration of the quality of leaf litter, or indirect through long term impacts of deer browsing on soil biological properties. This was tested in a microcosm experiment using soil and litter taken from inside and outside three individual fenced exclosures located at Creag Meagaidh National Nature Reserve, Scotland. We found that litter of un-browsed trees decomposed faster than that from browsed trees, irrespective of whether soil was sourced from inside or outside exclosures. These findings suggest that effects of browsing on litter quality, rather than on soil biological properties, are the key determinant of enhanced decomposition in un-browsed areas of this ecosystem. Despite this, we found no consistent impact of browsing on litter C:N, a key indicator of litter quality; however, the rate of litter decomposition was linearly and negatively related to litter C:N when analysed across all the sites, indicating that this measure, in part, contributed to variation in rates of decomposition in this ecosystem. Our findings indicate that herbivores impact negatively on rates of decomposition in this ecosystem, ultimately retarding nutrient cycling rates, and that these effects are, in part, related to changes in litter quality.  相似文献   

8.
The aim of this field experiment was to quantify the contribution of soil fauna to plant litter decomposition in three forest sites differing in C/N ratio under natural conditions in Xishuangbanna, southwestern China. We conducted a survey of soil fauna communities, the forest floor litter and investigated mass loss of mixed tree species leaf litter for two years in a tropical secondary forest, an evergreen broad-leaf forest and a tropical rain forest. Exclusion treatments of different sized soil fauna from the leaf litter by using varying mesh size litter bags (2 mm and 0.15 mm) were also performed. Mass loss and C and N concentrations in litter bag leaf materials were determined at monthly intervals. We found that: (1) the three forests differed in floor litter biomass and nutrient contents but not in soil fauna richness and abundance; (2) litter mass loss and decomposition rate were slower when soil macrofauna and most of mesofauna were excluded; and (3) greatest soil fauna contribution to plant litter decomposition occurred in the rain forest, where leaf litter C/N ratio was also highest (41.5% contribution: 54.8 C/N ratio), in comparison to 8.69% in the broad-leaf forest and 19.52% in the secondary forest, both with low leaf litter C/N ratios (<32). Our results suggested that, soil fauna played a more pronounced role in the decomposition of mixed leaf litter in tropical rain forest, and significantly bigger effects from fauna were ascribed to the enhancement of N concentration and decrease of C concentration of the initially high C/N ratio litter in this forest site.  相似文献   

9.
Long-term rates of litter decay have been shown to be primarily influenced by temperature, moisture and litter quality. However, while decomposition is a biological process, the relative importance of microbial communities and other soil chemistry factors is not well understood. Our analysis examined long-term litter decay parameters, microbial community composition via phospholipid fatty acid (PLFA) analysis, and soil organic horizon chemistry at 14 upland forested sites. Data were collected as part of the Canadian Intersite Decomposition Experiment (CIDET), a 12-year national litter decomposition experiment. Residual errors from a two-pool exponential decay model with decay rates modified by mean annual air temperature and moisture stress were compared to PLFA marker groups and chemistry variables. Residual errors were not well explained by soil PLFA marker group abundance or concentration, soil pH, nor soil C:N ratios. The best predictor of residual error was soil carbon percent (%C), with higher %C associated with slower than predicted decomposition.  相似文献   

10.
In the New Jersey Pinelands, canopy gaps in the pine-dominated forest support patches of lichens, mosses, and caespitose grasses. We tested the hypotheses that non-vascular plants and lichens can affect nutrient cycling processes and that mosses and lichens would differ from each other. We predicted that (1) lichen tissues would decompose more slowly than pine or moss tissues, (2) all plant materials would decompose more slowly beneath lichens than beneath mosses, and (3) soil enzyme activities would be higher under lichens than under mosses or grasses, reflecting greater nutrient limitation. We compared rates of decomposition of the litter of Pinus rigida and moss and lichen tissues, and measured soil enzyme activities responsible for nutrient mineralization from litter (acid and alkaline phosphatases, chitinase, β-glucosidase, aminopeptidase, and phenol oxidase) under three types of groundcover (lichens, mosses, and grasses) and unvegetated soil at two sites. While groundcover affected enzyme activities, the patterns of enzyme activities differed markedly between the two sites. In general, the enzyme activities were uniformly low. Decomposition rates were more strongly affected by the groundcover than by litter materials. While all litters tended to decompose more slowly under lichens than under mosses, supporting one of our initial hypotheses, the rates of decomposition were markedly different between the two sites. These results suggest that while mosses and lichens create patches of different soil function in both sites, the differences between the sites in unknown factors cause the enzyme activities and decomposition rates to differ.  相似文献   

