首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the effects of land-use abandonment on the soil decomposer community of two grazed Mediterranean ecosystems (an annual grassland with scattered holm oaks and a low-density shrubland). To test the influence of grazing abandonment, a set of plots within each site were fenced and kept undisturbed during 4–5 years, during which above-ground plant community structure was monitored. After that, soil samples were collected from grazed and abandoned plots corresponding to the three different soil conditions: away from (“grass”) and below tree canopies (“oak”) within the annual grassland, and from the shrubland (“shrub”). Soil samples were split into two different layers (0–5 and 5–15 cm) and then analyzed for saprotrophic fungal (acetate into ergosterol incorporation) and bacterial (leucine incorporation) growth rates. Ergosterol content (as a fungal biomass estimator) and a standard set of soil chemistry variables were also measured. After 5 years of grazing exclusion, saprotrophic fungal growth rate clearly increased in both grass and oak surface layers whereas bacterial growth rate was not altered. This translated into significantly higher fungal-to-bacterial (F/B) growth rate ratios within the ungrazed plots. Similar trends were observed for the shrub soils after 4 years of exclusion. On the contrary, abandonment of grazing had negligible effects on the ergosterol content, as well as on the soil chemical variables (soil organic carbon, total N, C/N ratio, and pH), in all the three soil conditions assessed. These results indicated a shift toward a more fungal-dominated decomposer activity in soils following cessation of grazing and highlighted the sensitivity of the microbial growth rate parameters to changes associated with land use. Moreover, there were evidences of a faster fungal biomass turnover in the ungrazed plots, which would reflect an accelerated, though not bigger, fungal channel in soil organic matter mineralization.  相似文献   

2.
In arid and semi-arid ecosystems, salinization is a major threat to the productivity of agricultural land. While the influence of other physical and chemical environmental factors on decomposer microorganisms have been intensively studied in soil, the influence of salinity has been less exhaustively assessed. We investigated the influence of soil salinity on soil bacterial communities in soils covering a range of salt levels. We assessed tolerance of the bacterial communities from Libyan agricultural soils forming a salinity gradient to salt (NaCl), by extracting bacterial communities and instantaneously monitoring the concentration-response to added NaCl with the Leucine incorporation technique for bacterial growth. To maximise our ability to detect differences in bacterial salt tolerance between the soils, we also repeated the assessment of bacterial growth tolerance after one month incubation with 1 or 2% added organic matter additions to stimulate microbial growth levels. We could establish clear concentration-response relationships between bacterial growth and soil salinity, demonstrating an accurate assessment of bacterial tolerance. The in situ soil salinity in the studied soils ranged between 0.64 and 2.73 mM Na (electrical conductivities of 0.74-4.12 mS cm−1; cation exchange capacities of 20-37 mmolc kg−1) and the bacterial tolerance indicated by the concentration inhibiting 50% of the bacterial growth (EC50) varied between 30 and 100 mM Na or between electrical conductivities of 3.0 and 10.7 mS cm−1. There was no relationship between in situ soil salinity and the salt tolerance of the soil bacterial communities. Our results suggest that soil salinity was not a decisive factor for bacterial growth, and thus for structuring the decomposer community, in the studied soils.  相似文献   

3.
Following resource extraction by surface mining in the oil sands region of northeastern Alberta, sites are reclaimed by reconstructing soils using a variety of salvaged organic and mineral materials, and planted to native tree species. This study assessed the influence of three distinct stand types (Populus tremuloides Michx., Pinus banksiana Lamb., and Picea glauca (Moench) Voss) on forest floor development (thickness, morphology, total carbon and nitrogen contents), soil organic matter composition, and associated soil microbial communities. Forest floor and top mineral soil (0–5 cm) samples were collected from 32 sites reclaimed 16–33 years ago. Soil organic matter composition was measured using ramped-cross-polarization 13C nuclear magnetic resonance, and microbial communities were characterized using phospholipid fatty acid analysis. Morphological characteristics indicated little mesofaunal or fungal activities within the forest floors. Stands dominated by P. tremuloides fostered more rapid forest floor development than the coniferous (P. banksiana and P. glauca) stands, and showed a significant increase in forest floor thickness with time since reclamation. Within the P. tremuloides stands, forest floor development was accompanied by temporal changes in soil organic matter composition that reflected inputs from the canopy. Soil microbial community composition differed among reclamation treatments of the reconstructed soils, specifically as a function of their subsoil mineral textures, when canopy cover was below 30%. Above 30%, significant differences became apparent among stand types. Taken together, our results document how canopy cover and stand type were both important factors for the reestablishment of plant–soil relationships at these sites. Furthermore, achieving a canopy cover of 30% emerged as a critical threshold point during soil reclamation.  相似文献   

