共查询到20条相似文献,搜索用时 15 毫秒
1.
Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland 总被引:23,自引:4,他引:23
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis. 相似文献
2.
Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand 总被引:8,自引:2,他引:8
David Gaumont-Guay T. Andrew Black Tim J. Griffis Alan G. Barr Rachhpal S. Jassal Zoran Nesic 《Agricultural and Forest Meteorology》2006,140(1-4):220
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly Rs (ΔRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect. 相似文献
3.
Bingrui Jia Guangsheng Zhou Fengyu Wang Yuhui Wang Li Zhou 《Soil biology & biochemistry》2006,38(4):653-660
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass. 相似文献
4.
Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (Rs) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2-3 continuous years of Rs measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of Rs to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in Rs of the 15 ChinaFLUX ecosystems (R2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of Rs in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of Rs and ecosystem carbon cycles. 相似文献
5.
Soil microorganisms are influenced by various abiotic and biotic factors at the field plot scale. Little is known, however, about the factors that determine soil microbial community functional diversity at a larger spatial scale. Here we conducted a regional scale study to assess the driving forces governing soil microbial community functional diversity in a temperate steppe of Hulunbeir, Inner Mongolia, northern China. Redundancy analysis and regression analysis were used to examine the relationships between soil microbial community properties and environmental variables. The results showed that the functional diversity of soil microbial communities was correlated with aboveground plant biomass, root biomass, soil water content and soil N: P ratio, suggesting that plant biomass, soil water availability and soil N availability were major determinants of soil microbial community functional diversity. Since plant biomass can indicate resource availability, which is mainly constrained by soil water availability and N availability in temperate steppes, we consider that soil microbial community functional diversity was mainly controlled by resource availability in temperate steppes at a regional scale. 相似文献
6.
Fernando E. Moyano Werner L. Kutsch Ernst-Detlef Schulze 《Soil biology & biochemistry》2007,39(4):843-853
The mycorrhizal, rhizosphere and basal components of soil respiration were partitioned in a barley field experiment with the main objective of determining the controlling effects of photosynthetic activity and temperature on soil respiration sources. Micro-pore meshes were used to create both root and mycorrhiza-free soil cores over which collars for soil respiration measurements were inserted. Differences between mesh treatments were used to determine the contribution of each component. With a focus on the growing season, we analyzed the response of respiration sources to photosynthesis, temperature and moisture, as well as changes in microbial biomass, mineral nitrogen and carbon-nitrogen ratios responding to treatment and time of year. Results gave clear differences between sources in their response to both temperature and photosynthetic activity and showed that several processes are involved in determining respiration rates as well as apparent temperature relations. In particular, the respiration of arbuscular mycorrhizal hyphae was seen to be a significant amount of root derived carbon respiration (25.3%) and consequently of total assimilated carbon (4.8%). This source showed a stronger response to photosynthetic activity than the rhizosphere component (r2=0.79, p<0.001 and r2=0.324, p=0.53, respectively). Q10 values—the increase in respiration rates with a 10 °C increase in temperature—changed seasonally and showed temperature relations being dependent on the presence of mycorrhizal and rhizosphere respiration sources, as well as on plant development. Respiration from mycorrhizal hyphae and the rhizosphere showed no response (r2=0, p<0.99) or low response (r2=0.14, p<0.01) to temperature, respectively. We conclude that the potential importance and controls of mycorrhizal fungi respiration in croplands are comparable to those observed in other ecosystems, and that temperature response curves should be carefully interpreted given that substrate availability and plant dynamics strongly regulate respiration rates in ecosystems. 相似文献
7.
