首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was carried out to understand whether fine root growth and N mineralization are synchronized in such a manner that helps to conserve N in the humid subtropical forest ecosystem, and to assess whether or not these processes are influenced by human disturbance. The study was conducted in two pairs of undisturbed and disturbed stands of subtropical humid forest in the Jaintia hill district of Meghalaya, northeast India. The amount of fine root (540–754 g m–2) and coarse root (307–387 g m–2) mass in the protected stands was higher than those recorded (fine root 422–466 g m–2, coarse root 247–305 g m–2) in the unprotected stands. The total annual root production was also higher in the protected stands (1,102–1,242 g m–2) than the unprotected stands (890–940 g m–2). The mean concentration of NH4+–N and NO3–N was higher in the protected stands than in the unprotected stands. The inorganic-N (NH4+–N and NO3–N) concentration was markedly high during the dry period and low during the wet period in all the stands. Inorganic-N concentration, nitrification and N mineralization rates were significantly (P<0.01) higher in the surface (0–10 cm) than the subsurface (10–20 cm) layer. The low and high N mineralization rates observed during the dry and wet periods, respectively, coincided with the lean and peak periods of fine root mass. Disturbance in the forests caused a reduction in fine root mass as well as in N mineralization.  相似文献   

2.
For forest ecosystems, the relationship between root biomass, root growth and soil nitrification is still debated. Following repeated findings of significant differences in soil nitrification beneath comparable stands at the Breuil experimental site, a reciprocal soil exchange experiment combining high (H)‐ and low (L)‐nitrifying stands was conducted to highlight the effect of tree root colonization on the control of nitrification. Soil percent nitrification and fine root biomass were measured in undisturbed and in transplanted soil cores after 16 and 28 months. In undisturbed soils, the fine root biomass varied by tree species and explained only 14% of the variation in percent nitrification. In transplanted soil cores, percent nitrification converged, at different rates, towards values close to those measured in the undisturbed soil at the receptor stands. On the one hand, percent nitrification increased rapidly in soil cores from L transferred to H, while soil core colonization by roots remained low during the study period. Soil cores might have been colonized by active nitrifiers from their new environment, or/and the activity of the nitrifiers originally present was less suppressed by root activity in their new environment. On the other hand, percent nitrification decreased progressively in soil cores from H transferred to L as root colonization increased. This suggests that root colonization reduced nitrifier population and activity. Our findings suggest that the often‐reported influence of forest species on soil nitrification is probably multifactorial but the tree root colonization contributes.  相似文献   

3.
The relationships between roots and soil communities are not well understood. We used the ingrowth-core method with L-, FH-, and M-layer substrates to investigate the relationships among soil organic carbon, fine root biomass, hyphal length and the numbers of soil microarthropods. The study was carried out in a temperate forest of the arbuscular mycorrhizal conifer, Chamaecyparis obtusa. The relationships among fine roots, fungi and soil microarthropods were different among soil substrates and faunal taxa. Soil carbon contents, fine root biomass, hyphal length and soil-microarthropod numbers were the highest in the FH-substrate, and the lowest in the M-substrate. For each substrate, the total numbers of soil microarthropods did not positively correlated with soil organic carbon. A positive correlation between fine root biomass and the soil microarthropod numbers was significant only in the M-substrate, but not in the L- and FH-substrates. In M-substrates, strong positive correlations were found between fine root biomass or hyphal length and Mesostigmata or Oribatida numbers, but Collembola numbers were not corelated. Further studies of the regulation mechanism of soil food web structures should note that the soil microarthropods have different responses to C sources according to soil conditions and trophic interactions.  相似文献   

