首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of a prescribed fire in a ponderosa pine ecosystem on the rates of decomposition and nitrogen mineralization (including ammonification and nitrification) in the forest floor and mineral soil horizons were evaluated. The prescribed fire immediately increased the rates of nitrogen mineralization and nitrification in the forest floor of all burned plots and in the mineral soil of one plot. The rates of decomposition, as measured by CO2 evolution, in both the forest floor and mineral soil were not significantly different immediately after the burn when expressed on an organic matter basis. The rates of nitrogen mineralization in the forest floor and mineral soil were higher 6 and 10 months after the burn. The rate of decomposition (as measured by respiration) was lower in the forest floor but not in the mineral soil 6 and 10 months after the burn. Volatile organics that may inhibit rates of nitrogen mineralization may have been consumed by prescribed fire.  相似文献   

2.
A laboratory incubation experiment was conducted to compare the effects of NH inf4 sup+ and NO inf3 sup- on mineralization of N from 15N-labelled vetch (Vicia villosa Rotn) in an Illinois Mollisol, and to determine the effect of a nitrification inhibitor (nitrapyrin) on mineralization of vetch N when used with NH inf4 sup+ . The addition of either NH inf4 sup+ or NO inf3 sup- (100 and 200 mg N kg-1 soil) significantly increased mineralization of vetch N during incubation for 40 days. The effect was greater with NH inf4 sup+ than with NO inf3 sup- , and a further increase occurred in the presence of nitrapyrin (10 mg kg-1 soil). The addition of NO inf3 sup- retarded the nitrification of NH inf4 sup+ -N derived from vetch.  相似文献   

3.
无机氮与蔬菜废弃物耦合对土壤氮矿化的影响   总被引:1,自引:0,他引:1  
为探明有机废弃物添加量与不同无机氮水平耦合对土壤氮矿化的影响,设计了3个甘蓝废弃叶添加量[B1:200 g.kg 1(土),B2:400 g.kg 1(土),B3:550 g.kg 1(土)]和4个无机氮水平[N0:0 mg.kg 1(土),N1:25mg.kg 1(土),N2:50 mg.kg 1(土),N3:100 mg.kg 1(土)]交互的控制培养试验(25℃,65%的田间持水量)。试验结果显示:各氮处理下土壤净累积氮矿化量是空白对照的4~5倍,N1水平下土壤净累积氮矿化量显著高于其他氮水平。各甘蓝废弃叶添加量处理下土壤净累积氮矿化量是空白对照的3~5倍,且B2添加量下土壤净累积氮矿化量显著高于B1和B3。统计分析表明,氮处理和甘蓝废弃叶添加量之间的交互效应不显著(P=0.275),甘蓝废弃叶的添加是影响氮矿化的主要因素(Eta2=0.16),而供氮水平为次要因素(Eta2=0.07)。B1添加量下,培养前期(0~20 d)土壤净累积矿化量逐渐升高,后期保持稳定水平;但B2和B3添加量下,培养前期(30 d)土壤呈现矿化、固持、再矿化现象,后期土壤净累积矿化量逐渐升高。氮矿化速率结果说明,甘蓝废弃叶添加后氮素矿化主要发生在培养前30 d。对培养期间土壤净累积氮矿化量随时间变化做一级动力方程模拟,拟合效果良好(R2=0.62~0.89)。  相似文献   

4.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

5.
Intact soil cores from three adjacent sites (Site A: grazed, Site B: fenced for 4 years, and Site C: fenced for 24 years) were incubated in the laboratory to examine effects of temperature, soil moisture, and their interactions on net nitrification and N mineralization rates in the Inner Mongolia grassland of Northern China. Incubation temperature significantly influenced net nitrification and N mineralization rates in all the three grassland sites. There were no differences in net nitrification or N mineralization rates at lower temperatures (−10, 0, and 5 °C) whereas significant differences were found at higher temperatures (15, 25, and 35 °C). Soil moisture profoundly impacted net nitrification and N mineralization rates in all the three sites. Interactions of temperature and moisture significantly affected net nitrification and mineralization rates in Site B and C, but not in Site A. Temperature sensitivity of net nitrification and N mineralization varied with soil moisture and grassland site. Our results showed greater net N mineralization rates and lower concentrations of inorganic N in the grazed site than those in the fenced sites, suggesting negative impacts of grazing on soil N pools and net primary productivity.  相似文献   

