首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

2.
《Soil biology & biochemistry》2012,44(12):2432-2440
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

3.
The effect of manure and mineral fertilization on the arbuscular mycorrhizal (AM) fungal community structure of sunflower (Helianthus annuus L.) plants was studied. Soils were collected from a field experiment treated for 12 years with equivalent nitrogen (N) doses of inorganic N, dairy manure slurry, or without N fertilization. Fresh roots of tall fescue (Festuca arundinacea Schreb.) grass collected from the field plots without N fertilization and unfumigated field soils were used as native microbial inoculum sources. Sunflower plants were sown in pots containing these soils, and three different means of manipulating the microbial community were set: unfumigated soil with fresh grass roots, fumigated soil with fresh grass roots, or fumigated soil with sterilized grass roots. Assessing the implications with respect to plant productivity and mycorrhizal community structure was investigated. Twelve AM fungal OTUs were identified from root or soil samples as different taxa of Acaulospora, Claroideoglomus, Funneliformis, Rhizophagus, and uncultured Glomus, using PCR-DGGE and sequencing of an 18S rRNA gene fragment. Sunflower plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral N or unfertilized, with an abundance of Rhizophagus intraradices-like (B2). The results also showed that AM inoculation increased P and N contents in inorganic N-fertilized or unfertilized plants, but not in manure-fertilized plants.  相似文献   

4.
Little is known about the decomposition rates of shoot and root residues of perennial grasses. This knowledge is important to estimate the carbon sequestration potential of the grasses. An incubation experiment was carried out in a sandy clay loam with shoot and root residues of three native perennial grasses (Wallaby grass, Stipa sp. and Kangaroo grass) and the annual grass barley either separately or in mixtures of two residues. Respiration rate was measured over 18 days, and microbial C and available N were measured on days 0 and 18. Decomposition was lower for roots than for shoots and lower for residues of perennial grasses than for barley. Cumulative respiration was positively correlated with water-soluble C in the residues but not with residue C/N. In the mixtures, the measured cumulative respiration was higher than the expected value in five of the nine mixes usually where the differences in cumulative respiration between the individual residues were relatively small. Lower than expected cumulative respiration were found in two of the mixtures in which barley shoots (high cumulative respiration) were mixed with residues with low cumulative respiration. There was a negative correlation between the change in microbial biomass C concentration from day 0 to day 18 and cumulative respiration on day 18. In the amended soils, the available N concentration decreased from day 0 to day 18. It is concluded that the low decomposition rate of perennial grasses residues should favour C sequestration, but that mixing residues of similar decomposition rate may accelerate their decomposition.  相似文献   

5.
The relationship between decomposer diversity and ecosystem functioning is little understood although soils accommodate a significant proportion of worldwide biodiversity. Collembola are among the most abundant and diverse decomposers and are known to modify plant growth. We examined the effects of Collembola species diversity (one, two and three species belonging to different life history groups) and composition on litter decomposition and the performance of plant communities (above- and belowground productivity) of different functional groups (grasses, forbs and legumes). Collembola densities did not increase with diversity indicating niche overlap. Generally, Collembola species composition was a better predictor for ecosystem functioning than Collembola species number with the impacts of Collembola diversity and composition on ecosystem functioning strongly depending on plant functional group identity. Non-linear effects of Collembola diversity on litter decomposition and plant productivity suggest pronounced and context dependent species interactions and feeding habits. Net surface litter decomposition was decreased by Collembola, whereas root litter decomposition was at maximum in the highest Collembola diversity treatment. Forbs benefitted most from the presence of three Collembola species. Similarly, Collembola diversity influenced root depth distribution in a plant functional group specific way: while grass root biomass decreased with increasing Collembola diversity in the upper and lower soil layer, legume root biomass increased particularly in the lower soil layer. Idiosyncratic and context dependent effects of Collembola diversity and composition even in rather simple assemblages of one to three species suggest that changes in Collembola diversity may have unpredictable consequences for ecosystem functioning. The finding that changes in Collembola performance did not directly translate to alterations in ecosystem functioning indicates that response traits do not necessarily conform to effect traits. Distinct plant functional group specific impacts of Collembola diversity on root depth distribution are likely to modify plant competition in complex plant communities and add a novel mechanism how decomposers may affect plant community assembly.  相似文献   

