首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of mechanical perturbations on two soil microarthropod communities (oribatid mites and collembolans) were investigated in a moder beech forest on sandstone. We disturbed the soil matrix by sieving and mixing the litter and soil of the moder profile. The top litter layer (L material) and the deep mineral soil (Bv) remained intact. Three amounts of disturbance were established: a single perturbation, perturbations once every 2 months (60 d) and once every 2 weeks (14 d). Densities of most groups of oribatid mites and all groups of collembolans declined in the disturbance treatments. In most cases, densities were lowest in the strong perturbation treatment (14 d). Desmonomata were the only group of oribatid mites that benefited from intermediate amounts of disturbance but not from the strongest disturbance. Also, disturbances reduced diversity of oribatid mites and collembolans. According to their sensitivity to disturbances oribatid mites ranked Poronota=Enarthronota=Suctobelbidae (the most sensitive)>Oppiidae>Tectocepheus>Desmonomata. The ranking of collembolans was Folsomia (the most sensitive)>Hypogastruridae/Neanuridae>Onychiuridae=Isotomidae>Entomobryidae. Generally, tolerance of disturbance was wider for oribatid mites than for collembolans. The results indicate that disturbances such as mixing of litter and soil and comminution of litter material strongly affect the density and diversity of soil microarthropods. However, they also indicate that the soil microarthropod community is resistant to weaker disturbances. In the field, mechanical disturbances are often caused by burrowing of earthworms. Our results suggest that the high density of microarthropods in moder soils may be due to the low intensities of mechanical disturbances by earthworms.  相似文献   

2.
It is widely accepted that microarthropods influence decomposition dynamics but we know relatively little about their effects on litter chemistry, extracellular enzyme activities, and other finer-scale decomposition processes. Further, few studies have investigated the role of individual microarthropod species in litter decomposition. The oribatid mite Scheloribates moestus Banks (Acari: Oribatida) is abundant in many U.S. ecosystems. We examined the potential effects of S. moestus on litter decomposition dynamics and chemical transformations, and whether these effects are influenced by variation in initial litter quality. We collected corn and oak litter from habitats with large populations of S. moestus and in microcosms with and without mites measured respiration rates, nitrogen availability, enzyme activities, and molecular-scale changes in litter chemistry. Mites stimulated extracellular enzyme activities, enhanced microbial respiration rates by 19% in corn litter and 17% in oak litter over 62 days, and increased water-extractable organic C and N. Mites decreased the relative abundance of polysaccharides in decomposing corn litter but had no effect on oak litter chemistry, suggesting that the effects of S. moestus on litter chemistry are constrained by initial litter quality. We also compared the chemistry of mite feces to unprocessed corn litter and found that feces had a higher relative abundance of polysaccharides and phenols and a lower relative abundance of lignin. Our study establishes that S. moestus substantially changes litter chemistry during decomposition, but specific effects vary with initial litter quality. These chemical transformations, coupled with other observed changes in decomposition rates and nutrient cycling, indicate that S. moestus could play a key role in soil C cycling dynamics.  相似文献   

3.
Recent stable isotope analyses indicate that a number of putative detritivorous soil microarthropods is not typical detritivores but rather live as predators or scavengers. Using molecular gut content analyses the present study investigates if nematodes indeed form part of the diet of oribatid mites. First, in a no-choice laboratory feeding experiment two nematode species (Phasmarhabditis hermaphrodita and Steinernema feltiae) were offered to eight species of oribatid mites and one gamasid mite. Second, after feeding for 4 and 48 h on each nematode species the detection time of prey DNA in the oribatid mite species Steganacarus magnus was investigated. Third, in a field experiment nematode prey (P. hermaphrodita and S. feltiae) in the diet of microarthropods was investigated distinguishing between scavenging and predation. In the no-choice laboratory experiment not only the gamasid mite but also several of the studied oribatid mite species consumed nematodes. After feeding on nematodes for 4 h prey DNA was detectable in S. magnus for only 4 h, but after feeding for 48 h prey DNA was detectable for 128 h, indicating that the duration of feeding on prey is an important determinant for prey DNA detection. The field experiment confirmed that oribatid mite species including Liacarus subterraneus, Platynothrus peltifer and S. magnus intensively prey on nematodes. Interestingly, DNA of dead P. hermaphrodita was detectable to a similar degree as that of living individuals indicating that scavenging is of significant importance in decomposer food webs. Results of our study indicate that predation and scavenging on nematodes by “detritivorous” microarthropods in soil food webs need to be reconsidered.  相似文献   

