共查询到15条相似文献,搜索用时 328 毫秒
1.
The total N content in the acid forest soils studied ranged between 0.41% and 1.43%, and in more than 98% was composed of
organic N. Total hydrolysable organic N, hydrolysable unknown N (HUN) and α-aminoacidic N represented around 70%, 34% and
20% of the organic N, respectively, and varied in wide ranges. The percentages of amidic N and of the organic N compounds
solubilised to NH4
+ were approximately 6% and 5%, respectively, and ranged in narrow intervals. Aminoglucidic N reached a maximum of 3.8% of
the organic N and was undetectable in some of the samples analysed. Most of the hydrolysable N, HUN and α-aminoacidic N was
solubilised with 1 N and 3 N HCl, while a high amount of the compounds recovered as NH4
+ (60%) was obtained with 6 N HCl. The distribution of aminoglucidic N in the four fractions of increasing hydrolytic intensity
was very irregular. The organic N composition in the 0 to 5-cm and 5 to 10-cm layers was not significantly different. The
variation among samples was determined mainly by the organic N compounds less resistant to acid hydrolysis (hydrolysable N
and HUN less resistant to acid hydrolysis, amidic N and labile ammoniacal N) and by all α-aminoacidic N fractions. Aminoacidic
N was positively correlated with electrical conductivity and negatively correlated with exchangeable Al. The net N mineralisation
over 10 weeks of incubation was positive in all the soil samples analysed. The inorganic N content after the incubation and
the microbial N content were positively correlated with other variables – mainly with amidic N and α-aminoacidic N, as well
as with HUN and the hydrolysable N less resistant to hydrolysis.
Received: 13 July 1999 相似文献
2.
Significant areas of temperate forests in Central Europe, NE America and E Asia receive high amounts of N deposition. According to the few studies available, suspension of the N load leads to reductions in both inorganic soil N and leaching of N within a few years. We report that, surprisingly, N is still mineralized at high rates 14 yr after suspension of a previous N-load of >100 kg N/ha yr for 20 yr. In this treatment, gross N mineralization rates exceeded those in control plots by a factor 3, but equaled those in still on-going (34 yr of) treatments with 30 and 60 kg N/ha yr, in which levels of extractable NH4+ were up to 10 times higher. 相似文献
3.
Free amino acids (AA's) represent a significant source of available N for some plants and soil microorganisms. It can be expected, however, that significant competition will exist between plants and microorganisms for this organic N resource. Our study indicated that microbial capture and utilization of glycine was very rapid at a range of soil solution concentrations (0.1 μM to 10 mM) indicating that significant competition will exist between roots and soil microorganisms. Plant capture of free AA's was maximal at high soil solution concentrations where microbial utilization was slowest. Our results suggest that plant capture of soil dissolved organic N may primarily occur in organic rich patches in soil where concentrations of free AA's are high. 相似文献
4.
Variation in competitive abilities of plants and microbes for specific amino acids 总被引:21,自引:0,他引:21
D. A. Lipson T. K. Raab S. K. Schmidt R. K. Monson 《Biology and Fertility of Soils》1999,29(3):257-261
Microbes are assumed to possess strong competitive advantages over plants for uptake of nutrients from the soil. The finding
that non-mycorrhizal plants can obtain a significant fraction of their N requirement from soil amino acids contradicts this
assumption. The amino acid glycine (Gly) has been used as a model amino acid in many recent studies. Our preliminary studies
showed that Gly was a poor substrate for microbial growth compared to other amino acids. We tested the hypothesis that the
alpine sedge Kobresia myosuroides competes better for Gly than for other amino acids because of decreased microbial demand for this compound. Soil microbial
populations that could grow using Gly as a sole carbon source were about 5 times lower than those that could grow on glutamate
(Glu). Gly supported a significantly lower population than any of the ten other amino acids tested except serine. In contrast,
K. myosuroides took up Gly from hydroponic solution at faster rates than Glu. In plant-soil microcosms, plants competed with soil microbes
3.25 times better for Gly than for Glu. We conclude that the low microbial demand and the rapid plant uptake of Gly relative
to other amino acids allow Gly to be an especially important nitrogen source for K. myosuroides.
Received: 9 February 1998 相似文献
5.