4.
Competition between the roots of mature trees in mixed forests is not well understood because adequate methods for studying this interaction under field conditions are not yet available. We present a novel root chamber (size: 90×70×30 mm) that allows growth monitoring of individual tree fine roots in the soil while altering root competition situations experimentally. Fine roots of mature trees that were carefully uncovered from the soil were allowed to grow for several months in the chamber which contained soil material from the root's close proximity. Fine root increment was quantified by optical root length determination at the beginning and the end of the experiment. By placing individual fine roots of a tree species together with a second conspecific or allospecific root, the chamber allows one to simulate conditions of intra- and interspecific competition, and to test hypotheses on intensity and direction of root competition in the soil of mixed forests.We investigated the applicability of the root chamber in a mature beech–oak mixed forest in which beech is known to be a superior competitor above-ground. One-hundred and six chambers with different combinations of beech and oak fine roots were exposed in the soil for 180 or 438 d. In two-species chambers, which contained one beech and one oak root allowing for interspecific competition, beech fine roots grew significantly faster than oak roots. Furthermore, beech roots tended to show a higher growth rate in two-species chambers than in single-species chambers (two beech roots: intraspecific competition). In contrast, oak roots tended to grow slower when placed together with beech than when growing together with oak. By expressing the competitive strength of beech and oak roots with the relative competition intensity (RCI) index, evidence of asymmetric interspecific root competition in favour of beech was obtained.The potentials of this technique are related to the fact that replicated experiments with fine roots of adult trees can be conducted in the field; a certain artificiality, which is inherent to all rhizosphere experiments, represents the main limitation. From this study we conclude that while there are some limitations, in situ root chambers represent an important step towards the experimental analysis of root competition in forests.  相似文献   

5.
In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed and undisturbed habitats, frugivorous birds facilitate forest regeneration. This study focuses on the tolerance of a frugivorous bird community to anthropogenic habitat disturbance within the broader context of natural forest regeneration with conservation purposes. It was carried out in the tropical cloud forest of Costa Rica’s Talamanca Mountains. Bird community response and tolerance to habitat disturbance was assessed by comparing bird presence and densities along a disturbance gradient, ranging from open pastures to closed mature forests. Birds were censused along nine transects applying the variable width line transect procedure. Forty relevant frugivorous bird species were observed during 102 h of survey time. Densities were calculated for 33 species; nine species responded negatively to increasing level of disturbance and nine others positively. Results indicate that large frugivores are generally moderately tolerant to intermediate, but intolerant to severe habitat disturbance, and that tolerance is often higher for medium and small frugivores. It appears that moderately disturbed habitats in tropical cloud forests are highly suitable for restoration through natural regeneration aided by frugivorous birds. Due to a lack of large forest seed dispersers, severely disturbed habitats appear less suitable.  相似文献   

6.
为揭示人工林群落在人为干扰下的退化状况,应用空间对比法研究了放牧干扰对黄土高原人工油松林下土壤物理性状的影响。结果表明,随放牧干扰强度的增加,土壤中砂粒含量增加,黏粒含量下降,土壤出现砂化趋势。放牧干扰下土壤容重增加了0.09~0.39g/cm^3。随放牧干扰强度的增加,土壤总孔隙、毛管孔隙和非毛管孔隙呈大幅下降的趋势,土壤持水量、含水量、入渗速率和导水率降低。重度干扰和中度干扰下土壤持水量、含水量与无放牧干扰时相比显著降低。随放牧干扰强度的增加,初渗率和稳渗速率下降,饱和导水率也随之下降。  相似文献   

7.
To understand the spatial and temporal dynamics of soil microbial biomass and its role in soil organic matter and nutrient flux in disturbed tropical wet-evergreen forests, we determined soil microbial biomass C, N and P at two soil depths (0–15 and 15–30 cm), along a disturbance gradient in Arunachal Pradesh, northeastern India. Disturbance resulted in considerable increase in air temperature and light intensity in the forest and decline in the soil nutrients concentration, which affected the growth of microbial populations and soil microbial biomass. There were significant correlations between bacterial and fungal populations and microbial biomass C, N and P. Soil microbial population was higher in the undisturbed (UD) forest stand than the disturbed forest stands during post-monsoon and less during rainy season due to heavy rainfall. Greater demand for nutrients by plants during rainy season limited the availability of nutrients to soil microbes and therefore, low microbial biomass C, N and P. Microbial biomass was negatively correlated with soil temperature and pH in all the forest stands. However, there were significant positive relationships among microbial biomass C, N and P. Percentage contribution of microbial C to soil organic C was higher in UD forest, whereas percentage contribution of microbial biomass N and P to total N and total P was higher in the moderately disturbed site than in the highly disturbed (HD) site. These results reveal that the nutrient retention by soil microbial biomass was greater in the selective logged stand and would help in the regeneration of the forest upon protection. On the other hand, the cultivated site (HD) that had the lowest labile fractions of soil organic matter may recover at a slower phase. Further, minimum and maximum microbial biomass C, N and P during rainy and winter seasons suggest the synchronization between nutrient demand for plant growth and nutrient retention in microbial biomass that would help in ecosystem recovery following disturbance.  相似文献   