6.
Summary The hypotheses that disruption of soil structure increases mineralization rates in loams and clays more than in sandy soils and that this increase can be used to estimate the fraction of physically protected organic matter were tested. C and N mineralization was measured in undisturbed, and in finely and coarsely sieved moist or dried/remoistened soil. Fine sieving caused a temporary increase in mineralization. The relative increase in mineralization was much larger in loams and clays than in sandy soils and much larger for N than for C. The combination of remoistening and sieving of the soil gave a further increase in the mineralization flush after the disturbance. Again, the extra flush was larger in loams and clays than in sandy soils, and larger for N than for C. In loams and clays, small pores constituted a higher percentage of the total pore space than in sandy soils. The fraction of small pores explained more than 50% of the variation in the N mineralization rate between soils. There was also a good correlation between the small-pore fraction and the relative increase in N mineralization with fine sieving. For C, these relations were not clear. It is suggested that a large part of the organic matter that was present in the small pores could not be reached by microorganisms, and was therefore physically protected against decomposition. Fine sieving exposed part of this fraction to decomposition. This physically protected organic matter had a lower C: N ratio than the rest of the soil organic matter. The increase in N mineralization after fine sieving can be regarded as a measure of physically protected organic matter.  相似文献   

7.
Summary Forest floor litter, duff, and underlying soils were assembled in laboratory microcosms representing pinyon, juniper, and interspace field conditions. Burning removed more than 95% of both N and C from the litter, with losses from the duff dependent on soil moisture conditions. No significant changes in total N or C were noted in the soil. Immediate increases were observed in soil NH inf4 sup+ , decreasing with depth and related to soil heating. The greatest increases were noted in both the pinyon and juniper soils that were dry at the time of the burn, with interspace soils exhibiting the least changes. Soil NH inf4 sup+ closely approximated the controls on day 90 after the burns in all treatments. Ninety days after the burn microbial biomass N was highest in the controls, followed by the wet and then the dry-burned soils, in both the pinyon and juniper microcosms. This was inversely related to the levels of accumulated NO inf3 sup- . Nitrifying bacteria populations were indirectly correlated to soil temperatures during the burn. Population levels 90 days after the burn showed increases in both the wet- and the dry-burn treatments, with those in the pinyon treatments exceeding those found in the nitial controls of pinyon soils.The use of trade and company names in this paper is for the benefit of the reader; such use does not constitute an official endorsement or approval of any service or product by the U.S. Department of Agriculture to the exclusion of others that may be suitable  相似文献   

8.
 Soil tillage was studied as a strategy to synchronize N mineralization with plant demand following ploughing of two types of grazed pastures [ryegrass/white clover (Lolium perenne/Trifolium repens) and pure ryegrass]. The swards were either rotovated and ploughed or ploughed only. Soil respiration, as determined by a dynamic chamber method, was related to net N mineralization and to plant N uptake in a subsequent spring barley crop (Hordeum vulgare). Diurnal variations in temperature were important for the CO2 flux and care must be taken that temperatures during measuring periods are representative of the daily mean. Soil tillage increased the CO2 flux considerably compared with untilled soil with total emissions of 2.6 and 1.4 t C ha–1, respectively, from start of April to end of June. Sward type or rotovation did not markedly influence accumulated emissions. Rotovation significantly increased the content of nitrate in the soil until 43 days after rotovation, showing that net N mineralization occurred rapidly during this period, in spite of low soil temperatures (5–10  °C). Rotovation increased barley grain yield by 10–12% and N-uptake by 14%. For both sward types, rotovation caused an extra N-uptake in harvested plant material of about 12 kg ha–1. The availability of soil inorganic N at the early stages of barley was important for the final yield and N-uptake. The results indicated that soil biological activity was not enhanced by rotovation and that the yield effect of rotovation was mainly caused by quicker availability and better synchrony between N mineralization and plant uptake due to earlier start of decomposition. Received: 3 May 2000  相似文献   