11.
Nitrogen (N) exerts strong effects on litter decomposition through altering microbial abundance and community composition. However, the effect of N addition on plant–soil interactions such as home-field advantage (HFA: enhanced decomposition at a home environment compared to a guest environment) in relation to litter decomposition remains unclear. To fill this knowledge gap, we conducted a reciprocal litter transplant plus N addition experiment in Mytilaria laosensis and Cunninghamia lanceolata plantations for two years in subtropical China where anthropogenic N input is amongst the highest in the world. We found positive HFA effects (in which the calculation incorporates litter of both species) with litter mass loss 11.2% faster at home than in the guest environment in the N addition (50 kg N ha−1 yr−1) treatment, but no significant HFA effects were found in the control treatment. The magnitude of the HFA effect on carbon (C) release increased with N addition, while that on N release decreased. The HFA effects on phosphorus, potassium, calcium, sodium, and magnesium release were positive overall, but varied through time and the magnitude of the effects were different among elements. The greater HFA effects in the N addition treatment were associated with greater differences in microbial biomass and community composition between home and guest environments than in the control treatment. Our results indicate that anthropogenic N enrichment could lead to enhanced HFA effects, through modification of microbial communities, and thereby affect C sequestration and N cycling in subtropical forests.  相似文献   

12.
In this paper we report results on the decomposition in soil of woody trunk material from poplar (Populus tremula×Populus alba) trees with genetic modifications to lignin biosynthesis grown for 4 years in a field trial. Lengths of trunks were salvaged following the premature termination of the trial as a result of serious damage to the trees by protestors against the release of genetically modified plants. The decomposition in soils of sections of trunk from trees with antisense transgenes for two enzymes in the monolignol pathway, cinnamyl alcohol dehydrogenase and caffeic acid O-methyl transferase (two lines of each), and material from unmodified trees were determined during laboratory incubation for 552 days. Although total CO2 production from soil amended with trunk material was 2.0- to 4.3-times greater (P<0.010) than that from unamended soils during the first 77 days of incubation, no significant differences between modified or unmodified plants were detected for either total CO2 production over 77 days or total mass loss from the trunk material over 552 days. Addition of the plant materials significantly increased the soil microbial biomass, but the effects of the different genetic modifications on biomass were not consistent or in most cases not significant. We conclude that environmental variability during growth in the field has a greater influence on future wood decomposition than modifications to lignin biosynthesis.  相似文献   

13.
Unique peatland properties, such as their ability to preserve intact ancient human remains (bog bodies) and to store globally significant quantities of atmospheric CO2, can be attributed to their low rates of enzymic decomposition. Peatland soils are normally devoid of molecular oxygen in all, but the uppermost layer, and thus enzymes such as phenol oxidase, which require molecular oxygen for their activity, are rarely active. Interestingly, even the activities of enzymes such as hydrolases that have no oxygen requirement, are also extremely limited in peatlands. Here, we show that those low hydrolase activities can be indirectly attributed to oxygen constraints on phenol oxidase. On addition of oxygen, phenol oxidase activity increased 7-fold, P<0.05, a response that allowed phenolic depletion in the peatland soil. Phenolic materials are highly inhibitory to enzymes and their lower abundance allowed higher hydrolase activities (β-glucosidase 26%, P<0.05, phosphatase 18%, P<0.05, sulphatase 47%, P<0.01, xylosidase 16%, P<0.05 and chitinase 22%, P<0.05). Thus, oxygen constraints upon phenol oxidase activity promote conditions that inhibit decomposition. This mechanism has important implications for preservation of archaeological organic materials, sequestration of atmospheric CO2 and potentially in the preservation of food and treatment of water pollution.  相似文献   