4.
Soil tillage practices affect the soil microbial community in various ways, with possible consequences for nitrogen (N) losses, plant growth and soil organic carbon (C) sequestration. As microbes affect soil organic matter (SOM) dynamics largely through their activity, their impact may not be deduced from biomass measurements alone. Moreover, residual microbial tissue is thought to facilitate SOM stabilization, and to provide a long term integrated measure of effects on the microorganisms. In this study, we therefore compared the effect of reduced (RT) and conventional tillage (CT) on the biomass, growth rate and residues of the major microbial decomposer groups fungi and bacteria. Soil samples were collected at two depths (0-5 cm and 5-20 cm) from plots in an Irish winter wheat field that were exposed to either conventional or shallow non-inversion tillage for 7 growing seasons. Total soil fungal and bacterial biomasses were estimated using epifluorescence microscopy. To separate between biomass of saprophytic fungi and arbuscular mycorrhizae, samples were analyzed for ergosterol and phospholipid fatty acid (PLFA) biomarkers. Growth rates of saprophytic fungi were determined by [14C]acetate-in-ergosterol incorporation, whereas bacterial growth rates were determined by the incorporation of 3H-leucine in bacterial proteins. Finally, soil contents of fungal and bacterial residues were estimated by quantifying microbial derived amino sugars. Reduced tillage increased the total biomass of both bacteria and fungi in the 0-5 cm soil layer to a similar extent. Both ergosterol and PLFA analyses indicated that RT increased biomass of saprophytic fungi in the 0-5 cm soil layer. In contrast, RT increased the biomass of arbuscular mycorrhizae as well as its contribution to the total fungal biomass across the whole plough layer. Growth rates of both saprotrophic fungi and bacteria on the other hand were not affected by soil tillage, possibly indicating a decreased turnover rate of soil microbial biomass under RT. Moreover, RT did not affect the proportion of microbial residues that were derived from fungi. In summary, our results suggest that RT can promote soil C storage without increasing the role of saprophytic fungi in SOM dynamics relative to that of bacteria.  相似文献   

5.
One of the most influential factors determining the growth and composition of soil bacterial communities is pH. However, soil pH is often correlated with many other factors, including nutrient availability and plant community, and causality among factors is not easily determined. If soil pH is directly influencing the bacterial community, this must lead to a bacterial community growth optimised for the in situ pH. Using one set of Iberian soils (46 soils covering pH 4.2-7.3) and one set of UK grassland soils (16 soils covering pH 3.3-7.5) we measured the pH-optima for the growth of bacterial communities. Bacterial growth was estimated by the leucine incorporation method. The pH-optima for bacterial growth were positively correlated with soil pH, demonstrating its direct influence on the soil bacterial community. We found that the pH from a water extraction better matched the bacterial growth optimum compared with salt extractions of soil. Furthermore, we also showed a more subtle pattern between bacterial pH growth optima and soil pH. While closely matched at neutral pHs, pH-optima became higher than the in situ pH in more acid soils, resulting in a difference of about one pH-unit at the low-pH end. We propose that an explanation for the pattern is an interaction between increasing overall bacterial growth with higher pHs and the unimodal pH-response for growth of bacterial communities.  相似文献   