9.
模拟氮沉降对内蒙古典型草地土壤pH和电导率的影响   总被引:1,自引:1,他引:1  
陆地生态系统氮沉降增加可导致土壤酸化,从而可能造成土壤生态系统结构和功能的退化。依托内蒙古典型草地设置的模拟氮沉降试验,研究了连续6年9个氮添梯度(0、1、2、3、5、10、15、20、50 g m~(-2)a~(-1)),2个氮添加频次(一年两次或一月一次)及2种管理方式(封育或刈割)等4种模式对土壤p H和电导率的影响。结果表明,4种模式下氮添加量3 g m~(-2)a~(-1)以下4个处理间的土壤p H无显著差异,在氮添加量为20 g m~(-2)a~(-1)(与我国粮食作物年施氮量接近)时,土壤p H分别比对照平均降低了1.1~1.9个单位;封育一年两次添加氮素在添加量5 g m~(-2)a~(-1)以上时土壤p H显著下降,而封育每月一次添加氮素在添加量20 g m~(-2)a~(-1)以上时,土壤p H才出现显著下降的现象。4种模式下土壤p H与土壤阳离子交换量及土壤交换性钙呈极显著正相关,说明高量氮添加促进了土壤中盐基离子的耗竭。高量氮添加(50 g m~(-2)a~(-1))显著增加了土壤EC值;除封育每月一次添加氮素处理外,氮添加10 g m~(-2)a~(-1)以下各处理间的土壤电导率(EC)无显著差异;土壤EC值与土壤硝态氮含量呈极显著正相关。研究结果将为我国北方半干旱草地土壤酸化的量化表征及氮素管理提供数据支撑。  相似文献   

10.
【目的】放牧改变了典型草原生产力和土壤养分循环,影响了植被和土壤微生物的生长状况,进而使草原土壤碳排放量发生变化。本研究通过分析不同放牧措施下内蒙古典型草原生长季土壤呼吸速率 (Rs) 的差异,了解不同放牧管理模式影响草原碳交换和碳平衡的主要途径。【方法】基于内蒙古典型草原全年放牧、休牧及禁牧三种放牧措施,于2014和2015年的7月和9月对Rs进行原位测定,并分析了不同放牧措施下Rs及其影响因子的差异。【结果】1) 三种放牧措施下,Rs表现为休牧样地 [CO2 2.00 μmol/(m2·s)] > 禁牧样地 [CO2 1.94 μmol/(m2·s)]> 全年放牧样地 [CO2 1.56 μmol/(m2·s)]。放牧对Rs的影响还存在季节效应,7月份放牧降低了Rs,而9月份放牧则提高了Rs。2) 与禁牧措施相比,放牧和休牧管理均降低了地上生物量(70.6%和47.3%)、土壤总碳含量(34.5%和32.0%)、土壤总氮含量(37.0%和34.5%),但休牧显著提高了根系生物量(37.2%)。全年放牧样地中土壤可溶性有机碳提高,但微生物磷脂脂肪酸含量下降。3) 7月份Rs主要与土壤湿度和地上生物量显著正相关,而9月份则与土壤温度和土壤PLFAs含量显著正相关。结构方程模型 (SEM) 结果显示,土壤温度 (0.905) 和湿度 (0.188) 通过影响微生物和根系的代谢环境对生长季Rs起主导作用,放牧通过降低土壤湿度和地上生物量对Rs有抑制作用 (–0.137)。【结论】全年放牧通过抑制微生物的生长降低了土壤呼吸速率,休牧通过提高根系生物量增加了土壤呼吸速率,说明放牧对内蒙古典型草原生长季土壤呼吸速率的影响途径因放牧模式的不同而不同。  相似文献   