4.
Coastal habitats near urban centres in North Atlantic estuaries often support substantial numbers of wintering waterfowl, but little is known of the effects of landscape setting and urbanisation on habitat use. We conducted surveys of waterfowl at 32 wintering sites in Narragansett Bay, Rhode Island, to identify characteristics that may influence habitat use. Sites were chosen along a gradient of urbanisation and reflected the dominant habitat types used by waterfowl in the Bay. Mean waterfowl abundance was 206.7 ± 209.5 birds per site, and sites in the inner part of the estuary had higher overall waterfowl abundances (r2 = 0.40, p = 0.021). Species richness ranged from 3.2 to 13.0 and decreased with increasing hunting activity (r2 = 0.36, p = 0.040). Hunting activity and habitat characteristics (e.g., latitude, shoreline configuration, prey density) explained 13-27% of the variation in waterfowl abundance and species richness among sites, but landscape characteristics (e.g., surrounding residential development, vegetated land, or wetland surrounding the sites and the extent of wetland edge) explained an additional 1-26%. The landscape characteristics extent of adjacent residential development and vegetated upland were the most common variables entering into the models; most species were more abundant at sites with more adjacent vegetated upland and less adjacent residential development. Our results suggest that landscape setting may be influencing the distribution of wintering waterfowl, and should be considered when developing strategies for the conservation for these species in urban North Atlantic estuaries.  相似文献   

5.
The effects of naphthalene (arthropod exclusion) and simulated throughfall (N, P, K, Ca and Mg) additions on the decomposition and mineralization of dogwood (Cornus florida L.) litter were studied by using a field microcosm approach in a southeastern United States deciduous forest. Treatments without microarthropods decayed more slowly than litter with microarthropods. Simulated throughfall additions alone had no effect on litter decay rates. Fauna, simulated throughfall, and fauna plus simulated throughfall treatments increased the nutrient concentrations of decomposing litter; the treatment with both microarthropods and simulated throughfall generally exhibited the highest nutrient concentrations. Simulated throughfall also significantly increased microarthropod densities in litter. Litter immobilization of elements in throughfall was insignificant in litter with microarthropods; naphthalene-treated litter immobilized up to 8% of the elements contained in simulated throughfall.  相似文献   

6.
Despite the ubiquity of oribatid mites in soil and litter systems, and their importance in decomposition and nutrient cycling processes, little is known of the factors underlying the composition of their assemblages. Our objective was to address this by determining how oribatid assemblage composition changes by forest stand type. This work was done in and near a hardwood forest in southwestern Quebec, Canada. We sampled mites by collecting 1 L of litter and 170 cm3 of soil from four sites in each of four distinct habitat types: American beech stands, sugar maple stands, mixed deciduous stands and mixed conifer plantations. Samples were collected in July and September 2005, and June 2006, and over 6500 oribatid mites were collected and identified to species. Abundance and species richness differed between forest types: for abundance conifer>beech>maple>mixed deciduous while for species richness beech and conifer>maple>mixed deciduous. Ordination analyses revealed that conifer plantations and beech stands supported distinct assemblages, while there were some overlap in the assemblages found in maple stands and mixed deciduous stands. These data support the importance of aboveground plant communities in affecting the composition of oribatid assemblages even at local scales and provide insight into additional impacts that may be caused by shifts in plant species ranges due to global changes.  相似文献   