Jacek Hilszczański Heloise Gibb Ola Atlegrim Roger B. Pettersson Kjell Danell 《Biological conservation》2005,126(4):456-464
The habitat requirements and effects of forest management on insects belonging to higher trophic levels are relatively unknown in forest ecosystems. We tested the effect of forest successional stage and dead wood characteristics on the saproxylic parasitoid (Hymenoptera, Ichneumonoidea) assemblage in boreal spruce-dominated forests in northern Sweden. Within each of nine areas, we selected three sites with different management histories: (1) a clear-cut (2) a mature managed forest and (3) an old-growth forest. Parasitoids were collected in 2003 using eclector traps mounted on fresh logs, which were either untreated (control), burned, inoculated with fungi, or naturally shaded, and on artificially-created snags.Both forest type and dead wood characteristics had a significant effect on parasitoid assemblages. Grouped idiobionts and some species, such as Bracon obscurator and Ontsira antica, preferred clear-cuts, while others, such as Cosmophorus regius (Hym., Braconidae) and other koinobionts, were associated with older successional forest stages. No single dead wood substrate was sufficient to support the entire community of parasitoids in any forest type, even when the regular host was present. In particular, snags hosted a different assemblage of species from other types of dead wood, with parasitoids of Tetropium spp. such as Rhimphoctona spp. (Hym., Ichneumonidae) and Helconidea dentator (Hym., Braconidae) being abundant. These results indicate that a diversity of dead wood habitats is necessary to support complete assemblages of beetle-associated parasitoids from early successional stages of dead wood and that parasitoids may be more sensitive to habitat change than their hosts. 相似文献
6.
Sean T. Berthrong 《Soil biology & biochemistry》2006,38(5):861-869
Amino acids play a critical role in soil-N cycling. Much of the current research on amino acid cycling has been conducted in arctic, alpine, boreal, and temperate grassland ecosystems. There are no comparable data for temperate forests. We quantified the concentration and production of amino acid N and inorganic N in three forests varying in parent material and tree species composition in Connecticut, USA. Soil samples were collected on three sample dates in 2001 and 2002. At all three sites, a pool of free amino acids was present in soil on all sample dates. Among-site differences in the production of amino acids were related to variations in the activity of proteolytic enzymes, the sensitivity of proteolytic enzymes to the availability of protein substrate, and the presence or absence of a surface organic horizon. Among-site differences in amino acid turnover appeared to be at least partially related to soil C-to-N ratios and their effect on C vs. N limitation to microbial function. Amino acid concentrations in the top 15 cm of mineral soil in these study sites fell within the range of reported values for ecosystems spanning a wide latitudinal gradient, including ecosystems in which amino acids are thought to contribute substantively to plant-N nutrition. The concentration of amino acid N in the organic horizons of these study sites was considerably higher than those reported in the literature. The implications of the results for N capture by temperate forest trees are discussed. 相似文献
7.
Amino acid composition of soil organic matter 总被引:5,自引:0,他引:5
This study investigated the amino acid composition of soil organic matter extracted from ten surface soils in addition to
surface soils from two long-term cropping systems [continuous corn (CCCC), corn-soybean-corn-soybean (CSCS), and corn-oats-meadow-meadow
(COMM)] at two sites in Iowa: the Clarion-Webster Research Center (CWRC) and the Galva-Primghar Research Center (GPRC). Results
showed that, with the exception of asparagine pluse aspartic acid and glutamine plus glutamic acid, the other 13 amino acids
studied, expressed as perecentages of total amino acids extracted, were generally very uniform among the soils. The total
amino acids extracted from the ten soils were significantly correlated with organic carbon (C) ( and clay content (, but not with total nitrogen (N), pH, or sand content. Expressed as percentages or organic C and N in soils, the amounts
extracted ranged from 10.9% to 32.4% and from 12.0% to 27.4%, respectively. The amino acid N identified, expressed as percentages
of organic N extracted, ranged from 32% to 50% and the C/N ratios of the extracted organic matter ranged from 10.1 to 14.9.
The type of rotation did not significantly affect the total amino acid content of the soils from the same N treatment, but
it did affect the total amino acid content of soils from the control plots. The total amino acids measured under the different
crop rotations at the CWRC site were in the order: COMM>CCCC>CSCS. The order for the GPRC site was: CSCS>COMM>CCCC. The amino
acid N identified, expressed as percentages of organic N extracted from soils at the CWRC site, ranged from 33.1% to 50% and
for the GPRC site ranged from 26.5% to 51.4%. The C/N ratios of the organic matter extracted ranged from 10.4 to 14.1 and
from 6.5 to 14.3 for the soils from CWRC and GPRC sites, respectively.
Received: 26 May 1997 相似文献
8.