14.
Investigations on the mass loss of leaf litter were carried out between 1992 and 1994 using litter bags of 0.02 mm and 5 mm mesh sizes in a beech and a mixed forest in northern Germany. The two forests on moder humus differed in soil faunal composition, vegetation type, and nutrient supply. Mass loss and N and C concentrations were determined from the litter at bimonthly intervals. From subsamples macrofauna were sorted by hand and mesofauna was extracted by heat. The biomass and N content of the litter bag fauna was estimated. Mass loss, particularly that attributed to the fauna, was different between the two sites with highest rates in the mixed forest and lowest at the beech site. A significantly higher rate of N release was found for the litter extracted from 5 mm mesh size litter bags in the mixed forest but not in the beech forest. Collembola and Cryptostigmata changed in numbers during litter breakdown. Collembola reached high numbers in the beginning, whereas Cryptostigmata dominated later. The diversity of Cryptostigmata increased at both sites during litter breakdown, whereas collembolan diversity only increased in the beech forest and remained at the same level in the mixed forest. Several species of Collembola and Cryptostigmata occurred earlier in the mixed forest than in the beech forest. Mass loss rate attributable to the fauna did not correspond to total faunal biomass. Only Isopoda, Diplopoda and Cryptostigmata appeared to affect the mass loss positively, whereas the biomass of Lumbricidae was negatively correlated with mass loss, particularly in the beech forest. On the other hand, the release of N attributable to the fauna was positively correlated with the total faunal biomass in the beech forest and Lumbricidae in particular were positively correlated with N-release at both sites.  相似文献   

15.
土壤无机碳研究进展   总被引:15,自引:1,他引:15  
在全球碳循环研究中,土壤有机碳(SOC)的作用倍受关注,而土壤无机碳(SIC)的研究相对较少。土壤无机碳是近地表环境中主要碳库之一,主要指土壤母岩风化过程中形成的土壤碳酸盐矿物态碳,是干旱、半干旱地区土壤碳库的主要形式。本文综述了土壤无机碳的组成、来源、成因模型及与全球碳循环特别是土壤有机碳的关系,并提出未来研究需要加强的几个方面。  相似文献   

16.
Soil animals are known to stimulate soil microbial activity and thereby to accelerate decomposition of soil organic matter. In this paper, we investigate potential limitations of soil animal effects on soil carbon flow by analysing how animal effects relate to the density of four major faunal groups. Specifically, we analyse the extent to which faunal effects are subject to biotic regulation or to mutual inhibition between groups under different levels of resource supply.In an extensive laboratory experiment, 96 microcosms established in three consecutive blocks were inoculated with nematodes, enchytraeids, microarthropods, and lumbricids. Each faunal group was inoculated in three densities, including combinations of groups. Introduced animal densities were within the natural range of densities in fallow soil. Bare agricultural soil and soil covered with maize litter were used as substrates. The microcosms were kept under constant conditions at 12 °C and 50% water holding capacity for 8 weeks. Soil CO2 evolution was measured daily by means of gas chromatography.Animal effects were on an average relatively stronger in bare soil (+95% CO2; R2=0.76) than in soil with litter (+14% CO2; R2=0.40), where organic matter decomposition was seven times more intense. Higher animal densities generally led to accelerated decomposition up to three times that of the controls. However, beyond a specific density, decomposition rates stopped increasing or even declined, depending on the faunal group. In addition, animal effects were limited by mutual inhibition between groups in bare soil where effects were strong, while stimulatory interactions were prominent in the litter treatments where effects were generally weak.We interpret the limitation of soil faunal effects on soil carbon flow in terms of incomplete habitat exploitation and biotic regulation. Under conditions of substrate homogeneity, such as in the bare soil treatments, animal effects were stronger, but they were limited by overexploitation. Under conditions of substrate heterogeneity, such as in the litter treatments, animal effects were limited by incomplete habitat utilisation. We assume that complementary habitat colonisation by different faunal groups in the litter treatments gave rise to positive diversity effects, but that these effects did not compensate for reduced overall habitat utilisation. We infer that a knowledge of faunal resource utilisation and of mutual inhibition of faunal groups can be exploited for ecological soil management towards stabilisation of soil organic matter.  相似文献   