11.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

12.
As the first and rate-limiting step of nitrification, ammonia oxidation can be realized either by ammonia-oxidizing bacteria (AOB) or archaea (AOA). However, the key factors driving the abundance, community structure and activity of ammonia oxidizers are still unclear, and the relative importance of AOA and AOB in ammonia oxidation is unresolved. In the present study, we examined the effects of long-term (6 years) nitrogen (N) addition and simulated precipitation increment on the abundance and community composition of AOA and AOB based on a field trial in a typical temperate steppe of northern China. We used combined approaches of quantitative PCR, terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of amoA genes. The study objective was to determine (1) AOA and AOB diversity and activity in response to N addition and increased precipitation and (2) the relative contributions of AOA and AOB to soil ammonia oxidation in the typical temperate steppe. The results showed that the potential nitrification rate (PNR) increased with N addition, but decreased with increased precipitation. Both N addition and increased precipitation significantly increased AOB but not AOA abundance, and a significant correlation was only observed between PNR and AOB amoA gene copies. The T-RFLP analysis showed that both N and precipitation were key factors in shaping the composition of AOB, while AOA were only marginally influenced. Phylogenetic analysis indicated that all AOA clones fell within the soil and sediment lineage while all AOB clones fell within the Nitrosospira. The study suggested that AOA and AOB had distinct physiological characteristics and ecological niches. AOB were shown to be more sensitive to N and precipitation than AOA, and the ammonia oxidation process was therefore supposed to be mainly driven by AOB in this temperate steppe.  相似文献   

13.
Effects of earthworms on nitrogen mineralization   总被引:13,自引:0,他引:13  
The influence of earthworms (Lumbricus terrestris and Aporrectodea tuberculata) on the rate of net N mineralization was studied, both in soil columns with intact soil structure (partly influenced by past earthworm activity) and in columns with sieved soil. Soil columns were collected from a well drained silt loam soil, and before the experiment all earthworms present were removed. Next, either new earthworms (at the rate of five earthworms per 1200 cm3, which was only slightly higher than field numbers and biomass) were added or they were left out. At five points in time, the columns were analyzed for NH 4 + , NO 3 , and microbial biomass in separate samples from the upper and lower layers of the columns. N mineralization was estimated from these measurements. The total C and N content and the microbial biomass in the upper 5 cm of the intact soil columns was higher than in the lower layer. In the homogenized columns, the C and N content and the microbial biomass were equally divided over both layers. In all columns, the concentration of NH 4 + was small at the start of the experiment and decreased over time. No earthworm effects on extractable NH 4 + were observed. However, when earthworms were present, the concentration of NO 3 increased in both intact and homogenized cores. The microbial biomass content did not change significantly with time in any of the treatments. In both intact and homogenized soil, N mineralization increased when earthworms were present. Without earthworms, both type of cores mineralized comparable amounts of N, which indicates that mainly direct and indirect biological effects are responsible for the increase in mineralization in the presence of earthworms. The results of this study indicate that earthworm activity can result in considerable amounts of N being mineralized, up to 90 kg N ha–1 year–1, at the density used in this experiment.  相似文献   

14.
Grassland‐livestock farming is the main agricultural activity in the Inner Mongolia steppe of China. It has been estimated that more than 80% of the grasslands suffer from sulfur (S) deficiency in this region. In an incubation study and a greenhouse experiment with alfalfa, the influence of soil moisture (40% and 70% water‐holding capacity, WHC), nitrogen (0 and 200 mg N (kg soil)–1 as NH4NO3), and elemental sulfur (eS; 0 and 300 mg S (kg soil)–1) amendments on the apparent eS oxidation, eS‐oxidation rate, net S‐mineralization rate, and S uptake of alfalfa were studied. After 28 d of incubation, the eS‐oxidation rate was four times higher at 70% than at 40% WHC if no N was applied. With N application, soil moisture had only minor effects on eS oxidation during the whole incubation period. In the greenhouse experiment, lower values for eS‐oxidation rate and net S‐mineralization rate were found if no N was applied. Application of N and eS significantly increased alfalfa growth and S uptake. The results of both experiments suggest that combined N and eS applications are the best way to alleviate S deficiency on these calcareous soils.  相似文献   

