首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants take up nitrogen principally in the form of nitrate and ammonium; however, evidence is growing that they can also use organic N in the form of amino acids. Selecting varieties that better use organic N could be important in maximizing productivity in organic and low-input systems because these varieties may access a wider pool of available nutrients. We tested amino acid-N uptake by wheat (Triticum aestivum L.) seedlings over 24 h over a range of soil glycine concentrations. Wheat was grown in 5 ml pipette tips for 10 days prior to labeling with 14C-labeled glycine. In a second experiment, uptake of amino acid-N relative to nitrate and ammonium was tested in three pre-1940 wheat varieties (Arco, Idaed, and Red Fife), three modern varieties (Alpowa, Madsen, and Zak), and one perennial wheat variety (unreleased). Glycine-N was detected in all shoots (with the exception of the lowest soil concentration) and increased with increasing soil concentration. There were few differences in uptake between individual varieties tested but seedlings of modern varieties were more efficient at capturing organic N than classic varieties. Glycine-N constituted between 3.9% and 8.1% of total N uptake over 24 h and constituted a significantly greater proportion of total N in perennial wheat than annual wheat varieties. These results show that there may be sufficient varietal differences in organic N uptake in wheat to warrant selection for this trait in breeding programs targeted to improving N use efficiency.  相似文献   

2.
Organic nitrogen (N) uptake, rather than solely inorganic N (DIN), is considered a significant pathway for plant nutrition, especially in arctic, alpine and boreal ecosystems. Assays of plant-available N in these ecosystems might therefore be improved with measures of dissolved organic N (DON). We examined DON and DIN abundance from an in situ 5-week incubation across plant associations that represent the widest range in site potential in southern boreal forests of British Columbia, Canada. The supply of N from forest floors and mineral soils (20 cm depth) was measured separately and then combined (kg ha−1) to facilitate comparisons of sites. DON was the predominant form of extractable N, and was increasingly supplemented, rather than replaced, by NH4+ and NO3 on productive sites. The amount of DIN produced in the soils was very low, perhaps too small to support forest needs, and the correlation of DIN to asymptotic stand height (a measure of site potential) was significant but nonlinear. The combined amount of DON+DIN was considered a more effective index of plant-available N because it was strongly significant as a linear correlation to stand height and more typical of annual forest N uptake. The relative shift in N forms, from a predominance of DON to progressively greater ratios of DIN:DON, was consistent with the current paradigm of N forms across gradients of N availability, although the actual amounts of DON increased, rather than decreased, with site potential. Based on this, we suggest organic N uptake has the potential to contribute to plant nutrition across the entire productivity gradient of soils in southern boreal forests. Although other N indices were effective in characterizing forest productivity, a combined assay of DON+DIN production could provide new insights into functional differences in plant-available N.  相似文献   

3.
This study compared field and laboratory decomposition rates of coarse woody debris (CWD) (>10 cm diameter) from three tree species: Pinus radiata, Eucalyptus regnans, and Eucalyptus maculata. For this purpose, the density loss of logs on the ground sampled from chronosequences of sites following harvesting was determined using the water replacement technique. P. radiata logs were sampled 1, 2.5, 6, and 9 years following harvesting, and logs of E. regnans and E. maculata were collected from sites that were harvested 1, 3.5, 6.5, and 12 and 1.5, 6.5, and 11.5 years ago, respectively. In addition, the C/N ratio of wood was determined and current respiration rates of logs from these different age classes were measured through laboratory incubation. The times for loss of 95% of material (t0.95) determined from density loss for these species were 24 years for P. radiata, 43 years for E. regnans, and 62 years for E. maculata. The decomposition rates of CWD derived from laboratory respiration were 6.1, 5.9 and 11.9 times higher than the decay rates from density loss in P. radiata, E. regnans, and E. maculata, respectively. This points to severe constraints of decomposition through adverse conditions in the field. The changes in respiration rates and C/N ratio with age of decaying logs indicated that the single component, negative exponential decay model could be applied satisfactorily only to P. radiata. In the case of the eucalypt species, substrate quality (expressed through respiration rates) declined in the oldest samples. This may be explained by the loss of rapidly decomposing sapwood and the retention of more decay-resistant heartwood. In these cases, a two-component model will be more suitable to describe the density loss of decaying wood.  相似文献   