7.
Predator-prey interactions are of eminent importance as structuring forces for animal communities. The present study investigates if and how strongly the density of soil microarthropods is controlled by top-down forces, i.e. predation by mesostigmate mites (Mesostigmata, Acari). We set up a laboratory experiment running for ten weeks with undisturbed soil cores taken from the field using two densities of predatory mesostigmate mites: (1) ambient density (control) and (2) increased density (addition of seven Pergamasus septentrionalis and eight Lysigamasus sp. individuals). Increased predator density resulted in a decrease in the density of Oribatida, Collembola and Protura whereas the density of other taxa including Astigmata, Prostigmata and Uropodina was not significantly affected. Additionally, the species number of Oribatida was also not significantly affected. Taxa of Oribatida and Collembola were differently affected by increased predator density. Among Collembola, densities of Poduridae and Sminthuridae were reduced, whereas Entomobryidae were not affected. Among Oribatida, densities of Oppiidae and Suctobelbidae were reduced whereas Desmonomata, Poronota and Tectocepheus were not affected. Grouping of Oribatida into different size classes and into classes differing in sclerotization suggests that smaller mites (200-300 μm) and mites with less sclerotization were more heavily affected than larger mites and mites with strong sclerotization. The results indicate that predatory mesostigmate mites have the potential to control the density of certain taxa of soil microarthropods. In particular, small and little sclerotized prey is susceptible to predator control indicating that predator defense is an important component of the life history tactics of soil microarthropods, especially of Oribatida.  相似文献   

8.
Invasive plants can threaten diversity and ecosystem function. We examined the relationship between the invasive Phalaris arundinacea (reed canarygrass) and species richness in beaver wetlands in Oregon, USA. Four basins (drainages) were chosen and three sites each of beaver impoundments, unimpounded areas and areas upstream of debris jams were randomly chosen in each basin for further study (n = 36). Analysis of covariance (ANCOVA) showed that the relationship between Phalaris and species richness differed significantly (p = 0.01) by site type. Dam sites (beaver impoundments) exhibited a strong inverse relationship between Phalaris and species richness (bD = −0.15), with one species lost for each 7% increase in Phalaris cover. In contrast, there was essentially no relationship between Phalaris cover and species richness in jam sites (debris jam impoundments formed by flooding; bJ = +0.01) and unimpounded sites (bU = −0.03). The cycle of beaver impoundment and abandonment both disrupts the native community and provides an ideal environment for Phalaris, which once established tends to exclude development of herbaceous communities and limits species richness. Because beaver wetlands are a dominant wetland type in the Coast Range, Phalaris invasion presents a real threat to landscape heterogeneity and ecosystem function in the region.  相似文献   

9.
To compare factors that control methane flux in forest soils, we studied three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in Chubu district, central Japan. The three sites are located at different altitudes: 630 m (SET), 1010 m (INB), and 1350 m (OSK). Methane was absorbed at every site. The highest uptake rate was observed in the middle-altitude soil (INB, 5.89 mg CH4 m−2 d−1), which was the only site where methane uptake rate was correlated with air and soil surface temperatures. Methane flux in the field was not correlated with water content, inorganic N content, or water-soluble organic carbon. C/N ratio was correlated with methane flux (r=0.64,p<0.001). The results suggest that some organic inhibitors might be produced through decomposition of organic matter. There was a negative correlation between methane uptake rate and water-soluble Al (r=−0.63,p<0.001). Inhibition of methane consumption by 1 and 5 mM Al solutions was observed in laboratory incubation. This result suggests that water-soluble Al may be a factor controlling methane uptake. Multiple regression with a backward-elimination procedure identified three variables that were significantly associated with methane flux in the field (p<0.05): air temperature, C/N ratio, and the concentration of water-soluble Al.  相似文献   