Understanding the sensitivity of soil respiration to temperature change and its impacting factors is an important base for accurately evaluating the response of terrestrial carbon balance to future climatic change, and thus has received much recent attention. In this study, we synthesized 161 field measurement data from 52 published papers to quantify temperature sensitivity of soil respiration in different Chinese ecosystems and its relationship with climate factors, such as temperature and precipitation. The results show that the observed Q10 value (the factor by which respiration rates increase for a 10 °C increase in temperature) is strongly dependent on the soil temperature measurement depth. Generally, Q10 significantly increased with the depth (0 cm, 5 cm, and 10 cm) of soil temperature measuring point. Different ecosystem types also exhibit different Q10 values. In response to soil temperature at the depth of 5 cm, alpine meadow and tundra has the largest Q10 value with magnitude of 3.05 ± 1.06, while the Q10 value of evergreen broadleaf forests is approximately half that amount (Q10 = 1.81 ± 0.43). Spatial correlation analysis also shows that the Q10 value of forest ecosystems is significantly and negatively correlated with mean annual temperature (R = −0.51, P < 0.001) and mean annual precipitation (R = −0.5, P < 0.001). This result not only implies that the temperature sensitivity of soil respiration will decline under continued global warming, but also suggests that such acclimation of soil respiration to warming should be taken into account in forecasting future terrestrial carbon cycle and its feedback to climate system. 相似文献
8.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity. 相似文献
9.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems. 相似文献
10.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. Responses of soil respiration to temperature fluctuations were investigated in a root-free soil of a mid-European beech-oak forest. First, in laboratory we analysed the efflux of CO2 from soil microcosms exposed to seasonal (±5 °C of the annual mean) and diurnal fluctuations (±5 °C of the seasonal levels) in a two-factorial design. Second, in field microcosms we investigated effects of smoothing diurnal temperature fluctuations in soil (simulating a possible global trend) on CO2 efflux. Third, the natural temperature regime was simulated in laboratory microcosms and their CO2 efflux was compared to the one in the field. The experiments lasted for 1 year to differentiate seasonal and annual responses.Dynamics of CO2 efflux, microbial basal respiration, biomass and qO2 varied with seasonal temperature regime. However, in the laboratory the annual cumulative CO2-C production did not differ between treatments and varied between 10.9% and 11.7% of the total microcosm C, disregarding seasonal and/or diurnal fluctuations. The similarity of cumulative C production suggests that the availability of microbially mobilisable carbon pools rather than the temperature regime limited soil respiration. Diurnal fluctuations generally did not affect CO2 efflux and microbial activity, though winter Q10 values were increased in their absence. Simulation of the natural temperature regime in the laboratory resulted in CO2 efflux similar to field microcosms. In the field, rates of CO2 efflux and microbial activity, seasonal and annual cumulative CO2-C production were significantly higher at smoothed than at natural temperature conditions (annually 13.1% and 11.0% of total C was respired, respectively). Facing global climate changes the mechanisms regulating responses of soil respiration to temperature fluctuations need further investigation. 相似文献
11.
Earthworm growth is affected by fluctuations in soil temperature and moisture and hence, may be used as an indicator of earthworm activity under field conditions. There is no standard methodology for measuring earthworm growth and results obtained in the laboratory with a variety of food sources, soil quantities and container shapes cannot easily be compared or used to estimate earthworm growth in the field. The objective of this experiment was to determine growth rates of the endogeic earthworm Aporrectodea caliginosa (Savigny) over a range of temperatures (5–20 °C) and soil water potentials (−5 to−54 kPa) in disturbed and undisturbed soil columns in the laboratory. We used PVC cores (6 cm diameter, 15 cm height) containing undisturbed and disturbed soil, and 1 l cylindrical pots (11 cm diameter, 14 cm height) with disturbed soil. All containers contained about 500 g of moist soil. The growth rates of juvenile A. caliginosa were determined after 14–28 days. The instantaneous growth rate (IGR) was affected significantly by soil moisture, temperature, and the temperature×moisture interaction, ranging from −0.092 to 0.037 d−1. Optimum growth conditions for A. caliginosa were at 20 °C and −5 kPa water potential, and they lost weight when the soil water potential was −54 kPa for all temperatures and also when the temperature was 5 °C for all water potentials. Growth rates were significantly greater in pots than in cores, but the growth rates of earthworms in cores with undisturbed or disturbed soil did not differ significantly. The feeding and burrowing habits of earthworms should be considered when choosing the container for growth experiments in order to improve our ability to extrapolate earthworm growth rates from the laboratory to the field. 相似文献
12.
Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand 总被引:1,自引:1,他引:1
David Gaumont-Guay T. Andrew Black Tim J. Griffis Alan G. Barr Kai Morgenstern Rachhpal S. Jassal Zoran Nesic 《Agricultural and Forest Meteorology》2006,140(1-4):203
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re. 相似文献
13.
Miyuki Nakajima Shuirong Tang Yasuaki Hori Eiko Yaginuma Satoshi Hattori 《Soil Science and Plant Nutrition》2016,62(1):90-98
Submerged rice paddies are a major source of methane (CH4) which is the second most important greenhouse gas after carbon dioxide (CO2). Accelerating rice straw decomposition during the off-rice season could help to reduce CH4 emission from rice paddies during the single rice-growth season in cold temperate regions. For understanding how both temperature and moisture can affect the rate of rice straw decomposition during the off-rice season in the cold temperate region of Tohoku district, Japan, a modeling incubation experiment was carried out in the laboratory. Bulk soil and soil mixed with 2% of δ13C-labeled rice straw with a full factorial combination of four temperature levels (?5 to 5, 5, 15, 25°C) and two moisture levels (60% and 100% WFPS) were incubated for 24 weeks. The daily change from ?5 to 5°C was used to model the freezing–thawing cycles occurring during the winter season. The rates of rice straw decomposition were calculated by (i) CO2 production; (ii) change in the soil organic carbon (SOC) content; and (iii) change in the δ13C value of SOC. The results indicated that both temperature and moisture affected the rate of rice straw decomposition during the 24-week aerobic incubation period. Rates of rice straw decomposition increased not only with high temperature, but also with high moisture conditions. The rates of rice straw decomposition were more accurately calculated by CO2 production compared to those calculated by the change in the SOC content, or in its δ13C value. Under high moisture at 100% WFPS condition, the rates of rice straw decomposition were 14.0, 22.2, 33.5 and 46.2% at ?5 to 5, 5, 15 and 25°C temperature treatments, respectively. While under low moisture at 60% WFPS condition, these rates were 12.7, 18.3, 31.2 and 38.4%, respectively. The Q10 of rice straw decomposition was higher between ?5 to 5 and 5°C than that between 5 and 15°C and that between 15 and 25°C. Daily freezing–thawing cycles (from ?5 to 5°C) did not stimulate rice straw decomposition compared with low temperature at 5°C. This study implies that to reduce CH4 emission from rice paddies during the single rice-growth season in the cold temperate regions, enhancing rice straw decomposition during the high temperature period is very important. 相似文献
14.
The effects of timber harvesting and the resultant soil disturbances (compaction and forest floor removal) on relative soil water content, microbial biomass C and N contents (Cmic and Nmic), microbial biomass C:N ratio (Cmic-to-Nmic), microbial respiration, metabolic quotient (qCO2), and available N content in the forest floor and the uppermost mineral soil (0-3 cm) were assessed in a long-term soil productivity (LTSP) site and adjacent mature forest stands in northeastern British Columbia (Canada). A combination of principal component analysis and redundancy analysis was used to test the effects of stem-only harvest, whole tree harvest plus forest floor removal, and soil compaction on the studied variables. Those properties in the forest floor were not affected by timber harvesting or soil compaction. In the mineral soil, compaction increased soil total C and N contents, relative water content, and Nmic by 45%, 40%, 34% and 72%, respectively, and decreased Cmic-to-Nmic ratio by 29%. However, these parameters were not affected by stem only harvesting or whole tree harvesting plus forest floor removal, contrasting the reduction of white spruce and aspen growth following forest floor removal and soil compaction reported in an earlier study. Those results suggest that at the study site the short-term effects of timber harvesting, forest floor removal, and soil compaction are rather complex and that microbial populations might not be affected by the perturbations in the same way as trees, at least not in the short term. 相似文献
15.