4.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

5.
This study characterized soil chemical and microbiological properties in hay production systems that received from 0 to 600 kg plant-available N (PAN) ha−1 year−1 from either swine lagoon effluent (SLE) or ammonium nitrate (AN) from 1999 to 2001. The forage systems contained plots planted with bermudagrass (Cynodon dactylon L.) or endophyte-free tall fescue (Festuca arundinaceae Schreb.). In March 2004, the plots were sampled for measurements of a suite of soil chemical and microbiological properties. Nitrogen fertilization rates were significantly correlated with soil pH and K2SO4-extractable soil C but not with total soil C, soil C/N ratio, electrical conductivity, or Mehlich-3-extractable nutrients. Soil supplied with SLE had significantly lower Mehlich-3-extractable nutrients than the soil supplied with AN. Two indicators of soil N-supplying capacity (potentially mineralizable N and amino sugar N) varied with plant species and the type of N fertilizer. However, they generally peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Soil microbial biomass C also peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Nitrification potential was significantly higher in soil supplied with AN than in the unfertilized control but was similar between SLE-fertilized and unfertilized soils. Our results indicated that an application rate as high as 600 kg PAN ha−1 year−1 did not benefit soil microbial biomass, microbial activity, and N transformation processes in these forage systems.  相似文献   

6.
In a mesocosm experiment, we studied decomposition rates as CO2 efflux and changes in plant mass, nutrient accumulation and soil pools of nitrogen (N) and phosphorus (P), in soils from a sub-arctic heath. The soil was incubated at 10 °C and 12 °C, with or without leaf litter and with or without plants present. The purpose of the experiment was to analyse decomposition and nutrient transformations under simulated, realistic conditions in a future warmer Arctic.Both temperature enhancement and litter addition increased respiration rates. Temperature enhancement and surprisingly also litter addition decreased microbial biomass carbon (C) content, resulting in a pronounced increase of specific respiration. Microbial P content increased progressively with temperature enhancement and litter addition, concomitant with increasing P mineralisation, whereas microbial N increased only in the litter treatment, at the same time as net N mineralisation decreased. In contrast, microbial biomass N decreased as temperature increased, resulting in a high mobilisation of inorganic N.Plant responses were closely coupled to the balance of microbial mineralisation and immobilisation. Plant growth and N accumulation was low after litter addition because of high N immobilisation in microbes and low net mineralisation, resulting in plant N limitation. Growth increased in the temperature-enhanced treatments, but was eventually limited by low supply of P, reflected in a low plant P concentration and high N-to-P ratio. Hence, the different microbial responses caused plant N limitation after litter addition and P limitation after temperature enhancement. Although microbial processes determined the main responses in plants, the plants themselves influenced nutrient turnover. With plants present, P mobilisation to the plant plus soil inorganic pools increased significantly, and N mobilisation non-significantly, when litter was added. This was presumably due to increased mineralisation in the rhizosphere, or because the nutrients in addition to being immobilised by microbes also could be absorbed by plants. This suggests that the common method of measuring nutrient mineralisation in soils incubated without plants may underestimate the rates of nutrient mobilisation, which probably contributes to a commonly observed discrepancy of measured lower rates of net nutrient mineralisation than uptake rates in arctic soils.  相似文献   

7.
Afforestation and reforestation of pastures are key land-use changes in New Zealand that help sequester carbon (C) to offset its carbon dioxide (CO2) emissions under the Kyoto Protocol. However, relatively little attention has been given so far to associated changes in trace gas fluxes. Here, we measure methane (CH4) fluxes and CO2 production, as well as microbial C, nitrogen (N) and mineral-N, in intact, gradually dried (ca. 2 months at 20 °C) cores of a volcanic soil and a heavier textured, non-volcanic soil collected within plantations of Pinus radiata D. Don (pine) and adjacent permanent pastures. CH4 fluxes and CO2 production were also measured in cores of another volcanic soil under reverting shrubland (mainly Kunzea var. ericoides (A. Rich) J. Thompson) and an adjacent pasture. CH4 uptake in the pine and shrubland cores of the volcanic soils at field capacity averaged about 35 and 14 μg CH4-C m−2 h−1, respectively, and was significantly higher than in the pasture cores (about 21 and 6 μg CH4-C m−2 h−1, respectively). In the non-volcanic soil, however, CH4-C uptake was similar in most cores of the pine and pasture soils, averaging about 7-9 μg m−2 h−1, except in very wet samples. In contrast, rates of CO2 production and microbial C and N concentrations were significantly lower under pine than under pasture. In the air-dry cores, microbial C and N had declined in the volcanic soil, but not in the non-volcanic soil; ammonium-N, and especially nitrate-N, had increased significantly in all samples. CH4 uptake was, with few exceptions, not significantly influenced by initial concentrations of ammonium-N or nitrate-N, nor by their changes on air-drying. A combination of phospholipid fatty acid (PLFA) and stable isotope probing (SIP) analyses of only the pine and pasture soils showed that different methanotrophic communities were probably active in soils under the different vegetations. The C18 PLFAs (type II methanotrophs) predominated under pine and C16 PLFAs (type I methanotrophs) predominated under pasture. Overall, vegetation, soil texture, and water-filled pore space influenced CH4-C uptake more than did soil mineral-N concentrations.  相似文献   