6.
The biodegradability of dissolved organic carbon (DOC) in different fractions from the forest floor was studied. Soil leachate (SL, the soil solution in macropores which is freely drained from forest floor after rainfall), the soil matrix solution (SMS, the soil solution in meso-/micropores of the soil matrix), and soil water extracts (SWE) from two different beech forest floors were compared. Zero-tension and tension lysimeters were used to collect SL and SMS, respectively. Loss of DOC (during 21 days) and respiration of CO2-C (during 7 days) were used as conventional measures of the availability of DOC. Bacterial production, measured using the leucine incorporation technique, and bacterial growth efficiency were also estimated. All methods were used to study differences in biodegradability between plots with and without ground flora (Deschampsia flexuosa or Anemone nemorosa) and different type of forest floor (with an organic (O) horizon or a mull (A) horizon). There were no differences in bioavailability of DOC from soil solutions extracted from plots with and without ground flora. The bioavailability of DOC in the different collected soil solutions varied, however. DOC in SWE was the most available, with a mean of 39% of DOC-loss in 21 days, and 18% of DOC being respired in 7 days. DOC in soil matrix solution was the least available of the soil solutions (7% respired), significantly less than DOC in soil leachate (11% respired). The methods measuring biodegradation of DOC, DOC-loss and CO2-C respiration gave similar results and were comparable to bacterial production and bacterial growth efficiency, with the exception of SWE from the O-horizon at the D. flexuosa site, which had low bacterial production and bacterial growth efficiency, indicating a limitation of the bacterial growth. This study is one of the first to use bacterial production and bacterial growth efficiency for measuring bioavailability in terrestrial environments, giving an extra dimension for the process of biodegradation of DOC.  相似文献   

7.
The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from the surrounding non-mat soils. In this study, we examined the fungal and bacterial communities associated with Piloderma mat and non-mat soils. Each mat and non-mat area was repeatedly sampled at four times throughout the year. Characterization of the mat activity and community was achieved using a combination of N-acetylglucosaminidase (NAGase) enzyme assays, and molecular analysis of fungal and bacterial communities using T-RFLP profiles, clone libraries, and quantitative PCR. Piloderma mats had consistently greater NAGase activity across all dates, although the magnitude of the difference varied by season. Furthermore, we found distinct fungal and bacterial communities associated with the Piloderma mats, yet the size of the microbial populations differed little between the mat and non-mat soils. Significant temporal variation was seen in the NAGase activity and in the sizes of the fungal and bacterial populations, but the community composition remained stable through time. Our results demonstrate the presence of two distinct microbial communities occupying the forest floor of Douglas-fir stands, whose populations and activities fluctuate seasonally but with little change in composition, which appears to be related to the physiochemical nature of mat and non-mat habitats.  相似文献   

8.
The intensity of a fire is an important factor determining the recovery of soil microorganisms after a forest fire, since it can alter the quality and quantity of carbon sources. Recovery of the microbial community was studied in a Mediterranean pine forest soil subjected to different temperatures to simulate the short-term effects of fire intensity on bacterial and fungal growth, estimated using leucine incorporation for bacteria and acetate incorporation into ergosterol for fungi. Soil samples were heated for 15 min at 50, 80, 120, 200, 300, 400 and 500 °C. After inoculation with fresh soil, and adding water to achieve 60% WHC, the soils were incubated at 20 °C for 21 days. Bacterial growth was initially inhibited in the samples heated above 50 °C (totally inhibited ≥ 200 °C), but recovered within days to levels much higher than the control, except for the samples heated at 500 °C, where growth remained low throughout the incubation period due to the destruction of most of the organic matter. After the first week of incubation, the bacterial response decreased to values close to, but still above, that of the control. Samples heated at 200 °C showed the highest cumulative bacterial growth. Fungal growth was initially lower than in the control in all the heated samples (totally inhibited ≥ 200 °C). Fungal growth recovered slowly during incubation in soils heated at ≤ 300 °C, but the cumulative growth in heated soils did not exceed that in the control. No fungal growth was observed in samples heated at the two highest temperatures. Soil respiration was initially totally inhibited in soil heated at ≥ 200 °C, but recovered rapidly in all soils; the highest respiration being observed already 1 day after inoculation. This is the first time both fungal and bacterial growth has been directly estimated in heated soils. High soil pH favouring bacteria can explain these results, but the differences in fungal and bacterial responses suggest a competitive interaction between these groups.  相似文献   