17.
Most soil surveys are based on soil geomorphic, physical and chemical properties, while many classifications are based on morphological properties in soil profile. Typically, microbial properties of the soil (e.g. biomass and functional diversity) or soil biological quality indicators (SBQIs) are not directly considered in soil taxonomic keys, yet soil classification schemes are often used to infer soil biological function relating to policy (e.g. soil pollution attenuation, climate change mitigation). To critically address this, our aim was to assess whether rates of carbon turnover in a diverse range of UK soils (n > 500) could effectively be described and sub-divided according to broadly defined soil groups by conventional soil classification schemes. Carbon turnover in each soil over a 90 d period was assessed by monitoring the mineralisation of either a labile (14C-labelled artificial root exudates) or more recalcitrant C source (14C-labelled plant leaves) in soil held at field capacity at 10 °C. A double exponential first order kinetic model was then fitted to the mineralisation profile for each individual substrate and soil. ANOVA of the modelled rate constants and pool sizes revealed significant differences between soil groups; however, these differences were small regardless of substrate type. Principle component and cluster analysis further separated some soil groups; however, the definition of the class limits remained ambiguous. Exclusive reference values for each soil group could not be established since the model parameter ranges greatly overlapped. We conclude that conventional soil classification provides a poor predictor of C residence time in soil, at least over short time periods. We ascribe this lack of observed difference to the high degree of microbial functional redundancy in soil, the strong influence of environmental factors and the uncertainties inherent in the use of short term biological assays to represent pedogenic processes which have taken ca. 10,000 y to become manifest.  相似文献   

18.
Clay is generally considered an important stabiliser that reduces the rate of decomposition of organic matter (OM) in soils. However, several recent studies have shown trends contradicting this widely held view, emphasising our poor understanding of the mechanisms underlying the clay effects on OM decomposition. Here, an incubation experiment was conducted using artificial soils differing in clay content (0, 5, and 50%) at different temperatures (5, 15, and 25 °C) to determine the effects of clay content, temperature and their interaction on fresh OM decomposition. CO2 efflux was measured throughout the experiment. Phospholipid fatty acids (PLFAs), enzyme activities, microbial biomass carbon (MBC), and dissolved organic carbon (DOC) were also measured at the end of the pre-incubation and incubation periods in order to follow changes in microbial community structure, functioning, and substrate availability. The results showed that higher clay contents promoted OM decomposition probably by increasing substrate availability and by sustaining a greater microbial biomass, albeit with a different community structure and with higher activities of most of the extracellular enzymes assayed. Higher clay content induced increases in the PLFA contents of all bacterial functional groups relative to fungal PLFA content. However, clay content did not change the temperature sensitivity (Q10) of OM decomposition. The higher substrate availability in the high clay artificial soils sustained more soil microbial biomass, resulting in a different community structure and different functioning. The higher microbial biomass, as well as the changed community structure and functions, accelerated OM decomposition. From these observations, an alternative pathway to understanding the effects of clay on OM decomposition is proposed, in which clay may not only accelerate the decomposition of organic materials in soils but also facilitate the SOM accumulation as microbial products in the long term. Our results highlight the importance of clay content as a control over OM decomposition and greater attention is required to elucidate the underlying mechanisms.  相似文献   

19.
农田土壤有机碳固定机制及其影响因子研究进展   总被引:5,自引:0,他引:5  
全球气候变暖引起的环境问题已经引起各国政府及科学家的密切关注。农田土壤作为大气CO2的源和库,在全球碳循环中的重要角色日渐被认识。本文围绕土壤固碳的基本问题,总结了农田土壤固碳潜力、土壤有机碳固定机制及其影响因素的国内外研究进展。国内研究表明,目前耕地的地力不稳,土壤有机碳密度较低,农田土壤固碳的潜力较大。因此,加强不同区域农田土壤固碳潜力、固碳过程、固碳机理等方面的研究,设计合理优化的农业管理措施,是今后研究的重点。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号