10.
The dynamics of leaf litter decomposition of Quercus ilex (L.) were investigated over a 2 year period by determining the activities and isoenzyme distribution of laccases and peroxidases. The analysis of isoenzymes was performed by isoelectric focusing on high stability pH gradients with high resolving power. The preparation of zymograms was carried out using the leaf litter extract without previous concentration. During litter decomposition, laccase and peroxidase activities changed as well as the type and number of enzyme isoforms. The activities of both enzymes were low (≤0.017 and ≤0.031 mmol o-tolidine oxidized h−1 g−1 d.w. for laccase and peroxidase, respectively) in first year and increased in October-January of the second year of litter decay. The highest activities measured after 15-18 months of litter exposure (0.37±0.03 and 0.19±0.02 mmol o-tolidine oxidized h−1 g−1 d.w. for laccase and peroxidase, respectively), showed that litter chemical composition affected the growth of ligninolytic microbial community. The activation energy for laccase and peroxidase reactions also changed during decomposition: the highest values (55±6 kJ mol−1 for laccase and 60±6 kJ mol−1 for peroxidase) occurred in autumn-winter, even if spatial changes were evidenced. Some enzyme isoforms (pI=5.3 and 5.5 for laccase and pI=5.0 and 5.1 for peroxidase, respectively), contributed more than others to the overall laccase and peroxidase activity, suggesting that some ligninolytic species bloomed in particular seasons of the year, even if other species with similar functional activities colonized the litter.  相似文献   

11.
To better understand the role of resource heterogeneity in decomposition and nitrous oxide (N2O) flux we systematically altered the degree of plant litter aggregation in soil, from uniformly distributed to highly aggregated. In laboratory incubations, we distributed 4.5 g of dried clover shoots (Trifolium pratense L.) in two particle sizes (1 or >5 mm) into 1, 3, or 9 patches versus uniformly distributed. Soil moisture content was also varied to manipulate soil oxygen (O2) concentrations. In moist soil (50% water-filled pore space, WFPS), litter aggregation delayed the peak litter decomposition rate by 3-5 days compared to uniformly distributed litter regardless of the litter particle size. In contrast, under near-saturated soil conditions (80% WFPS) litter aggregation suppressed decomposition throughout the 26-day incubation period. This significant interaction between litter aggregation and soil moisture treatments suggests that diffusion of soil resources (likely O2) plays an important role in the influence of litter aggregation on decomposition. Specifically, O2 diffusion may more adequately meet O2 consumption rates when litter is distributed than when aggregated. In contrast to the temporary influence of aggregation on litter decomposition, N2O fluxes under 50% WFPS conditions were consistently greater and on average 7.9, 7.2, and 4.7-fold greater than fine aggregated litter (1, 3, and 9 patches, respectively) than when uniformly distributed. Coarse litter aggregation also stimulated N2O emissions, but not as much as fine litter. Under field conditions with growing maize (Zea mays L.), litter aggregation also stimulated N2O emissions. The results suggest that litter aggregation plays a role in N2O flux from agricultural soils and it might be manipulated to provide an additional N2O mitigation strategy.  相似文献   

12.
Summary The rhizosphere microarthropod fauna of a woody, deep-rooted legume, Prosopis glandulosa, was sampled at four sites in the northern Chihuahuan Desert and compared with the rhizosphere microarthropod fauna of a co-dominant shrub, Larrea tridentata. Prostigmatid mites (Speleorchestes sp.,Neognathus sp., Rhagidia sp., Tydaeolus sp., Steneotarsonemus sp., Tarsonemus sp., Nanorchestes sp., Gordialycus sp.), the cryptostigmatid mites (Bankisonoma ovata and Passalozetes neomexicanus), the mesostigmatid (Protogamasellus mica), and the collembolan (Brachystomella arida) characterized the fauna at depths greater than 1 m. Microarthropods were recovered from soils at a depth of 13 m at the edge of a dry lake and at depths of 7 m in a dry wash which were pre-European man P. glandulosa habitats. In habitats where P. glandulosa is a recent invader, root depth and microarthropods were less than 3 m. In most habitats, population densites of microarthropods at depths 0.5 m were more than 100 times those at depths 0.5 m. Population densities of microarthropods associated with P. glandulosa growing at the edge of a dry wash were not significantly smaller at 0.5–1.0 m depth than at 0–0.5 m. The deep-rhizosphere microarthropod fauna is a reduced subset of the fauna of surficial soils, suggesting that this fauna plays a role in decomposition and mineralization processes functionally similar to that of microarthropods in surficial soils.  相似文献   