9.
How land-application of digestate sourced from anaerobic digestion (AD) of animal waste influences the functioning of a mixed pasture agroecosystem is not well characterised, particularly with regard to the response of the actively growing microbial community. We studied the impact of the liquid AD digestate on the decomposer community in two different soils, seeded with two different common grassland crops; a mixture of either grass or grass/clover in a greenhouse experiment. We studied bacterial (leucine incorporation into bacteria) and fungal (acetate incorporation into ergosterol) growth responses to AD cattle slurry digestate, undigested cattle slurry, mineral fertiliser (NPK and N) added at a rate equivalent to 150?kg?N?ha?1, and a no-fertiliser control treatment. Differences in fungal and bacterial growth were evident between the soil and sward types. However, the fertilisers consistently stimulated a higher bacterial growth than the no-fertiliser control, and liquid digestate resulted in a level of bacterial growth higher or equal to that of mineral fertiliser, whilst undigested slurry resulted in lower bacterial growth. These fertiliser effects on bacterial growth mirrored the effects on plant growth. In contrast, the fungal community responded only marginally to fertiliser treatments. We conclude that the application of digestate stimulates the bacterial decomposer community in a similar way to that of mineral fertilisers. Our results suggest that mineral fertiliser can be exchanged for liquid digestate with limited impact on the actively growing soil microbial community that, in turn, regulate important soil processes including nutrient cycling in agricultural soils.  相似文献   

10.
Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and southeastern USA. Our hypothesis was that woody residues would preferentially stimulate soil fungal biomass, resulting in improved C use efficiency and greater soil C storage. Harvest slash at loblolly pine sites in South Carolina was masticated (chipped) and either (1) retained on the soil surface, (2) tilled to a soil depth of 40 cm, or (3) tilled using at least twice the mass of organics. At comparative sites in California, live woody fuels in ponderosa pine stands were (1) masticated and surface applied, (2) masticated and tilled, or (3) left untreated. Sites with clayey and sandy soils were compared in each region, with residue additions ranging from 20 to 207 Mg ha−1. Total and active fungal biomass were not strongly affected by residue incorporation despite the high input of organics. Limited response was also found for total and active bacterial biomass. As a consequence, fungal:bacterial (F:B) biomass ratios were similar among treatments at each site. Total soil C was elevated at one California site following residue incorporation, yet was significantly lower compared to surface-applied residues at both loblolly pine sites, presumably due to the oxidative effects of tilling on soil organic matter. The findings demonstrated an inconsequential effect of residue incorporation on fungal and bacterial biomass and suggest a limited potential of such practices to enhance long-term soil C storage in these forests.  相似文献   

11.
Lack of carbon has been assumed to be the most common limiting factor for bacterial growth in soil, although there are reports of limitation by other nutrients, e.g. nitrogen and phosphorus. We have studied which nutrient(s) limited instantaneous growth rates of bacteria in 28 Swedish soils using the thymidine or leucine incorporation technique to measure increased growth rate after adding different combinations of organic carbon (glucose), nitrogen and phosphorus. The soils ranged in pH between 3.1 and 8.9, in organic matter content between 1% and 91% and in soil C/N ratio between 10 and 28. We also tested the effect of adding different amounts of carbon on the bacterial change in growth rate for two soils with different organic matter content. We found that bacterial growth in most of the 28 soils was limited by a lack of carbon, indicated by an increased bacterial growth rate 48 h after adding glucose. In some soils, adding carbon together with nitrogen increased the bacterial growth rates even further. In three soils no effects were seen upon adding nutrients separately, but adding carbon and nitrogen together increased bacterial growth rates. Nitrogen addition tended to decrease bacterial growth rates, while phosphorus addition had little effect in most soils. No correlations were found between the soil C/N ratio, ammonium or nitrate content in soil and bacterial growth limitation, indicating that even soils with a C/N ratio of 28 could be carbon limited. Although the interpretation of the effects of a single limiting nutrient was in most cases straightforward, an interaction between the amount of carbon added and the organic matter content of the soil confounded the interpretation of the extent of a second limiting nutrient.  相似文献   