8.
黄河三角洲盐碱地人工刺槐混交林细根分布研究   总被引:1,自引:0,他引:1  
为研究黄河三角洲盐碱地人工刺槐混交林及纯林细根空间分布格局,选取绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林,采用土柱法取样,从细根生物量密度、表面积密度、体积密度、根长密度等方面研究盐碱地中不同林分中树木细根的垂直分布情况,从细根生物量分析不同林木细根垂直分布情况,研究不同人工林细根分布差异及土壤影响因子。结果表明:绒毛白蜡刺槐混交林在细根的生物量、表面积、体积、根长等方面都显著高于臭椿刺槐混交林和刺槐纯林;绒毛白蜡刺槐混交林95.77%细根生物量分布在0~60 cm土层,臭椿刺槐混交林85.37%细根生物量分布在0~40 cm土层,而刺槐纯林的细根在土壤中分布则比较均匀,0~40 cm土层细根占生物量总量的66.38%。绒毛白蜡细根生物量最高,显著高于其他林木。绒毛白蜡刺槐混交林细根表面积密度、体积密度、根长密度显著高于刺槐纯林;臭椿刺槐混交林高于刺槐纯林,差异不显著。绒毛白蜡刺槐混交林、臭椿刺槐混交林细根总根尖数分别是刺槐纯林的2.34倍、1.23倍,总分叉数分别为刺槐纯林的6.15倍、1.66倍。绒毛白蜡刺槐混交林、臭椿刺槐混交林、刺槐纯林树木细根生物量与土壤有效磷、速效钾含量呈显著正相关关系;绒毛白蜡刺槐混交林细根生物量碱解氮、有机质含量呈极显著正相关关系。适当的混交模式在一定程度上提高了人工林细根生物量,增强植物吸收土壤营养物质的能力,混交使人工林在盐碱立地条件下适应能力提高。  相似文献   

9.
Tree cavities are proposed to limit populations and structure communities of cavity-nesting birds. Although the greatest diversity of cavity-nesting birds is found in tropical and subtropical moist forests, little is known about how tropical logging affects the abundance of cavities or cavity-nesting birds. We compared the abundance of cavities and cavity nests between primary and selectively-logged subtropical moist Atlantic forest in Argentina, and conducted the first before-after controlled nest-box addition experiment to determine whether nest sites limit the breeding density of cavity-nesting birds in tropical or subtropical moist forest. Visual inspection of 86 cavities identified through ground-surveys revealed that only 19% were suitable for nesting birds, suggesting that cavity abundance may be overestimated in the literature on tropical forests. Suitable cavities were found in fewer than 1% of 1156 trees <60 cm dbh but 20% of 20 trees >100 cm dbh. Logged forest had half the basal area of primary forest, one third the density of large trees, nine times fewer cavities suitable for nesting birds, and 17 times fewer active nests. When we added nest boxes, nesting density increased on treatment plots but not on control plots in both logged and primary forest, suggesting that cavity supply can limit nest density even in relatively undisturbed forest. This is the first experiment to show how reduced cavity supply in logged tropical forest can limit breeding density of cavity-nesting birds. International initiatives such as forest certification should promote tropical timber management strategies that conserve large live cavity-bearing trees.  相似文献   