13.
Nutrient transfer between decomposing leaves may explain non-additive species diversity effects on decomposition. The influence of the diversity of litter species on decomposition was compared in mixtures composed of large (>200 mm2) or small (<9 mm2) litter fragments. The increase in the number of species (aspen, oak, alder and pine, from monocultures to four species in all possible combinations) initially (at day 43) suppressed respiration, but eventually (after 142 days) did not affect the mass loss of the mixtures of small litter fragments. In contrast, the decomposition of litter in large fragments increased with increased diversity, and 93% of all mixtures decomposed faster than would be predicted from monocultures. The results suggest that the active transport of nutrients by fungal hyphae, rather than passive diffusion, drives positive effect of the litter species diversity on decomposition.  相似文献   

14.
Climate warming and associated increases in nutrient mineralization may increase the availability of soil nitrogen (N) in high latitude ecosystems, such as boreal forests. These changes in N availability could feed back to affect the decomposition of litter and organic matter by soil microbes. Since fungi are important decomposers in boreal forest ecosystems, we conducted a 69-day incubation study to examine N constraints on fungal decomposition of organic substrates common in boreal ecosystems, including cellulose, lignin, spruce wood, spruce needle litter, and moss litter. We added 0, 20, or 200 μg N to vials containing 200 mg substrate in factorial combination with five fungal species isolated from boreal soil, including an Ascomycete, a Zygomycete, and three Basidiomycetes. We hypothesized that N addition would increase CO2 mineralization from the substrates, particularly those with low N concentrations. In addition we predicted that Basidiomycetes would be more effective decomposers than the other fungi, but would respond weakly or negatively to N additions. In support of the first hypothesis, cumulative CO2 mineralization increased from 635 ± 117 to 806 + 108 μg C across all fungal species and substrates in response to 20 μg added N; however, there was no significant increase at the highest level of N addition. The positive effect of N addition was only significant on cellulose and wood substrates which contained very little N. We also observed clear differences in the substrate preferences of the fungal species. The Zygomycete mineralized little CO2 from any of the substrates, while the Basidiomycetes mineralized all of the substrates except spruce needles. However, the Ascomycete (Penicillium) was surprisingly efficient at mineralizing spruce wood and was the only species that substantially mineralized spruce litter. The activities of β-glucosidase and N-acetyl-glucosaminidase were strongly correlated with cumulative respiration (r = 0.78 and 0.74, respectively), and Penicillium was particularly effective at producing these enzymes. On moss litter, the different fungal species produced enzymes that targeted different chemical components. Overall, our results suggest that fungal species specialize on different organic substrates, and only respond to N addition on low N substrates, such as wood. Furthermore, the response to N addition is non-linear, with the greatest substrate mineralization at intermediate N levels.  相似文献   

15.
Scots pine (Pinus sylvestris) needle litter originating from control plots and plots that had received a wood ash fertilization (3 t ha−1) 19 yr earlier were allowed to decompose in a reciprocal experimental design to detect the effects of ash fertilization and needle litter origin on the decomposition rate. The experimental design was repeated in two Scots pine forest stands of different fertility and the litterbags were harvested after 4 and 16 months. Ash fertilization resulted in a higher needle litter decomposition rate but the needle origin did not influence the results. Stand fertility correlated positively to the decomposition rate.  相似文献   

16.
Powerboats are potentially a significant source of disturbance to coastal cetaceans. Information is scarce, however, on the nature of interactions between powerboats and dolphins, particularly when both surface and acoustic behaviour are combined. The surface behaviour and acoustic response of travelling dolphins to approaches by a powerboat were assessed by a series of experimental trials between November 2001 and November 2003 in Jervis Bay, New South Wales, Australia. Dolphin behaviour was monitored continuously from an independent research boat before, during and after a powerboat approached (n = 12). Treatments were interspersed with control observations (n = 12). Changes in surface behaviour indicated differences between the treatment and control periods (z = 2.24, p = 0.025), with dolphins tending to alter their surface behaviour when exposed to the powerboat approach. Analysis also revealed a change in the direction of travel by dolphin groups when approached (z = 3.22, p = 0.001). Changes in surface behaviour occurred at vessel approach distances outside the minimum approach distance of 30 m for recreational and commercial vessels, as proposed by the New South Wales National Parks and Wildlife Service. In contrast, there were no changes in dolphin whistle rates (F3,12 = 0.74, p = 0.54) or the duration of echolocation click bouts (F3,12 = 0.76, p = 0.59) when approached. These findings indicate that powerboats do affect the surface behaviour and direction of travelling inshore bottlenose dolphins in Jervis Bay; however it appears that this impact is not reflected in their acoustic behaviour.  相似文献   