8.
Many studies have shown that plants can utilize organic N in the form of amino acids. However, it is unclear whether the glycine‐uptake capability responds differently to various farm management systems, and whether the interaction of farm management type with soil glycine concentrations affects the glycine uptake by plants. A pot experiment was conducted in which pak choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee) was grown in soil from organic and conventional agricultural systems for 15 d prior to labeling with 2‐13C, 15N‐glycine in a range of Gly concentrations (0, 0.005, 0.05, 0.5, 5, and 15 μg N g?1 dry soil). The glycine uptake rate increased with increasing applied N concentrations, whereas the glycine recovery increased initially and then decreased. Regardless of glycine concentration, the glycine uptake rates of whole plants were moderate, but not significantly higher in organic than in conventional soil. The plant glycine recovery in organic soil was significantly higher than in conventional soil. Therefore, we suggest that pak choi glycine uptake differs under organic and conventional management systems. More research efforts should focus on the nutritional function of organic N in organic systems.  相似文献   

9.
将水稻移植到0.2 mmol/L Ca SO4溶液中饥饿2 d,采用改进耗竭法研究了3种铵硝配比条件下3个不同硅效应水稻(耐低硅的硅高效水稻特优998和不耐低硅的硅高效水稻特优248以及硅不敏感水稻博Ⅱ优15)硅吸收动力学特征。结果表明:作图法和双倒数法动力学方程准确性高,达到极显著水平;不同铵硝配比条件水稻硅吸收动力学曲线均符合Michaelis-Menten酶动力学模型的描述;铵硝配比对不同的硅效应水稻的硅载体数量影响不显著,显著影响水稻对硅的亲和力。本实验条件下铵硝配比50/50有利于水稻特优248对硅的吸收,铵硝比75/25时吸收速率最低;特优998对硅有较高的亲和力,可能是其耐低硅高效的遗传性差别。  相似文献   

10.
Spatial variations in nutrient concentrations and turnover may contribute to variations in productivity within forest ecosystems and be responsible for creating and maintaining diversity of plant species. The aim of this study was to relate spatial patterns in soil nutrient availability and microbial properties in the forest floor and mineral soil in order to explore the controls on variations in nutrient availability in the two horizons. Microbial C, N and P, extractable N and P, and plant-available nutrients as estimated by plant root simulator probes were measured. We then used geostatistical techniques to determine the scale of spatial autocorrelation in the forest floor and mineral soil. Several of the measured variables were spatially autocorrelated at a scale of tens to hundreds of meters. Although more variables were autocorrelated in the mineral soil than in the forest floor, spatial patterns in gravimetric moisture content and nutrient concentrations in the two horizons generally overlapped. The spatial patterns were probably caused by differences in topography, except for ammonium whose shorter range of spatial autocorrelation may reflect variations in nitrogen content of the canopy.  相似文献   

11.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

12.
Plant species have been shown to have significant effects on soil nutrient pools and dynamics. Stellera chamaejasme L., a toxic perennial weed, has established and is now abundant in the alpine meadow on the eastern Tibetan Plateau of China since the 1960s. We quantified the effects of Stellera on carbon and nitrogen cycling in two topographic habitats, a flat valley and a south-facing slope, where Stellera was favored to spread within the study area. Aboveground litter biomass and tissue chemistry of aboveground litter and root were measured to explain the likely effects of Stellera on soil carbon and nutrient cycling. The sizes of various soil pools, e.g. nitrate, ammonium, inorganic phosphorus, microbial biomass, soil respiration and turnover rates including net mineralization, gross nitrification and denitrification were determined. The results showed that Stellera produced more aboveground litter than each of the co-occurring species. Aboveground litter of Stellera had higher tissue N and lower lignin:N than the other species. Stellera significantly increased surface soil (0-15 cm) organic matter, whereas no significant differences were found for organic C and total P in subsoil (15-30 cm) within and between patches of Stellera. Soil extractable nitrate concentrations in Stellera surface soil were 113% and 90% higher on the flat valley and on the south-facing slope, respectively. Both microbial biomass C and N were significantly higher in Stellera surface soil. Gross nitrification and microbial respiration were significantly higher in Stellera surface soil both on the flat valley and on the south-facing slope, whereas significant differences of denitrification were found only on the flat valley. The differences in the quantity and quality of aboveground litter are a likely mechanism responsible for the changes of soil properties.  相似文献   