The effects of night temperature on biomass accumulation and plant morphology were examined in rice ( Oryza sativa L.) during vegetative growth. Plants were grown under three different night temperatures (17, 22 and 27°C) for 63 days. The day temperature was maintained at 27°C in all treatments. The final biomass of the plants was greatest in the plants grown at the highest night temperature. Total leaf area and tiller number were also the greatest in this treatment. Growth analysis indicated that the relative growth rate in the 27°C night-temperature treatment was maximal between days 21–42 and this was caused by increases in leaf area ratio, leaf weight ratio and specific leaf area. Plant total nitrogen contents did not differ among treatments. However, nitrogen allocation to the leaf blades was highest and the accumulation of sucrose and starch in the leaf blades and sheaths was the lowest in the 27°C night-temperature treatment by day 42. Despite this, dark respiration was also highest, and both the gross and net rates of CO2 uptake at the level of the whole plant at day 63 were the highest in the 27°C night-temperature treatment. Thus, high night temperature strongly stimulated the growth of leaf blades during the early stage of rice plant growth, leading to increased biomass during the vegetative stage of the rice plants. As the CO2 uptake rate per total leaf area was higher, photosynthesis at the level of the whole plant was also stimulated by a high night temperature. 相似文献
16.
Based on a literature review including 201 surface soils from wet, mild, mid-latitude climates and 290 soils from the Lower Saxony soil monitoring programme (Germany), we investigated the relationship between soil clay content and soil organic matter turnover. The relationship was then used to evaluate the clay modifier for microbial decomposition in the organic matter module of the soil-plant-atmosphere model DAISY. A positive relationship was found between soil clay content and soil microbial biomass (SMB) C. Furthermore, a negative relationship was found between soil clay content and metabolic quotient (qCO2) as an indicator of specific microbial activity. Both findings support the hypothesis of a clay dependent capacity of soils to protect microbial biomass. Under the differing conditions of practical agriculture and forestry, no or only very weak relationships were found between soil clay content and non-living soil organic matter C (humus C). It is concluded that the stabilising effect of clay is much stronger for SMB than for humus. This is in contrast to the DAISY clay modifier assuming the same negative relationship between soil clay content, on the one hand, and turnover of SMB and turnover of soil humus on the other. There is a positive relationship between SMB and microbial decomposition activity under steady-state conditions (microbial growth≈microbial death). The original concept of a biomass-independent simulation of organic matter turnover in the DAISY model must therefore be rejected. In addition to the original modifiers of organic matter turnover, a modifier based on the pool size of decomposing organisms is suggested. Priming effects can be simulated by applying this modifier. When using this approach, the original modifiers are related to specific microbial activity. The DAISY clay modifier is a useful approximation of the relationship between the metabolic quotient (qCO2) as an indicator of specific microbial activity and soil clay content. 相似文献
17.
Michael B Jenkins 《Soil biology & biochemistry》2003,35(12):1675-1682
Rhizobial symbionts were isolated from the surface (0-0.5 M) and phreatic (3.9-5.0 M) root environments of a mature mesquite woodland in the Sonoran Desert of Southern California, and from variable depths (0-12 m) of non-phreatic mesquite ecosystems in the Chihuahuan Desert of New Mexico. They were tested for their ability to tolerate high salinity, and respire NO3− as mechanisms of free-living survival. Sixteen of 25 isolates were grown in yeast-extract mannitol (YEM) broth at NaCl concentrations of 2 (basal concentration), 100, 300, 500 and 600 mM, and their specific growth rates, cell dry weight and lag times were determined. Twenty of the 25 isolates were also grown in YEM broth under anaerobic conditions with or without 10 mM KNO3. Three categories of NaCl salinity responses were observed: (1) eight isolates showed decreased specific growth rates at NaCl concentrations of 100, 300 and 500 mM, but they nevertheless remained viable at 500 mM NaCl concentration; (2) the specific growth rate of six isolates increased significantly at 100 and 300 mM NaCl; and (3) specific growth rates of two isolates were significantly greater than the base-rate at all concentrations of NaCl. Five of 11 of the Bradyrhizobium isolates tested respired NO3−, but showed no growth. Seven Rhizobium isolates, three from the deep (3.9-5 m) phreatic rhizobial community, and four from the surface community denitrified NO3− but only the isolates from the phreatic community displayed anaerobic growth. Long-term interactions between rhizobial and bradyrhizobial communities and the surface and phreatic root environments of the mature Sonoran Desert mesquite woodland appear to have selected for strains of NO3− respiring rhizobia, general salt tolerance of both rhizobial and bradyrhizobial symbionts, and strains of weak facultative halophilic bradyrhizobia. These survival characteristics of mesquite rhizobia may be important regarding mesquite's establishment and long-term productivity in marginal desert soils, and may provide novel types of rhizobia for food crops growing in harsh environments. 相似文献
18.