10.
徐莹    邓磊   《水土保持研究》2023,30(3):181-187
[目的]揭示祁连山青海云杉中龄林细根分布与土壤环境的互作关系,明晰不同混交度下土壤养分对细根发育的贡献因子,为祁连山天然林抚育经营提供理论依据。[方法]采用根钻法对混交度为0,0.2,0.4,0.6的青海云杉中龄林进行细根取样,揭示不同土层细根形态特征,剖析了与土壤理化性质的关系。[结果]细根生物量集中分布在0—20 cm土层,0—20 cm的土层细根生物量密度、根长密度、根表面积密度、比根长、比表面积显著高于20—40 cm土层(p<0.05),混交度0.4的林分各土层细根形态指标最大。4种混交度林分各土层中全氮含量、全磷含量、速效钾含量、有机质含量随土层深度的增加呈降低趋势,且各土层均以混交度0.4为最高。细根的总生物量密度、根长密度、根表面积密度、比根长、比表面积与0—40 cm土层中土壤全氮、全磷、碱解氮、速效磷、有机质、速效钾含量呈正相关,与全钾呈负相关关系。[结论]细根生物量密度变化主要受土壤全氮含量的影响,混交度0.4的青海云杉中龄林有较强的细根贡献和较好土壤肥力,更有利于群落稳定效益的发挥。  相似文献   

11.
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests. In order to examine how above-ground litter inputs affect soil carbon (C), nitrogen (N) and phosphorus (P) in a temperate deciduous forest, we studied a 14-year-old small-scale litter manipulation experiment that included control, litter exclusion, and doubled litter addition at a mature Fagus sylvatica L. site. Total organic C (TOC), total N (TN) and total P (TP), total organic P (TOP), bioavailable inorganic P (Pi), microbial C, N and P, soil respiration and fine root biomass were analyzed in the A and in two B horizons. Our results showed that litter manipulation had no significant effect on TOC in the mineral soil. Litter addition increased the bioavailable Pi in the A horizon but had no significant effect on N in the mineral soil. Litter exclusion decreased TN and TP in the B horizon to a depth of 10 cm. In the A horizon of the litter exclusion treatment, TP, TOP and bioavailable Pi were increased, which is most likely due to the higher root biomass in this treatment. The high fine root biomass seems to have counteracted the effects of the excluded aboveground litter. In conclusion, our study indicates that aboveground litter is not an important source for C in the mineral soil and that P recycling from root litter might be more important than from above-ground litter.  相似文献   

12.
在黄土高原子午岭林区,对油松人工林、白桦天然林细根生物量、比根长、根长密度和细根表面积的垂直分布特征,以及这些根系指标与土壤水分、土壤容重、氮素和有机质的关系进行了研究。结果表明,油松人工林细根生物量随土壤深度增加呈单峰曲线,白桦林细根生物量随土壤深度增加呈减少趋势;油松林大部分根系生物量集中分布在040.cm土层中,其中020.cm土层占37%以上,2040.cm集中了41%以上;表层土壤(020.cm)具有较高的比根长、根长密度和细根表面积,而底层(4060.cm)的比根长、根长密度和细根表面积最低。油松林土壤全氮和有机质含量垂直变化趋势相似,随土壤深度的增加而降低;硝态氮(NO3--N)均随土壤深度的增加呈单峰曲线变化趋势,而铵态氮(NH4+-N)随土壤深度增加呈先降低后增加的抛物线趋势。白桦林75%的细根生物量集中在020.cm土层,比根长、根长密度和细根表面积的垂直分布规律与油松林相似,表层土壤白桦林细根表面积是油松人工林的3.91倍,而2040.cm土层白桦林细根表面积比油松人工林降低了33%。白桦林土壤全氮、有机质含量、NO3--N和NH4+-N垂直变化趋势与油松林相似。土壤水分、容重、全氮和有机质对油松和白桦细根分布的影响明显大于NH4+-N和NO3--N。白桦林表层土壤有机质含量与细根生物量的相关性达到显著水平(r=0.99,P0.05),白桦林表层土壤有机质含量与比根长和根长密度的相关性(分别为r=0.91,r=0.8)低于油松林(分别为r=0.95,r=0.94)。油松和白桦林040.cm土层细根表面积与土壤全氮相关性随土壤深度增加而下降,比根长和根长密度与土壤全氮相关性随土壤深度增加而增大。油松和白桦林2060.cm土层细根生物量、细根表面积和根长密度随有机质含量的减少而增加,而比根长呈相反的变化规律。  相似文献   