Steven D. Allison David S. LeBauer Randy Reyes Tri M. Tran 《Soil biology & biochemistry》2009,41(2):293-302
Climate warming and associated increases in nutrient mineralization may increase the availability of soil nitrogen (N) in high latitude ecosystems, such as boreal forests. These changes in N availability could feed back to affect the decomposition of litter and organic matter by soil microbes. Since fungi are important decomposers in boreal forest ecosystems, we conducted a 69-day incubation study to examine N constraints on fungal decomposition of organic substrates common in boreal ecosystems, including cellulose, lignin, spruce wood, spruce needle litter, and moss litter. We added 0, 20, or 200 μg N to vials containing 200 mg substrate in factorial combination with five fungal species isolated from boreal soil, including an Ascomycete, a Zygomycete, and three Basidiomycetes. We hypothesized that N addition would increase CO2 mineralization from the substrates, particularly those with low N concentrations. In addition we predicted that Basidiomycetes would be more effective decomposers than the other fungi, but would respond weakly or negatively to N additions. In support of the first hypothesis, cumulative CO2 mineralization increased from 635 ± 117 to 806 + 108 μg C across all fungal species and substrates in response to 20 μg added N; however, there was no significant increase at the highest level of N addition. The positive effect of N addition was only significant on cellulose and wood substrates which contained very little N. We also observed clear differences in the substrate preferences of the fungal species. The Zygomycete mineralized little CO2 from any of the substrates, while the Basidiomycetes mineralized all of the substrates except spruce needles. However, the Ascomycete (Penicillium) was surprisingly efficient at mineralizing spruce wood and was the only species that substantially mineralized spruce litter. The activities of β-glucosidase and N-acetyl-glucosaminidase were strongly correlated with cumulative respiration (r = 0.78 and 0.74, respectively), and Penicillium was particularly effective at producing these enzymes. On moss litter, the different fungal species produced enzymes that targeted different chemical components. Overall, our results suggest that fungal species specialize on different organic substrates, and only respond to N addition on low N substrates, such as wood. Furthermore, the response to N addition is non-linear, with the greatest substrate mineralization at intermediate N levels. 相似文献
9.
David E. Rothstein 《Soil biology & biochemistry》2010,42(10):1743-1750
Free amino acids (FAAs) in soil solution are increasingly recognized as a potentially important source of nitrogen (N) for plants, yet we are just beginning to understand the behavior of FAAs in soil. I investigated the effects of amino-acid chemistry and soil properties on mineralization, microbial assimilation and sorption of amino-acid N in soils from three ecosystems representing the two endpoints and mid point of a temperate forest fertility gradient ranging from low mineral N availability/high FAA oak forests to high mineral N availability/low FAA maple-basswood forests. Soils were amended with six 15N-labeled amino-acid substrates that ranged widely in chemical properties, including molecular weight, C:N ratio, average net charge, hydrophobicity, and polarity: Arginine (Arg), Glutamine (Gln), Glutamate (Glu), Serine (Ser), Glycine (Gly) and Leucine (Leu). Mineralization of amino-acid N accounted for 7-45% (18% avg.) of the added label and was most strongly affected by soil characteristics, with mineralization increasing with increasing soil fertility. Mineralization of amino-acid N was unrelated to amino-acid C:N ratio, rather, I observed greater N mineralization from polar FAAs compared to non-polar ones. Assimilation of amino-acid N into microbial biomass accounted for 6-48% (29% avg.) of the added label, and was poorly predicted by either intrinsic amino-acid properties or soil properties, but instead appeared to be explicable in terms of compound-specific demand by soil micoorganisms. Sorption of amino-acid N to soil solids accounted for 4-15% (7% avg.) of the added label and was largely controlled by charge characteristics of individual amino acids. The fact that both positively- and negatively-charged amino acids were more strongly sorbed than neutral ones suggests that cation and anion exchange sites are an important factor controlling sorption of FAAs in these acid forest soils. Together, the findings from this study suggest that there may be important differences in the behavior of free amino acids in sandy, acidic forest soils compared to generalizations drawn from finer-textured grassland soils, which, in turn, might affect the availability of some FAAs in soil solution. 相似文献
10.