15.
丹江口水库库滨带典型植物群落氮矿化特征   总被引:1,自引:0,他引:1  
为明确库滨带典型植物群落矿化特征,探究植物化学性质与土壤氮矿化的关系,选取丹江口水库库滨带的苘麻和蛇床群丛.试验采取单一叶处理、单一根处理和根+叶混合等9种处理,分别测定第1、3、7、14、21、31、41、51和61 d的土壤氮矿化量,系统分析添加植物后土壤氮矿化特征.结果表明:1)添加植物后,土壤氮矿化可分为3个阶段,即前期(1 ~7d)各处理矿化量均减小,中期(7 ~41 d)各处理矿化量都有所增加,幅度变化较大,后期(41 ~61d)基本保持平衡,所有处理的土壤矿化量均小于对照(CK)的79.53 mg/kg,单一处理中,苘麻叶(QL)矿化量最高,达到71.62 mg/kg,混合处理最高为苘麻叶+蛇床根(QL+ SR) 26.43 mg/kg;2)添加植物后,土壤微生物的质量分数显著增加(P<0.05),QL>4个混合处理>另外3个单一处理;3)整个试验期间,土壤氮矿化量与植物全碳和全氮质量分数显著相关(P<0.05),主成分分析(PCA)结果显示全氮质量分数对土壤有机氮矿化影响最明显,重要程度为全氮>C∶N>纤维素>L∶N>多元酚;4)所有混合处理中,实测氮素矿化量均显著小于预测值(P<0.01).说明添加苘麻和蛇床后,土壤氮矿化表现为抑制作用,根茎混合处理没有激发效应.该研究为区域植被生态恢复、水土保持与非点源污染治理提供参考依据.  相似文献   

16.
A field experiment was conducted with wetland rice (Oryza sativa cv. IR-36) in a sandy clay loam soil (Entisol) to study the effect of inoculation with a soil-based mixed culture of four diazotrophic cyanobacteria,Aulosira fertilissima, Nostoc muscorum, N. commune andAnabaena spp., on the N-flux in inorganic NH4 ++NO3 + NO2 ), easily oxidizable, hydrolysable and non-hydrolysable forms of N in soil during vegetative growth periods of the crop. Effects on grain and straw yield and N uptake by the crop were estimated. The effects of applying urea N and N as organic sources, viz.Sesbania aculeata, Neem (Azardirachta indica) cake and FYM, each at the rate of 40 kg N ha–1, to the soil were also evaluated. Inoculation significantly increased the release of inorganic N, evidenced by its increased concentrations either in soil or in soil solution. However, such increases rarely exceeded even 4% of total N gained in different froms in the soil system by inoculation during the vegetative growth stages of the rice plant, when the nutritional requirement of the plants is at a maximum. Most of the N2 fixed by cyanobacteria remained in the soil as the hydrolysable form (about 85%) during this period. Inoculation caused an insignificant increase in grain (8%) and straw (11%) yield, which was, however, accompanied by a significant increase in N uptake by the grain (30%) and an increase in total uptake of 15.3 kg N ha 1. Such beneficial effects of inoculation varied in magnitude with the application of organic sources, with farmyard manure (FYM) being the most effective. Application of urea N, on the other hand, markedly reduced such an effect.  相似文献   