13.
The fragmented island realm of Oceania includes a relatively small proportion of the world’s tropical forests, but those forests support unusual richness of narrowly endemic species. In common with tropical forests across most of the world, tropical forests in Oceania are declining due to factors associated with increasing human population size, economic drivers and more intensive exploitation. In parts of Oceania, forests are being cleared at unsustainable rates, and replaced with far simpler ecosystems of timber or food crops. To a small degree, the present-day biodiversity of tropical forests in some parts of Oceania may be predisposed to such disturbance, given a history of natural disturbance (particularly through cyclones), and of smaller-scale slash-and-burn agriculture or landscape-scale burning. But, in most places, the current intensity, scale and/or rate of modification far surpass their precedents, and biodiversity is consequently diminishing. Tropical forests in Australia may be an exception to this trend, with now reasonably effective protection. However, more so than for tropical forests in most other continents, the major biodiversity conservation challenges for tropical forests in Oceania are extrinsic. Introduced plants, animals and diseases have collapsed ecological communities through much of Oceania, homogenising the biota from a series of highly distinctive and localised species assemblages to a more impoverished set of ubiquitous disturbance-tolerant exotic species. In many islands, this simplification has occurred regardless of the extent of native forest remaining, such that retention and reservation of primary forest is an insufficient conservation action. The fate of biodiversity in Oceania is also likely to be much affected by climate change, an unbalanced consequence given the region’s relatively small contribution to greenhouse gas emissions. Future hope for biodiversity conservation in tropical forests of Oceania lies in the renewed application of some traditional management constraints, the appropriate delivery of international support (such as may be available through carbon markets), improved quarantine processes, and through some protection naturally offered by the remote scattering of the islands that comprise Oceania.  相似文献   

14.
基于不同林分类型下土壤碳氮储量垂直分布   总被引:4,自引:1,他引:3  
以辽东大伙房水库周边防护林典型林分针阔混交林(落叶松-油松-刺槐混交林)、油松林、落叶松林、刺槐林为研究对象,对其土壤养分含量进行测定,研究了不同林分土壤剖面上有机碳、全氮、有机碳储量的分布规律。结果表明:随着土层深度的增大,4种林分的土壤有机碳、全氮含量均逐渐降低;4种林分土壤剖面有机碳含量大小顺序为落叶松林(24.16g/kg)刺槐林(23.07g/kg)针阔混交林(16.06g/kg)油松林(15.76g/kg);全氮含量大小顺序为刺槐林(5.23g/kg)落叶松林(4.57g/kg)油松林(3.45g/kg)针阔混交林(2.42g/kg);C/N平均值大小顺序为落叶松林(7.36)针阔混交林(6.51)油松林(4.67)刺槐林(4.57);4个林分0-40cm土层的有机碳储量大小为落叶松林(112.94t/hm~2)刺槐林(107.40t/hm~2)针阔混交林(105.42t/hm~2)油松林(89.89t/hm~2);4种林分土壤pH无明显差别,各土层土壤pH随土层深度增加而增大;4种林分土壤容重由高到低顺序依次为针阔混交林(1.73g/cm~3)油松(1.65g/cm~3)落叶松(1.64g/cm~3)刺槐(1.56g/cm~3)。4个林分土壤有机碳含量与土壤全氮含量互相间均存在极显著正相关关系,土壤有机碳、全氮含量与C/N之间则没有明显相关关系;在针阔混交林中,土壤容重、土壤全氮含量和土壤pH与土壤有机碳之间存在线性数量关系,而其他纯林则没有这种关系。  相似文献   