17.
Total belowground C allocation (TBCA) accounts for a large fraction of gross primary production, it may overtake aboveground net primary production, and contributes to the primary source of detrital C in the mineral soil. Here, we measure soil respiration, water erosion, litterfall and estimate annual changes in C stored in mineral soil, litter and roots, in three representative land uses in a Mediterranean ecosystem (late-successional forest, abandoned agricultural field, rain-fed olive grove), and use two C balance approaches (steady-state and non-steady-state) to estimate TBCA. Both TBCA approaches are compared to assess how different C fluxes (outputs and inputs) affect our estimates of TBCA within each land use. In addition, annual net primary productivity is determined and C allocation patterns are examined for each land use. We hypothesized that changes in C stored in mineral soil, litter and roots will be slight compared to soil respiration, but will still have a significant effect on the estimates of TBCA. Annual net primary productivity was 648 ± 31.5, 541 ± 42.3 and 324 ± 22.3 g C m−2 yr−1 for forest, abandoned agricultural field and olive grove, respectively. Across land uses, more than 60% of the C was allocated belowground. Soil respiration (FS) was the largest component in the TBCA approaches across all land uses. Annual C losses through water erosion were negligible compared to FS (less than 1%) and had little effect on the estimates of TBCA. Annual changes in C stored in the soil, litter layer and roots were low compared to FS (16, 24 and 10% for forest, abandoned agricultural field and olive grove, respectively), but had a significant effect on the estimates of TBCA. In our sites, an assumption that Δ[CS + CR + CL]/Δt = 0 will underestimate TBCA, particularly in the abandoned agricultural field, where soil C storage may be increasing more rapidly. Therefore, the steady-state model is unsuited to these Mediterranean ecosystems and the full model is recommended.  相似文献   

18.
We used oligotrophic, P-limited herbaceous wetlands of northern Belize as a model system, on which to document and explain how changes in nutrient content along a salinity gradient affect activities of extracellular enzymes involved in macrophyte decomposition. To determine what is more important for decomposition, the initial litter quality, or site differences, we used reciprocal litter placement in a combined “site quality” and “litter quality” experiment running from August 2003 to April 2004. The experiment was set up in long-term control and nutrient addition plots (P, N, and NP) established in 2001 in 15 limestone-based inland marshes with a wide range of water conductivities (200-6000 μS) and a uniform pH (7.0-7.7) dominated by emergent macrophytes, Eleocharis spp. There were no differences among the plots in total sediment N and water NH4-N, but total and KCl-extractable sediment P and water PO4-P were significantly higher in P and NP plots throughout the duration of the experiment. The initial litter N content was slightly but significantly different between control and N plots versus P and NP plots (5.7 and 7.1 mg g−1, respectively). The difference was much bigger for litter P content, 0.1 and 0.7 mg g−1, respectively. Enzyme activities of alkaline phosphatase, leucine-aminopeptidase, arylsulfatase, and β-glucosidase were measured fluorometrically in Eleocharis litter in both the litterbag experiment and the naturally decomposing material. Total phospholipid fatty acid (PLFA) content in litter samples was used as a measure of microbial biomass present. Phosphatase always exhibited the highest activity of the enzymes studied, followed by leucine-aminopeptidase, arylsulfatase and β-glucosidase. There were no significant differences between enzyme activities from litterbags and the unconfined litter. Phosphatase activity was significantly suppressed in P-addition plots under all salinity levels while the activities of the remaining enzymes were significantly higher in P-enriched plots. There was a strong correlation between decomposition coefficient k-values and most of the enzymes as well as between the amount of PLFA and enzyme activities. PLFA, arylsulfatase, and litter C/P were the best predictors of k-values.  相似文献   