6.
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

7.
A pulse of 13CO2 was added to the above ground vegetation in an upland grassland to determine the effects of faunal diversity on the flux of carbon to the surface horizons of the soil. Faunal diversity was manipulated by liming and biocide treatments for three years prior to the pulse addition. The relocation of 13C within roots and rhizosphere soil was determined by analysis of samples of bulk soil and of specific features identified on soil thin sections on four dates after the addition of the 13CO2 pulse. Analysis of bulk soils showed only a small enrichment in 13C and no significant effects of the treatments. Analysis by isotope ratio mass spectrometry of the products of in situ laser combustion of root material and aggregates formed from faunal excrement showed that the distribution of the newly photosynthesised 13C is very localised, with large spatial variability in soil and root δ13C at scales of less than 1 mm. δ13C values ranged from the natural abundance level of around −28‰ to −4.9‰ in roots and to −8.4‰ in aggregates. The small pulse and large spatial variability masked any effects of the liming and biocide treatments in these soils. However, the variability in the relocation of newly photosynthesised carbon may help to explain the large spatial variability found in bacterial numbers at the sub-mm scale within soils and emphasises the importance of the accessibility of substrates to decomposers in undisturbed structured soils.  相似文献   

8.
Perennial rye grass (Lolium perenne) was grown in a greenhouse pot experiment on seven soils to answer the question whether the microbial colonisation of roots is related to existing differences in soil microbial indices. The soils were similar in texture, but differed considerably in soil organic matter, microbial biomass, and microbial community structure. Ergosterol and fungal glucosamine were significantly interrelated in the root material. This ergosterol was also significantly correlated with the average ergosterol content of bulk and rhizosphere soil. In addition, the sum of fungal C and bacterial C in the root material revealed a significant linear relationship with microbial biomass C in soil. The colonisation of roots with microorganisms increased apparently with an increase in soil microbial biomass. In the root material, microbial tissue consisted of 77% fungi and 23% bacteria. In soil, the fungal dominance was slightly, but significantly lower, with 70% fungi and 30% bacteria. Fungal glucosamine in the root material was significantly correlated with that in soil (r=0.65). This indicates a close relationship between the composition of dead microbial remains in soil and the living fraction in soil and root material for unknown reasons.  相似文献   

9.
Organically managed farm areas in Denmark are expanding and typically contain clover-grass leys that are known to stimulate accumulation of organic matter in arable soils. We compared the C allocation to roots and soil from clover and grass, and determined for how long assimilated C remained mobile in these plant-soil systems. Pots with perennial ryegrass, white clover or a mixture of both were pulse-labelled with 14CO2, and harvested for analyses after 4, 11, 20, and 30 days. 14C losses by shoot respiration stopped within 4 days and after this incubation time the input of assimilated 14C to below-ground compartments was greater in grass (52%) than in clover (36%). During the next 4 weeks, 14C allocation below ground increased in grass (up to 75% at day 30), but remained constant in clover (37% at day 30). In the grass/clover mixture, the below-ground fraction increased to 50% at day 30. In clover, 14C was incorporated sooner into stable plant and soil pools and less was released in rhizodeposition than in grass. This was confirmed by the 14C in the soil microbial biomass that decreased fastest in the clover treatment. Root-derived C compounds of clover probably decomposed faster than those from grass. The larger size and specific activity of the soil microbial biomass in the mixed treatment suggested a stimulating effect of the two plant species on substrate utilisation by the microbial community. This study showed that a 2- to 3-week distribution period is needed before sampling for quantitative estimates of C allocation.  相似文献   

10.
Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.  相似文献   

11.
To accurately predict the potential environmental benefits of energy crops, the sequestration of carbon in soil needs to be quantified. The aim of this study was to investigate the mineralisation rate of the perennial C4 grass Miscanthus giganteus and Miscanthus-derived soil organic matter under contrasting nitrogen supply. Soils were collected from sites where Miscanthus had been grown for 11 and 18 years, respectively, and where a C3-grass (Lolium spp.) had been grown for 7 years. The soils were incubated for 4 months at two levels of soil inorganic nitrogen with or without dead root material of Miscanthus.Addition of root material (residues) increased carbon mineralisation of indigenous organic matter when no nitrogen was added. Added inorganic nitrogen decreased carbon mineralisation in all soils. Nitrogen addition did not affect carbon mineralisation of the residues. Using the 13C fraction to calculate the proportion of respiratory CO2 derived from Miscanthus showed that nitrogen addition decreased carbon mineralisation in soils, but it did not affect carbon mineralisation of the residues. Nitrogen mineralisation was highest in the C3 grass soil without added residues. Nitrification decreased pH, especially in the treatments where nitrogen was added. The Miscanthus-derived organic matter is at least as stable as C3 grassland-derived organic matter. Furthermore, the turnover time of the organic matter increases with time under Miscanthus cultivation.The CENTURY soil organic matter sub-model was used to simulate the organic matter decomposition in the experiment. Carbon mineralisation was accurately simulated but there were unexplained discrepancies in the simulation of the δ13C in the respiration from the treatment with residues. The δ13C in respiration did not decrease with time as predicted, indicating that lignin accumulation did not influence the measurements.  相似文献   