13.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

14.
 Phosphorus mineralization and microbial biomass were measured in the surface 5 cm of a Spodosol (sandy, siliceous hyperthermic Ultic Alaquod) from north-central Florida. Soils from fertilized and unfertilized plantations of loblolly pine (Pinus taeda L.) were incubated at a range of water potentials (∼0, –3, –8, –10 and –1500 kPa) and temperatures (15  °C, 25  °C and 38  °C) for 14 days and 42 days. Increasing water potential and temperature increased specific P mineralization (mineralization expressed as a percentage of total P) regardless of fertilizer treatment. An increase in water potential from –10 kPa to –0.1 kPa resulted in an increase of between 38% and 239% in the concentration of KCl-extractable inorganic P, depending on incubation temperature and time. An increase in incubation temperature from 15  °C to 38  °C resulted in an increase of between 13% and 53% in KCl-extractable inorganic P. Changes in specific P mineralization with change in water potential or temperature were not affected by fertilizer application. This suggests that, although specific P mineralization was greater in the fertilized soils, environmental control of P mineralization was the same for both treatments. Specific P mineralization was most sensitive when soils were at higher water potentials, and decreased logarithmically to water potentials of between –3 kPa and –8 kPa. Specific P mineralization was relatively insensitive to changes in water potential when water potential was lower than –8 kPa. Microbial biomass C showed no consistent responses to changes of temperature or water potential and was not significantly correlated with specific P mineralization. Our results suggest that field estimates of P mineralization in these Spodosols may be improved by accounting for changes in soil water potential and temperature. Received: 30 October 1997  相似文献   

15.
腐植酸与氮肥配施对冬小麦氮素吸收利用及产量的影响   总被引:3,自引:0,他引:3  
研究腐植酸与氮肥配施对冬小麦产量、氮素吸收及经济效益的影响,可为提高氮肥的增产效益,减少氮肥对生态环境的污染提供理论指导。在河南褐土区冬小麦-夏玉米轮作制度下,于2014年开始在河南省南阳市卧龙区开展田间定位试验,共设置单施磷钾肥、常规施肥、单施腐植酸、常规施肥+腐植酸、常规施肥减氮15%+腐植酸、常规施肥减氮30%+腐植酸6个处理,分析不同氮肥与腐植酸配施下冬小麦产量和氮肥利用的特征。结果表明,腐植酸与氮肥配施可以有效提高冬小麦的产量及其构成要素,促进植株对氮素的累积,提高氮肥利用率。其中,常规施肥减氮15%+腐植酸处理下冬小麦产量、籽粒氮含量、籽粒氮累积量、地上部总氮累积量、氮肥利用效率和纯收益均增加,与常规施肥相比,冬小麦产量增加4.96%,氮肥利用效率增加23.42%,纯收益增加2.18%。常规施肥减氮30%+腐植酸条件下冬小麦产值和收益降低。因此,在施用腐植酸的基础上,配施适量氮肥才能获得较高的产值和收益。常规施肥减氮15%+腐植酸是本研究区域最佳的施肥模式,对实现现代化农业生产的高产高效、资源节约和生态环境保护具有重要意义。  相似文献   

16.
Decomposer animals stimulate plant growth by indirect effects such as increasing nutrient availability or by modifying microbial communities in the rhizosphere. In grasslands, the spatial distribution of organic matter (OM) rich in nutrients depends on agricultural practice and the bioturbation activities of large detritivores, such as earthworms. We hypothesized that plants of different functional groups with contrasting nutrient uptake and resource allocation strategies differentially benefit from sites in soil with OM accumulation and the presence of decomposer animals. In a greenhouse experiment we investigated effects of spatial distribution of 15N-labelled grass litter, earthworms and collembola on a simple grassland community consisting of Lolium perenne (grass) and Trifolium repens (legume). Litter aggregates (compared to homogeneous litter distribution) increased total shoot biomass, root biomass and 15N uptake by the plants. Earthworms and collembola did not affect total N uptake of T. repens; however, the presence of both increased 15N uptake by T. repens and L. perenne. Earthworms increased shoot biomass of T. repens 1.11-fold and that of L. perenne 2.50 fold. Biomass of L. perenne was at a maximum in the presence of earthworms, collembola and with litter concentrated in a single aggregate. Shoot biomass of T. repens increased in the presence of collembola, with L. perenne generally responding opposingly. The results indicate that the composition of the decomposer community and the distribution of OM in soil affect plant competition and therefore plant community composition.  相似文献   

17.
Abstract

Sorghum [Sorghum bicolor (L.) Moench] seedlings were grown in nutrient solutions in a growth chamber to investigate the effects of different ratios of NO3 and NH4 + on nutrient solution pH, dry matter yield, and N uptake. Nutrient solutions and plant tissues were assayed throughout the time plants grew in the nutrient solutions.