Organic nitrogen (N) uptake, rather than solely inorganic N (DIN), is considered a significant pathway for plant nutrition, especially in arctic, alpine and boreal ecosystems. Assays of plant-available N in these ecosystems might therefore be improved with measures of dissolved organic N (DON). We examined DON and DIN abundance from an in situ 5-week incubation across plant associations that represent the widest range in site potential in southern boreal forests of British Columbia, Canada. The supply of N from forest floors and mineral soils (20 cm depth) was measured separately and then combined (kg ha−1) to facilitate comparisons of sites. DON was the predominant form of extractable N, and was increasingly supplemented, rather than replaced, by NH4+ and NO3− on productive sites. The amount of DIN produced in the soils was very low, perhaps too small to support forest needs, and the correlation of DIN to asymptotic stand height (a measure of site potential) was significant but nonlinear. The combined amount of DON+DIN was considered a more effective index of plant-available N because it was strongly significant as a linear correlation to stand height and more typical of annual forest N uptake. The relative shift in N forms, from a predominance of DON to progressively greater ratios of DIN:DON, was consistent with the current paradigm of N forms across gradients of N availability, although the actual amounts of DON increased, rather than decreased, with site potential. Based on this, we suggest organic N uptake has the potential to contribute to plant nutrition across the entire productivity gradient of soils in southern boreal forests. Although other N indices were effective in characterizing forest productivity, a combined assay of DON+DIN production could provide new insights into functional differences in plant-available N. 相似文献
11.
Gerard H. Ros Adriaan G. van Leeuwen Erwin J.M. Temminghoff 《Soil biology & biochemistry》2011,43(4):862-865
Amino acids can interfere with NH4+ in spectrophotometric NH4+ determination hampering accurate quantification of the fate of NH4+ and dissolved organic N in soils. Serious interference has been reported for soils rich in organic matter, and for soils that have been fumigated, oven-dried or fertilized where between 5 and 60% of the NH4+ detected could be attributed to amino acid interference. We investigated whether a combination of gas diffusion and the classical Berthelot method can eliminate this interference, increasing the selectivity of the NH4+ analysis. We tested this approach using synthetic amino acid solutions and a large set of terrestrial samples (n = 353), including pore water samples, (fumigated or dried) soil extracts, and extracts of manures, composts and crop residues. The evaluated method produced accurate (recovery > 99.7%) and reproducible (standard error = 2.2%) NH4+ concentrations, eliminating any interference between amino acids and NH4+ (interference < 0.3%). Interference from K2SO4 was also eliminated. The method is robust, broadly applicable and will improve our understanding of nitrogen cycling in various ecosystems, in particular those where high levels of amino acids occur. 相似文献
12.
Osamu Nakahara Takeshi Yamagami Takahiro Koide Kohei Sakai Ryusuke Hatano 《Soil Science and Plant Nutrition》2013,59(5):741-746
Abstract In this report, we propose a new method of evaluating the effect of nitrogen deposition on forest ecosystems, namely the spatial variation in nitrogen deposition enables to detect readily the effect of anthropogenic N deposition on biogeochemical processes in forest ecosystems. We analyzed the nitrogen deposition (throughfall fluxes) and stream water chemistry over five adjacent small catchments in which soil types (Hapludants) and vegetation composition (50 to 60 years old larch plantation) were fairly identical. Thirty-two throughfall collectors were set up in the five catchments (six to eight collectors in each catchment) and throughfall samples were collected after a rain event, while stream water samples were collected once or twice a month. The monitoring was carried out during a period of 6 months (2002 June to 2002 November). Throughfall dissolved inorganic nitrogen (DIN) fluxes were highly variable: the highest N input, 1.32 kg N ha?1 6 months?1, was sixty-six times higher than the lowest input, 0.02 kg N ha?1 6 months?1. The mean DIN inputs and the mean nitrate concentrations in streams showed a three-time variation across the five catchments. In addition, the DIN inputs showed a high correlation with the stream nitrate concentrations (r = 0.88). 相似文献
13.