12.
The introduction of N2-fixing white clover (Trifolium repens) in grassland is a management measure that may contribute to sustainable grassland systems by making them less dependent on inorganic fertilizers. However, little is known about the impact of this measure on soil biota and ecosystem services. We investigated earthworms, nematodes, bacteria and fungi in an experiment in which white clover-only and a mixture of grass and white clover without fertilization were compared with grass-only with and without fertilization.In comparison with grass-only, white clover-only had a lower total root biomass and a lower C/N-ratio in the above- and below-ground plant biomass. These plant characteristics resulted in a lower bacterial biomass, a lower fungal biomass, a higher proportion of bacterivorous nematode dauerlarvae, a lesser proportion of herbivorous nematodes and a greater abundance of earthworms in clover-only.The quantity and quality (C/N-ratio) of the above- and below-ground plant biomass in the mixture of grass and white clover (20–30% clover in the DM) was comparable with grass fertilized with 150 kg N ha−1 of inorganic fertilizer. Differences between these treatments might show specific clover effects in the grass–clover mixture on soil biota other than quantity and C/N-ratio of the litter. However, the only differences were a higher proportion of bacterivorous nematode dauerlarvae and a different nematode community composition in grass–clover.The soil structure in white clover-only showed a higher proportion of angular blocky elements, a lower penetration resistance, a higher number of earthworm burrows, a higher potential N-mineralization and respiration than the soil in grass-only. This suggests that clover stimulates the ecosystem services of water infiltration and supply of nutrients, but is less conducive to soil structure maintenance. The grass–clover mixture differed from grass-only in a higher respiration and from clover-only in a higher percentage of soil crumbs. We suggest that when clover is introduced in grassland to reduce the reliance on inorganic fertilizer, the mixture of grass and clover maintains the positive impact of grass roots on soil structure and increases the supply of nutrients via the soil food web. Thus, a grass–clover mixture combines the agronomic benefits of the two plant types.  相似文献   

13.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms.  相似文献   

14.
Lasiurus sindicus is a highly nutritive, drought tolerant, perennial grass, endemic to the Thar Desert of Rajasthan, India. In order to characterize the diversity of bacteria associated with roots of this grass that had survived severe drought stress, 16S-rRNA gene clone libraries were established from RT-PCR amplified products of the total RNA extracted from the washed roots and rhizosphere soil samples. Eight major bacterial taxa were identified in a total of 121 16S-rRNA gene clones. The majority of sequences belonged to Gram-positive bacteria, Actinobacteria being the most predominant ones, closely followed by Firmicutes. Most of the sequences showed similarity with sequences from cultivated bacteria or uncultivated environmental clones associated with arid, semi-arid environments, cold deserts and contaminated soils. PCR amplification of nifH genes using total DNA as template produced a total of 48 nifH clones from the rhizosphere soil and root samples and revealed a predominance of nifH sequences closely affiliated to Pseudomonas pseudoalcaligenes, isolated in a previous study from root samples of Lasiurus sindicus. Some nifH sequences showed close similarity to cultivated diazotrophs like Azospirillum brasilense, Rhizobium sp., and a variety of uncultured nitrogen fixing bacteria. Thus, this study provides us with evidence that L. sindicus harbors a diversity of bacteria with potential for nitrogen fixation.  相似文献   

15.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

16.
The phytomeliorative efficiency of different groups of perennial herbs was studied. The agrophysical properties of soils under natural grasses (the feather grasses Stipa pennata, S. zalesskii, and S. Lessingiana; the fescue grass Festuca pseudovina; and quack grass), sawn herbs (awnless brome, crested wheat grass, purple alfalfa, the holy clover Onobrychis sibirica, the galega Galega orientalis, and yellow sweet clover), and cereal crops (winter rye and spring wheat) were compared. The formation of the aboveground and underground phytomass and the influence of phytomeliorative herbs on the aggregate state of leached, ordinary, and southern chernozems in the Transural part of Bashkortostan were analyzed.  相似文献   