15.
The formation of adventitious roots in humus accumulations in tree canopies is widely acknowledged from tropical and temperate rainforests, while the occurrence of those canopy roots in temperate tree species under mesic climates has been largely disregarded for ca. 100 years. Moreover, almost nothing is yet known of the ecological growth conditions or the structure or morphology of such canopy root systems. This study reports on the occurrence of tree fine roots in crown humus pockets of old European beech (Fagus sylvatica L.) trees. The aim was to compare these canopy roots with the fine roots in the terrestrial organic layer soil in terms of fine root biomass density, root morphological traits, ectomycorrhizal colonisation and chemical composition of the root tissue, and to relate these root traits to the chemical properties of the respective soils. Fine root biomass density in crown humus pockets was ca. 7 times higher than in the terrestrial organic layer, even though soil chemical properties of both rooting media were similar. Fine roots in the canopy differed from terrestrial fine roots by lower specific root tip abundance, specific root length, and specific root surface area, all of which points to a longer lifespan of the fine roots in the canopy. Moreover, canopy roots revealed a lower percentage of root tips colonised by ectomycorrhizal fungi than terrestrial roots (87% vs. 93%). Chemical composition of the root tissue in canopy and terrestrial soils was similar for most elements, but canopy roots showed lower P, Fe, and Al concentrations and a higher N/P ratio than terrestrial roots. Root P concentrations of both canopy and terrestrial fine roots were closely related to soil P concentration, but not to soil C/P or N/P ratios. On the other hand, tissue N of canopy roots, but not of terrestrial roots, revealed a clear dependence on soil N and C/N values, suggesting a more limited N availability in the canopy soil compared to the terrestrial organic layer. However, the overall small differences in soil chemical properties between canopy and terrestrial organic layer soil cannot explain the markedly higher volumetric root density in the crown humus and the differences in ecomorphological traits between canopy and terrestrial soil. Instead, it is speculated that these differences are more likely a result of temporarily high water availability in crown humus pockets due to high water flow along the surface of branches to the central crown parts of the beech trees.  相似文献   

16.
In the Caribbean, Pterocarpus officinalis swamp forest, a coastal freshwater wetland, has been locally transformed by human activities into Colocasia esculenta monoculture (under the swamp forest) or pasture (where deforestation has occurred). The aim of this study was to evaluate the impact of three land uses of this tropical wetland (swamp forest, Cesculenta monoculture and pasture) on soil abiotic and biological features. We hypothesized that increasing the level of ecosystem alteration by agricultural intensification would negatively impact soil chemical characteristics, soil fauna diversity and carbon mineralization. As expected, land use significantly affected soil characteristics and changes followed the increasing intensity of land use. The ‘undisturbed system’, that is swamp forest, was characterized by a large soil organic matter content, a high level of soil moisture, a small phosphorus content and a slightly lower pH. These characteristics were correlated with a small faunal abundance and diversity and slow carbon (C) mineralization. The ‘low disturbance system’, that is C. esculenta monoculture, was the closest to swamp forest characteristics and changes between the both systems principally concerned a very slight decrease in organic matter content and very small increase in C mineralization and Coleoptera diversity. By contrast, all parameters (soil chemical characteristics, C mineralization and faunal abundance and diversity) were impacted in the most intensive land‐use, pasture. Our study confirmed that agricultural practices have an influence on soil fauna and C mineralization processes in wetlands. Moreover, our study suggested that a C. esculenta traditional agroecosystem under swamp forest cover could be considered as an ‘eco‐friendly’ agricultural practice.  相似文献   

17.
In order to determine the impacts of different traditional forest management types on plant diversity of the seasonal tropical rainforests and infer effective conservation strategies, four types of forests with different management histories were studied in Nabanhe National Nature Reserve (NNNR), Xishuangbanna, China. They were: old-growth forest (non-timber product collection allowed), understorey planted old-growth forests, old secondary forests (∼200-years after slash and burn), and young secondary forest (15–50-years after slash and burn). Although human activities affected tree diversity and composition of the forests in NNNR, the forest regeneration potential of the different management systems were good. Even the young secondary forests, that showed the lowest Fisher’s alpha diversity at the plot level, had similar diversity levels to old-growth forest when all plots were combined. Number of red list tree species, timber species, and edible plant species in young secondary forests was as high as those of old-growth forests, and higher than old secondary forests. Additionally, there were a number of vulnerable and endangered species that were more common in the secondary than old-growth forests, indicating the high conservation value of secondary forests. Understorey plantation in old-growth forest, however, impaired regeneration of the climax species. The beneficial effects of traditional forest use depend strongly on its small scale and its close proximity to undisturbed forest, which serves as a species source during secondary forest regeneration. Unfortunately, traditional forest use is now under serious threat by expanding large-scale monoculture rubber plantations.  相似文献   