While it is well established that plants are able to acquire nitrogen in inorganic form, there is less information on their ability to ‘short circuit’ the N cycle, compete with microbes, and acquire nitrogen in organic form. Mycorrhizal fungi, known to enhance nutrient uptake by plants, may play a role in organic N uptake, particularly ericoid mycorrhizas. We asked the question—Can mycorrhizal fungi increase the ability of plants to take up organic N, compared to inorganic N? Here, we report on the abilities of three plant species, ericoid mycorrhizal Rhododendron macrophyllum and Vaccinium ovatum and arbuscular mycorrhizal Cupressus goveniana ssp. pigmaea, to acquire C and/or N from an organic and an inorganic N source. All three species are native to a California coastal pygmy forest growing in acidic, low-fertility, highly organic soils. In a pot study, glycine-α13C, 15N and 15N-ammonium were applied to pygmy forest soil for 17 or 44 h. Ericoid mycorrhizal species did not demonstrate a preference for either inorganic or organic sources of N while Cupressus acquired more NH4-N than glycine-N. For all species, glycine-N uptake did not increase after 17 h suggesting glycine uptake and glycine immobilization occurred rapidly. Both glycine-N and glycine-C were recovered in shoots and in roots suggesting that all species acquired some N in organic form. Regression analyses of glycine-N and glycine-C recovery in root tissue indicate that much of the glycine was taken up intact and that the minimum proportion of glycine-N recovered in organic form was 85% (Cupressus) and 70% (Rhododendron). Regressions were non-significant for Vaccinium. For all species, glycine-N remained predominantly in roots while glycine-C was transferred to shoots. In contrast, NH4-N remained in roots of ericoid plants but was transferred to shoots of arbuscular mycorrhizal Cupressus. Since net N mineralization rates in pygmy forest soils are low, our results suggest that organic N may be an important N source for plants in this temperate coniferous ecosystem regardless of mycorrhizal type. Acquisition of amino acid C by these species also may partially offset the carbon cost to plants of hosting mycorrhizal fungi. 相似文献
14.
In boreal forests ericaceous shrubs often dominate the forest floor vegetation. Nitrogen enrichment has been shown to decrease shrub abundance and in this study we explored whether it also affects the root associated fungal communities. Fine roots of Vaccinium myrtillus were collected in a Norway spruce dominated forest and of Vaccinium vitis-idaea in a Scots pine dominated forest. In both forests, nitrogen enrichment was experimentally induced by adding 12.5 and 50 kg N ha−1 yr−1 for 12 (spruce forest) and four (pine forest) years. Based on terminal restriction fragment length polymorphisms, subcloning and sequencing analyses, the root associated fungal communities were examined. We found 93 fungal species including Asco-, Basidio- and Zygo-mycota. In general, the Rhizoscyphus ericae aggregate was the most dominant and this was followed by Herpotrichiellaceae and Sebacina. Ordination analysis revealed that nitrogen enrichment did not change species composition of the fungal communities in neither the spruce nor the pine forest, while fungal community structures were clearly discriminated between the dominant shrub species in each forest. Similarly, no fungal species showed a significant response to nitrogen enrichment. Therefore, nitrogen enrichment appears to have no effect on root associated fungi of understorey dwarf shrubs in boreal forests, while it is clear that spruce and pine forests harbor distinctive communities of these fungi. 相似文献
15.
Nitrogen controls, on the seasonal and inter-annual variability of net ecosystem productivity (NEP) in a western temperate conifer forest in British Columbia, Canada, were simulated by a coupled carbon and nitrogen (C&N) model. The model was developed by incorporating plant–soil nitrogen algorithms in the Carbon-Canadian Land Surface Scheme (C-CLASS). In the coupled C&N-CLASS, the maximum carboxylation rate of Rubisco (Vcmax) is determined non-linearly from the modelled leaf Rubisco-nitrogen, rather than being prescribed. Hence, variations in canopy assimilation and stomatal conductance are sensitive to leaf nitrogen status through the Rubisco enzyme. The plant–soil nitrogen cycle includes nitrogen pools from photosynthetic enzymes, leaves and roots, as well as organic and mineral reservoirs from soil, which are generated, exchanged, and lost by biological fixation, atmospheric deposition, fertilization, mineralization, nitrification, root uptake, denitrification, and leaching. Model output was compared with eddy covariance flux measurements made over a 5-year period (1998–2002). The model performed very well in simulating half-hourly and monthly mean NEP values for a range of environmental conditions observed during the 5 years. C&N-CLASS simulated NEP values were 274, 437, 354, 352 and 253 g C m−2 for 1998–2002, compared to observed NEP values of 269, 360, 381, 418 and 264 g C m−2, for the respective years. Compared to the default C-CLASS, the coupled C&N model showed improvements in simulating the seasonal and annual dynamics of carbon fluxes in this forest. The nitrogen transformation to soil organic forms, mineralization, plant nitrogen uptake and leaf Rubisco-nitrogen concentration patterns were strongly influenced by seasonal and annual temperature variations. In contrast, the impact of precipitation was insignificant on the overall forest nitrogen budget. The coupled C&N modelling framework will help to evaluate the impact of nitrogen cycle on terrestrial ecosystems and its feedbacks on Earth's climate system. 相似文献