12.
Drained organic forest soils represent a hotspot for nitrous oxide (N2O) emissions, which are directly related to soil fertility, with generally higher emissions from N-rich soils. Highest N2O emissions have been observed in organic forest soils with low pH. The mechanisms for these high emissions are not fully understood. Therefore, the present study was conducted to gain a deeper insight into the underlying mechanisms that drive high N2O emissions from acid soils. Specifically, we investigated the microbial community structure, by phospholipid fatty acid analysis, along a natural pH gradient in an organic forest soil combined with measurements of physico-chemical soil properties. These were then statistically related to site-specific estimates of annual N2O emissions along the same natural pH gradient. Our results indicate that acidic locations with high N2O emissions had a microbial community with an increased fungal dominance. This finding points to the importance of fungi for N2O emissions from acid soils. This may either be directly via fungal N2O production or indirectly via the effect of fungi on the N2O production by other microorganisms (nitrifiers and denitrifiers). The latter may be due to fungal mediated N mineralization, providing substrate for N2O production, or by creating favourable conditions for the bacterial denitrifier community. Therefore, we conclude that enhanced N2O emission from acid forest soil is related, in addition to the known inhibitory effect of low pH on bacterial N2O reduction, to a soil microbial community with increased fungal dominance. Further studies are needed to reveal the exact mechanisms.  相似文献   

13.
Significant effects of two fractions of alkali-extractable soil organic matter (AEOM) extracted from three different soils (agricultural soil, soil from deciduous forest, soil from spruce monoculture) on mycelial growth of 17 isolates of ectomycorrhizal fungi were observed. Growth of Lactarius deterrimus, Meliniomyces bicolor and one of the isolates of Leccinum aurantiacum was significantly stimulated by acid-insoluble fraction extracted from all three soils. The stimulatory effects were frequent but inhibition of mycelial growth of some isolates was also observed. The fungal response to the presence of the organic extract in the nutrient medium was isolate-specific rather than species-specific. Organic matter extracted from different source soils affected differently the mycelial growth, the largest number of stimulatory effects being observed in an experiment where the extract was richest in trace elements Zn and Cu. At the same time, the observed stimulatory effects were not attributable to increased concentrations of trace elements in the nutrient medium. The results indicate that soil may be used as a source of extractable organic fractions which, when used as a cultivation medium additive, may significantly improve the growth of responsive fungal isolates. Under natural conditions, AEOM (traditionally designated humic substances) represent a potential factor affecting the composition of cenosis of ectomycorrhizal fungi in soil.  相似文献   

14.
Soil pH is one of the most influential variables in soil, and is a powerful factor in influencing the size, activity and community structure of the soil microbial community. It was previously shown in a century old artificial pH gradient in an arable soil (pH 4.0-8.3) that bacterial growth is positively related to pH, while fungal growth increases with decreasing pH. In an attempt to elucidate some of the mechanisms for this, plant material that especially promotes fungal growth (straw) or bacterial growth (alfalfa) was added to soil samples of the pH gradient in 5-day laboratory incubation experiments. Also, bacterial growth was specifically inhibited by applying a selective bacterial growth inhibitor (bronopol) along the entire pH gradient to investigate if competitive interaction caused the shift in the decomposer community along the gradient. Straw benefited fungal growth relatively more than bacterial, and vice versa for alfalfa. The general pattern of a shift in fungal:bacterial growth with pH was, however, unaffected by substrate additions, indicating that lack of a suitable substrate was not the cause of the pH effect on the microbial community. In response to the bacterial growth inhibition by bronopol, there was stimulation of fungal growth up to pH 7, but not beyond, both for alfalfa and straw addition. However, the accumulation of ergosterol (an indicator of fungal biomass) during the incubation period after adding alfalfa increased at all pHs, indicating that fungal growth had been high at some time during the 5-day incubation following joint addition of alfalfa and bronopol. This was corroborated in a time-series experiment. In conclusion, the low fungal growth at high pH in an arable soil was caused to a large extent by bacterial competition, and not substrate limitation.  相似文献   