Nutrient solution pH depended on source of N. The pH rose to near 8 with NO3 as the sole source of N and decreased to near or below 4 with NH4 + added to the solutions. Upon depletion of NH4 + from solution, pH values rose abruptly to near 8 and remained near this value throughout the duration of the experiments. Dry matter yield was generally higher for plants grown with some NH4 + compared to plants grown with NO3 alone. Nitrogen uptake was generally higher in plants grown with the higher proportions of NH4 +. Nitrogen concentrations remained unchanged with plant age as NO3 / NH4 + ratio varied. For solutions low in NH4 +, N concentrations in roots increased with plant age. Severe Fe deficiency appeared in plants when solution pH reached and remained above 7.  相似文献   

18.
While it is well established that plants are able to acquire nitrogen in inorganic form, there is less information on their ability to ‘short circuit’ the N cycle, compete with microbes, and acquire nitrogen in organic form. Mycorrhizal fungi, known to enhance nutrient uptake by plants, may play a role in organic N uptake, particularly ericoid mycorrhizas. We asked the question—Can mycorrhizal fungi increase the ability of plants to take up organic N, compared to inorganic N? Here, we report on the abilities of three plant species, ericoid mycorrhizal Rhododendron macrophyllum and Vaccinium ovatum and arbuscular mycorrhizal Cupressus goveniana ssp. pigmaea, to acquire C and/or N from an organic and an inorganic N source. All three species are native to a California coastal pygmy forest growing in acidic, low-fertility, highly organic soils. In a pot study, glycine-α13C, 15N and 15N-ammonium were applied to pygmy forest soil for 17 or 44 h. Ericoid mycorrhizal species did not demonstrate a preference for either inorganic or organic sources of N while Cupressus acquired more NH4-N than glycine-N. For all species, glycine-N uptake did not increase after 17 h suggesting glycine uptake and glycine immobilization occurred rapidly. Both glycine-N and glycine-C were recovered in shoots and in roots suggesting that all species acquired some N in organic form. Regression analyses of glycine-N and glycine-C recovery in root tissue indicate that much of the glycine was taken up intact and that the minimum proportion of glycine-N recovered in organic form was 85% (Cupressus) and 70% (Rhododendron). Regressions were non-significant for Vaccinium. For all species, glycine-N remained predominantly in roots while glycine-C was transferred to shoots. In contrast, NH4-N remained in roots of ericoid plants but was transferred to shoots of arbuscular mycorrhizal Cupressus. Since net N mineralization rates in pygmy forest soils are low, our results suggest that organic N may be an important N source for plants in this temperate coniferous ecosystem regardless of mycorrhizal type. Acquisition of amino acid C by these species also may partially offset the carbon cost to plants of hosting mycorrhizal fungi.  相似文献   

19.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

20.
Abstract

Sustainable food production includes mitigating environmental pollution and avoiding unnecessary use of non-renewable mineral phosphate resources. Efficient phosphorus (P) utilization from organic wastes is crucial for alternative P sources to be adopted as fertilizers. There must be predictable plant responses in terms of P uptake and plant growth. An 18-week pot experiment was conducted to assess corn (Zea mays L.) plant growth, P uptake, soil test P and P fractionation in response to application of organic P fertilizer versus inorganic P fertilizer in five soils. Fertilizers were applied at a single P rate using: mono-ammonium phosphate, anaerobically digested dairy manure, composted chicken manure, vegetable compost and a no-P control. Five soils used varied in soil texture and pH. Corn biomass and tissue P concentrations were different among P fertilizers in two soils (Warden and Quincy), with greater shoot biomass for composted chicken manure and higher tissue P concentration for MAP. Plant dry biomass ranged from highest to lowest with fertilizer treatment as follows: composted chicken manure?>?AD dairy?=?MAP?=?no-P control?=?vegetable compost. Soil test P was higher in soils with any P fertilizer treatment versus the no-P control. The loosely bound and soluble P (2.7?mg P kg?1) accounted for the smallest pool of inorganic P fractions, followed by iron bound P (13.7?mg P kg?1), aluminum bound P (43.4?mg P kg?1) and reductant soluble P (67.9?mg P kg?1) while calcium bound P (584.6?mg P kg?1) represented the largest pool of inorganic P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号