17.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

18.
Two microcosm experiments were conducted to study the role of extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) in establishment and growth of tree species used for revegetation in anthropogenic substrates. Inoculated or non-inoculated Acer pseudoplatanus, Alnus glutinosa or Salix purpurea seedlings were grown with Calamagrostis epigejos (a grass spontaneously colonising degraded ecosystems) in two substrates (fly ash and coal mine spoil) either in direct root contact or in rhizoboxes with interaction only via ERM network. In both experiments, inoculation with AMF mostly had a positive effect on the growth of trees and increased the aggregation of fly ash. When plants grew in direct root-to-root contact, grass presence negatively affected tree growth, but it significantly improved mycorrhizal development (colonization of tree seedlings, spore number and ERM length). When grass and tree roots interacted via the ERM network, tree seedlings were successfully colonised by the ERM spreading from the C. epigejos roots. Mechanical disturbance of the ERM links between plants reduced AMF development and tree height in both substrates, but tree shoot biomass was not affected. In fly ash, inoculated, non-disturbed treatments showed significant transfer of 32P from the grass to the tree seedlings. It can be concluded that roots of A. pseudoplatanus, A. glutinosa or S. purpurea seedlings can be colonised from the ERM network radiating from quickly growing grasses, which can act as important agents for AMF distribution and facilitate mycorrhization of planted trees. In particular for willow, grass seems to be an essential nurse plant to achieve successful root colonisation.  相似文献   

19.
Changes in climate or forest management practices leading to increased litter production will most likely cause increased leaching rates of dissolved organic carbon (DOC) from the O horizon. The rhizosphere is often assumed to have a large carbon flux associated with root turnover and exudation. However, little has been done to quantify the amount of DOC originating from root litter. We studied decomposition of fine root and needle litter of Norway spruce (Picea abies) through a combined incubation and leaching experiment in the laboratory using five different litter types: fresh needle litter, aged needles from the litter layer, fresh and dead roots from mineral soil samples, and seven-year-old roots from a previous litterbag study. After respiration measurements, the samples were percolated with artificial throughfall water and DOC and UV absorbance were measured in the leachate. Mineralisation of dissolved organic matter in the leachate and sorption of DOC to ferrihydrite were determined as a measure of DOC ability to be stabilised by iron (hydr)oxide surfaces.The mineralisation rate and DOC production rate of root samples were always lower than that of needle samples. However, root and needle derived dissolved organic matter (DOM) were similar in terms of aromaticity, as indicated by their specific UV absorbance, and ability to be sorbed by ferrihydrite. For seven-year-old roots, a significantly higher fraction of carbon was lost as DOC (30%) than for younger roots (20%). Furthermore, DOM from old roots bound more strongly to ferrihydrite and is mineralised at a lower rate than DOC from younger roots, suggesting that roots at late stages of decomposition, although a small fraction of total litter, significantly contribute to carbon build-up in mineral soils. The slower decomposition rate of roots compared with needles must be taken into account when modelling litter decomposition.  相似文献   

20.
Identification of plant attributes that improve the performance of tropical forage ecotypes when grown as monocultures or as grass+legume associations in low fertility acid soils will assist the development of improved forage plants and pasture management technology. The present work compared the shoot and root growth responses of four tropical forages: one grass and three legumes. The forages were grown in monoculture or in grass+legume associations at different levels of soil phosphate. Two infertile acid soils, both Oxisols, were used: one sandy loam and one clay loam. They were amended with soluble phosphate at rates ranging from 0 to 50 kg ha‐1. The forages, Brachiaria dictyoneura (grass), Arachis pintoi, Stylosanthes capitata and Centrosema acutifolium (legumes), were grown in large plastic containers (40 kg of soil per container) in the glasshouse. After 80 days of growth, shoot and root biomass production, dry matter partitioning, leaf area production, total chlorophyll content in leaves, soluble protein in leaves, root length, and proportion of legume roots in grass+legume associations were determined. The grass, grown either in monoculture or in association responded more to phosphorus supply than did the three legumes in terms of both shoot and root production. At 50 kg ha‐1 of phosphorus, the grass's yield per plant in association was greatly enhanced, compared with that of grass in monoculture. The increase in size of grass plants in association compared with that in monoculture may have been caused by reduced competition from the legumes. These differences in shoot and root growth responses to phosphorus supply in acid soils between the grass and the three legumes may have important implications for improving legume persistence in grass+legume associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号