15.
Laccases- or laccase-like multicopper oxidases (LMCO) catalyze the oxidation of various substrates, such as phenols, diamines and metals, coupled with the reduction of molecular oxygen to water. Compared to studies on function and diversity of LMCO in plants and fungi, little is known about this enzyme type in bacteria and especially on their possible implication in degradation of organic matter in soils. This study presents a molecular investigation of the diversity and distribution of bacterial LMCO genes among three upper horizons of a forest Cambisol and in a grassland Cambisol. Some culture strains of soil bacteria were also analyzed at the molecular level and for their capability to oxidize naturally occurring 2,6-dimethoxyphenol, a LMCO substrate. A high LMCO gene diversity was found in the Cambisol soil samples with 16 distinct sequence type clades, of which approximately one half was not matching with any reference sequence of known bacteria. The highest richness of bacterial LMCO genes was observed in the organic horizon of the forest soil, which is concomitant with a previous analysis of the diversity of fungal laccase genes and corresponding soil laccase activity. Some clusters of sequence types showed a specific distribution in one of the soils or in horizons, while others appeared more ubiquist. Multiple bacterial LMCO genes were described in Agromyces salentinus and Sinorhizobium morelense, what so far was only known from fungi.  相似文献   

16.
Litter decomposition and changes in oribatid mite community composition were studied for 2 years in litterbags collected from arboreal organic matter accumulations (canopy suspended soils) and forest floors associated with western redcedar trees on Vancouver Island, British Columbia. We tested the hypotheses that lower rates of mass loss, higher nutrient levels, and different patterns of oribatid mite richness and abundance in decomposing western redcedar litter would be observed in litterbags associated with canopy suspended soils compared to forest floors. Decomposition, measured by mass loss of cedar litter in litterbags, was not significantly different in canopy and forest floor habitats, although reduced in the canopy. Abundance and richness of oribatid mites inhabiting litterbags were significantly greater on the forest floor compared to the canopy suspended soils. Canopy suspended soils had higher levels of total nitrogen, available phosphorus and potassium than the forest floor, but moisture content was significantly lower in the suspended soils. Higher nutrient levels in the canopy system are attributed to differences in coarse woody debris input (but not foliar litter), combined with reduced nutrient uptake by roots and lower mobilisation rates of nutrients by detritivorous and fungivorous microarthropods. Moisture limitation in the canopy system possibly contributed to lower mass loss in litterbags, and lower abundance and richness of oribatid mites in litterbags placed on canopy suspended soils. Patterns of oribatid mite community composition were related to mite communities associated with the underlying substrate (forest floor or canopy suspended soil) which act as source pools for individuals colonising litterbags. Successional and seasonal trends in oribatid mite communities were confounded by moisture limitation at 24 months, particularly within the canopy habitat.  相似文献   

17.
Resource availability and limiting factors for bacterial growth during early stages of soil development (8-138 years) were studied along a chronosequence from the glacial forefield of the Damma glacier in the Swiss Alps. We determined bacterial growth (leucine incorporation) and we investigated which resource (C, N or P) limited bacterial growth in soils formed by the retreating glacier. The latter was determined by adding labile sources of C (glucose), N and P to soil samples and then measuring the bacterial growth response after a 40 h incubation period. Bacterial growth increased with increasing soil age in parallel with the build up of organic matter. However, lower bacterial growth, when standardized to the amount of organic C, was found with time since the glacier retreat, indicating decreasing availability of soil organic matter with soil age. Bacterial growth in older soils was limited by the lack of C. The bacteria were never found to be limited by only N, only P, or N + P. In the youngest soils, however, neither the addition of C, N nor P singly increased bacterial growth, while a combination of C and N did. Bacterial growth was relatively more limited by lack of N than P when the C limitation was alleviated, suggesting that N was the secondary limiting resource. The availability of N for bacterial growth increased with time, as seen by an increased bacterial growth response after adding only C in older soils. This study demonstrated that bacterial growth measurements can be used not only to indicate direct growth effects, but also as a rapid method to indicate changes in bacterial availability of nutrients during soil development.  相似文献   