18.
晋西黄土区不同植被类型土壤抗冲性及表层根系分布特征   总被引:3,自引:1,他引:2  
采用原状土冲刷水槽法,以油松林、刺槐林、山杏林、荆条地及荒草地土壤为研究对象,研究了晋西黄土残塬沟壑区蔡家川流域不同植被类型土壤抗冲性能及植物根系对土壤抗冲性的影响。结果表明:(1)在原状土冲刷试验过程中,各植被类型径流量随冲刷时间的变化趋势不明显,含沙量随时间延长先减少后趋于平稳,土壤抗冲指数呈逐渐增加的趋势。(2)各植被类型总根长密度、根表面积密度、根体积密度及根生物量密度均表现为刺槐、油松林地较大,山杏、荆条、荒草地较小且相差不大,总根系参数之间均存在正相关关系。各植被类型不同根径范围(0~0.5,0.5~1.0,1.0~2.0,2.0~5.0,5.0 mm)的根系指标中,0~0.5 mm径级的根长密度均最大,根体积密度总体表现为细根比粗根小。(3)不同植被类型植物根系均能增强土壤的抗冲性,增强效应表现为刺槐林地和油松林地较强,山杏、荆条、荒草地较弱。植物根系指标中1 mm径级的根长密度、根表面积密度、根体积密度与土壤抗冲性增强值呈显著或极显著正相关关系。其他径级根系参数与土壤抗冲性增强值相关性不显著。  相似文献   

19.
Alluvial forests are under high pressure from human activities because of their value as agricultural, wildlife, timber and recreational land. Despite this, spatial patterns of alluvial forest deforestation are not well known. We studied forest alterations in a 2800 ha alluvial ecosystem using aerial photographs. During the study period (1939–1997), forests with canopy heights greater than 15 m (high canopy mature forest; HCM forest) decreased by 70·4 per cent while forests with canopy heights less than 15 m (low canopy mature forest; LCM forest) forests decreased by 51 per cent, producing a highly fragmented landscape. Factors responsible for forest change included human activities and river dynamics. Although most of the deforestation was related to human disturbance, almost 27 per cent of forest losses were due to channel migration of the Meta River. HCM forests were the most affected land cover since they are easily accessed, viable for logging and occurred on fertile soils, which are valuable for agriculture. LCM forests were less affected since their soil fertilities and inundation regimes were unfavourable to human uses, and thus, less prone to anthropogenic disturbances. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Fine root (diameter < 2 mm) production, mortality and decomposition have been poorly estimated at ecosystem scales due to technical limitations. The soil coring method can accurately assess fine root biomass and necromass, but the concurrent growth, death and decomposition processes were not reasonably assessed during the sampling period, leading to greatly biased rate estimates. We developed a dynamic-flow method with two variations to address these processes by combining the soil coring method with an improved decomposition experiment. For a certain interval i (1 ≤ i) in the growing season, the dead fine roots were classified into fine roots dying before the start of interval i (GⅠ-i) and those dying during interval i (GⅡ-i). The decompositions of GⅠ-i and GⅡ-i were separately quantified and integrated into a modified mass balance model to estimate the production, mortality and decomposition. An example study conducted in a secondary Mongolian oak (Quercus mongolica Fischer ex Ledebour) forest showed that fine root production, mortality and decomposition were greatly underestimated by conventional soil coring methods failing to address the simultaneous growth, death and decomposition processes but overestimated by the method in which the decompositions of GⅠ-i and GⅡ-i were not separately determined and the decomposition rate was assumed to be constant. The dynamic-flow method greatly improved the accuracy of fine root estimates and can be widely applied to forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号