17.
Desertification is one of the most serious types of land degradation. A field experiment was conducted during 2002 and 2003 in Horqin Sand Land, China to investigate changes in soil C and N contents in relation to land desertification. Four primary results were derived from this work. First, land desertification characterized by wind erosion resulted in a significant decrease in soil fine particles (clay + silt) with a corresponding increase in sand content. In comparison to non-desertified land, soil fine particle content decreased by up to 89.2%, and sand content increased by up to 47.2%, in the severely desertified land. Second, the organic C and total N in soil were mainly associated with the soil fine particles, and decreased significantly with desertification development. Organic C decreased by 29.2% and total N by 31.5% in the severely desertified land compared to the non-desertified land. Third, the decrease in organic C and N content was greater in desertified grassland than in desertified farmland. Fourth, the changes in organic C and total N content had a significant positive correlation with the soil fine particle content (P < 0.01) and a significant negative correlation with coarse sand content (P < 0.01), indicating that land desertification by wind erosion is mediated through a loss of soil fine particles, with a resultant decrease in soil organic C and total N.  相似文献   

18.
Surface mineral horizons from four ecosystems sampled in the northwestern Italian Alps were incubated at −3 and +3°C to simulate subnivial and early thaw period temperatures for a seasonally snow-covered area. The soil profiles at these sites represent extreme examples of management, grazed meadow (site M) and extensive grazing beneath larch (site L) or naturally disturbed by avalanche and colonized by alder (site A) and the expected forest climax vegetation beneath fir (site F). Changes in labile pools of nitrogen (N) and phosphorus (P) were active at all sites at both temperatures during 14 days of laboratory incubation. Ammonium was the dominant inorganic form of total dissolved N (TDN), being equivalent to 1.8–9.8 g N m−2 within the mineral horizon. Gross rates of ammonification were similar at the two temperatures but significantly (p<0.05) greater in soil from beneath fir than in the other three. Nitrification occurred in all soils and displayed a wide range in rates, from 2 to 85 mg N m−2 day−1, and was least in the two most acid soils, A and F. Immobilization of NH4 + as microbial N was greater in the fir soil than in the other three. Also, the fir soil showed greatest gross ammonification and least accumulation of NO3 and greatest tendency to retain N. This high N retention capacity in the climax ecosystem contrasted with the managed systems characterized by higher nitrification rates and greater potential spring NO3 loss. Dissolved organic N ranged between 30 and 50% of the TDN, while dissolved organic P was greater than 70% of total dissolved P (TDP). The dissolved organic compounds were important components of the labile pool, in equilibrium with a large reserve of organic N, and may significantly contribute to the soil N availability at low temperatures.  相似文献   

19.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   

20.
Prescribed, biennial burning in forest understory started in Cuivre River State Park, Missouri, USA, in the late 1980s to help restore the forest to conditions that existed prior to European settlement. Bird surveys were started in 1996 on two burned and two unburned sections of the park to determine what effects the burning and subsequent changes in vegetation were having on bird populations. Birds were sampled at 17 60-m radius point counts on each study area; each point was sampled twice per year during the main breeding period from 1996 through 2002. Total abundance and species richness differed among the four areas but no differences could be attributed to burning. Some individual species, however, differed in abundance and frequency of occurrence between burned and unburned areas. For example, Indigo Bunting (Passerina cyanea), Kentucky Warbler (Oporornis formosus), and several species of woodpeckers were more abundant on burned areas; Ovenbird (Seiurus aurocapillus), Worm-eating Warbler (Helmitheros vermivorous), Wood Thrush (Hylocicla mustelina) and Acadian Flycatcher (Empidonax virescens) were among the species more abundant on unburned areas. As a consequence, overall community composition differed significantly between burned and unburned areas of the park, but did not differ between burned areas or between unburned areas. Prescribed burning was instituted to restore vegetation to presettlement conditions and has started to achieve that objective. Restoration also has affected and likely will continue to affect bird populations. Future maintenance of a full complement of bird species, including a number of neotropical migrants, will be dependent on presence of both burned and unburned forest habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号