18.
There are no methods at hand with a long and proven record for assessing the relative contribution of fungi and bacteria to decomposer activity in soil. Whereas a multitude of methods to determine fungal and bacterial biomass are available, activity assays traditionally relied on the substrate-induced respiration (SIR) inhibition approach. Here we compare fungal contribution to the microbial active biomass assessed by the SIR inhibition method with the contribution of fungal-feeding nematodes to the microbial-feeding nematode community. Four cultivation systems on the same soil that differ in carbon inputs with a factor two ranked exactly the same with the two methods. A conventionally farmed rotation with low organic input had the lowest fungal fraction, while three organically farmed soils ranked higher.  相似文献   

19.
Resource islands around woody plants are thought to define the structure and function of many semiarid and arid ecosystems, but their role in patterning of soil microbial communities remains largely unexamined in dry environments. This study examined soil resource distribution and associated fungal communities in two Allocasuarina luehmannii (buloke) remnants of semiarid north-western Victoria, Australia. These savannah-like woodlands are listed as endangered due to extensive clearing for agriculture. We used the DNA-based profiling technique T-RFLP and ordination-based statistical methods to compare fungal community compositions in surface soils from two remnants (located 1.6 km apart) and three sampling positions (beneath individual buloke canopies; grassy inter-canopy areas; and adjoining cleared paddocks). Resource island formation beneath buloke trees was clearly evident in soil physicochemical properties (e.g. threefold concentrations of total carbon and nitrogen in canopy versus non-canopy soils). This heterogeneity of resources was moderately correlated with soil fungal community compositions, which were distinct for each sampling position. We argue that fungal composition patterns reflected multiple roles of fungi in dryland ecosystems, namely: responses of saprotrophic fungi to tree organic matter inputs; specificity of ectomycorrhizal fungi to tree rooting zones; and fungal involvement in biological soil crusts that variably covered non-canopy soils. Our data did not indicate that buloke canopy areas were particular hotspots of soil fungal diversity, but that they increased landscape-level diversity by supporting a distinct suite of fungi. In addition, we provide evidence of phylogenetic differentiation of soil fungal communities between our two remnants, which adds to growing evidence of fungal genetic structure at localised scales. These findings highlight the importance of remnant trees in conserving both soil resources and microbial genetic diversity. In addition, evidence of differentiation of soil fungal phylogenetics between nearby but isolated remnants suggests that conserving soil fungal diversity requires conservation of host habitats over their entire (remaining) range, and indicates previously unseen consequences of tree loss from extensively cleared landscapes.  相似文献   

20.
《Geoderma》2005,124(3-4):349-361
We tested termite mound materials belonging to different feeding groups: Cubitermes (soil-feeder), Trinervitermes (grass-feeder) and Macrotermes (litter-feeder), as natural microbial inoculum to promote plant growth and increase nutrient supplies from soil organic matter and inorganic amendments (rock phosphate), through their effects on soil microorganisms (functional diversity of soil microflora, arbuscular mycorrhizal fungi, rhizobia, fluorescent pseudomonads, actinomycetes and saprophytic fungi). Experiments were made in a pot experiment with Acacia seyal, a leguminous tree abundant in West Africa, with a sandy soil amended or not with rock phosphate. Results indicated a stimulation of plant growth with Cubitermes and Trinervitermes mound powder (plant height and shoot biomass), similar to what was obtained with rock phosphate alone. Leaf content in N was also increased in the termite treatments (except in Macrotermes soil), whereas mycorrhizal colonization was inhibited as compared to the control. The development of saprophytic fungi was significantly higher in the soils amended with rock phosphate and this effect was hypothesized to be related to the production of large quantities of oxalic acid by fungal populations. The fluorescent pseudomonad populations notably increased in the soils dually amended with mound powders and rock phosphate, and this could be due to the fact that some species of this bacterial group are able to dissolve rock phosphate. The organic and inorganic amendments decreased the soil catabolic evenness in all the mound powder treatments. Among the mound materials tested, Cubitermes mound powder had the most promising effect, especially on SIR response to oxalate. It is concluded that soils amended both with rock phosphate and Cubitermes mound soil could promote the development of microbial communities, which could help to metabolize this compound and consequently enhance plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号