小菜蛾是蔬菜的重要害虫,其非化学控制技术对蔬菜的安全生产非常重要。为了解农业措施对小菜蛾的控制作用,在室内进行了低温、高温、淹水、土壤湿度、覆土等条件下小菜蛾蛹的羽化情况研究,探讨温度、湿度和覆土等逆境环境对小菜蛾蛹的影响。结果表明,在26~30℃的温度范围内,小菜蛾蛹的羽化率达73%以上,但34℃时羽化率下降到46.67%。小菜蛾蛹经4℃的低温处理后转入常温条件下,蛹的羽化率显著下降,且低温处理时间越长,羽化率越低;但随着转入常温时间的延长,羽化率可逐渐恢复。土壤含水量对小菜蛾蛹的羽化有显著影响,土壤含水量为10%和20%时,羽化率分别为正常含水量(8%)的12.5%和6.2%,含水量超过30%时,6 d以内蛹不能羽化。淹水对小菜蛾蛹的羽化也有显著影响,淹水12 h后移入到正常盆土表面时,与不淹水对照相比蛹的羽化率下降25.0%;淹水24 h后羽化率下降50.0%,并且羽化时间推迟;而淹水超过36 h时,小菜蛾蛹不能羽化。覆土对小菜蛾蛹也有明显影响,覆土1 cm厚小菜蛾蛹的羽化推迟2 d,覆土1.5 cm以上小菜蛾蛹不能顺利羽化。研究结果显示,适时灌水或水旱轮作、田间土壤耕翻对蔬菜地小菜蛾蛹有较好的控制效果。 相似文献
19.
David T. Tingey Mark G. Johnson Claudia Wise David M. Olszyk Kelly K. Donegan 《Soil biology & biochemistry》2006,38(7):1764-1778
Soil respiration represents the integrated response of plant roots and soil organisms to environmental conditions and the availability of C in the soil. A multi-year study was conducted in outdoor sun-lit controlled-environment chambers containing a reconstructed ponderosa pine/soil-litter system. The study used a 2×2 factorial design with two levels of CO2 and two levels of O3 and three replicates of each treatment. The objectives of our study were to assess the effects of long-term exposure to elevated CO2 and O3, singly and in combination, on soil respiration, fine root growth and soil organisms. Fine root growth and soil organisms were included in the study as indicators of the autotrophic and heterotrophic components of soil respiration. The study evaluated three hypotheses: (1) elevated CO2 will increase C assimilation and allocation belowground increasing soil respiration; (2) elevated O3 will decrease C assimilation and allocation belowground decreasing soil respiration and (3) as elevated CO2 and O3 have opposing effects on C assimilation and allocation, elevated CO2 will eliminate or reduce the negative effects of elevated O3 on soil respiration. A mixed-model covariance analysis was used to remove the influences of soil temperature, soil moisture and days from planting when testing for the effects of CO2 and O3 on soil respiration. The covariance analysis showed that elevated CO2 significantly reduced the soil respiration while elevated O3 had no significant effect. Despite the lack of a direct CO2 stimulation of soil respiration, there were significant interactions between CO2 and soil temperature, soil moisture and days from planting indicating that elevated CO2 altered soil respiration indirectly. In elevated CO2, soil respiration was more sensitive to soil temperature changes and less sensitive to soil moisture changes than in ambient CO2. Soil respiration increased more with days from planting in elevated than in ambient CO2. Elevated CO2 had no effect on fine root biomass but increased abundance of culturable bacteria and fungi suggesting that these increases were associated with increased C allocation belowground. Elevated CO2 had no significant effect on microarthropod and nematode abundance. Elevated O3 had no significant effects on any parameter except it reduced the sensitivity of soil respiration to changes in temperature. 相似文献
20.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle. 相似文献