19.
The effect of soil microarthropods and enchytraeids on the decomposition of wheat straw in buried litterbags was studied by selective admission and exclusion. Litterbags with 20 m mesh size admitted nematodes, but excluded microarthropods, although temporarily. After 27 weeks of incubation part of these litterbags were colonized, probably through egg-deposition of mainly fungivorous Collembola and mites. When litterbags with a complete microarthropod community (1.5 mm mesh size) were compared to litterbags with strongly reduced microarthropod numbers (20 m mesh size), no differences between decomposition rates were found. However, in colonized 20-m mesh bags, we found reduced decomposition rates compared to the coarse mesh litterbags, probably due to overgrazing of the fungal population by large numbers of fungivorous microarthropods. These large numbers might be caused by the absence of predators. Extraction of microarthropods as well as enchytraeids and nematodes from the coarse mesh litterbags showed a distinct succession during decomposition. The decomposition process was dominated in the first phase by bacterivorous nematodes, nematophagous and bacterivorous mites, and in the later phase by fungivorous nematodes, fungivorous and omnivorous mites and Collembola, and predatory mites. This succession is indicative of a sequence from bacterial to fungal dominated decomposition of the buried organic matter. The results indicate that the decomposition rate is predator controlled.  相似文献   

20.
The addition of leaf litter to soil influences both the nutrients and polyphenols of soil. It is likely that contrasting nutrient and polyphenolic composition of different plant litters may affect plant growth, mycorrhizal and soil arthropod communities. We report results from a microcosm experiment of effects of incorporation of three single leaf litter species and a mixture of all three on pitch pine seedling growth, their ectomycorrhizal community and soil arthropod community. The three litter species (pine, oak and huckleberry) represent co-dominant species within the New Jersey pine barrens ecosystem. We show that the leaf litters have different composition of nutrients and polyphenols, with rooting matrix containing pine litter having lower inorganic nitrogen content (1.6 μg g−1) than oak (19.9 μg g−1) and huckleberry (4.4 μg g−1), but oak litter having the highest extractable phosphorus (13.3 cf. 0-0.08 μg g−1) and total phenol content and lowest condensed tannin content. These differences were imparted to rooting matrix of homogenized humic (Oa) layer of pine barrens soil to which milled leaf litter was added and used in the microcosms. Pitch pine seedlings grew significantly better in un-amended rooting matrix (0.33±0.02 g) than any of the litter treatments (0.15±0.02-0.17±0.01 g) and tissue P concentrations tracked phosphate concentrations in the rooting matrix. Total P accumulation into plant tissue was higher in oak than control, attributable to a significantly higher (P<0.05) accumulation in roots (3.3±0.19 mg g−1) compared to other species (1.1±0.04-2.3±0.08 mg g−1). No relationship was seen between tissue N concentration and soil N, but seedlings growing in huckleberry litter amended soil accumulated less N than control. The effect of leaf litters on the ectomycorrhizal community composition were determined by PCA (first two axes accounted for 81% of the variance) and stepwise multiple regression analysis. These analyses showed that huckleberry leaf litter had a significant impact on mycorrhizal community composition with morphotypes Cg and DB being more abundant in the presence of huckleberry litter (178±13 cf. 68±15-106±15 for Cg and 141±11 cf. 88±23-111±18 for DB) and its influence of elevating nitrate nitrogen, organic nitrogen, total phenols and protein precipitation content of the rooting matrix. Mycorrhizal morphotypes BS and SB were significantly more abundant in the community where these soil factors were low in the absence of leaf litter addition. Total ectomycorrhizal abundance was negatively related to hydrolysable tannin concentration in the rooting matrix (r2=0.132, P<0.05). There was no influence of leaf litter type on mite density (dominated by non-burrowing phthiracarids), but collembolan density (dominated by Folsomia spp) showed a greater than threefold reduction in population density in the presence of leaf litter (F=6.47, P<0.05). Collembolan density was positively correlated with mycorrhizal morphotypes GS and SB (P<0.05) and negatively related to morphotypes DB (P<0.05) and soil extractable NH4-N (P<0.05), suggesting a possible selection of fungal species in their diet and a relationship between collembola and nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号