首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Recent stable isotope analyses indicate that a number of putative detritivorous soil microarthropods is not typical detritivores but rather live as predators or scavengers. Using molecular gut content analyses the present study investigates if nematodes indeed form part of the diet of oribatid mites. First, in a no-choice laboratory feeding experiment two nematode species (Phasmarhabditis hermaphrodita and Steinernema feltiae) were offered to eight species of oribatid mites and one gamasid mite. Second, after feeding for 4 and 48 h on each nematode species the detection time of prey DNA in the oribatid mite species Steganacarus magnus was investigated. Third, in a field experiment nematode prey (P. hermaphrodita and S. feltiae) in the diet of microarthropods was investigated distinguishing between scavenging and predation. In the no-choice laboratory experiment not only the gamasid mite but also several of the studied oribatid mite species consumed nematodes. After feeding on nematodes for 4 h prey DNA was detectable in S. magnus for only 4 h, but after feeding for 48 h prey DNA was detectable for 128 h, indicating that the duration of feeding on prey is an important determinant for prey DNA detection. The field experiment confirmed that oribatid mite species including Liacarus subterraneus, Platynothrus peltifer and S. magnus intensively prey on nematodes. Interestingly, DNA of dead P. hermaphrodita was detectable to a similar degree as that of living individuals indicating that scavenging is of significant importance in decomposer food webs. Results of our study indicate that predation and scavenging on nematodes by “detritivorous” microarthropods in soil food webs need to be reconsidered.  相似文献   

2.
Soil macrofauna play an essential role in the initial comminution and degradation of organic matter entering the soil environment and yet the chemical effects of digestion on leaf litter are poorly understood at the molecular level. This study was undertaken to assess the selective chemical transformations that saprophagous soil invertebrates mediate in consumed leaf litter. A number of pill millipedes (Glomeris marginata) were fed oak leaves (Quercus robur) after which the biomolecular compositions (lipids and macromolecular components) of the leaves and millipede faeces were compared using a series of wet chemical techniques and subsequent analysis by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). It was found that the concentrations of short chain (<C20) n-alkanoic acids, sterols and triacylglycerols reduced dramatically in the millipede faeces relative to the leaf litter. Hydrolysable carbohydrates and proteins both decreased in concentration in the faeces, whereas similar yields of phenolic components were observed for the cupric oxidation products of lignin, although the oxygenated functionalities were affected by passage through the millipede gut, yielding a more highly condensed state for lignin. This shows that the chemical composition of fresh organic matter entering the soil is directly controlled by invertebrates feeding upon the leaf litter and as such that they are key contributors to the early stages of diagenesis in terrestrial soils.  相似文献   

3.
Purpose

Recent research suggests that Swedish organic arable soils have been under-recognized as a potential source of phosphorus (P) loading to water bodies. The aim of this study was to compare P losses through leaching from organic and high-fertility mineral soils. In addition, the effectiveness of a magnesium-salt-coated biochar applied below the topsoil as a mitigation strategy for reducing P losses was evaluated.

Materials and methods

Phosphorus leaching was measured from four medium- to high-P arable soils, two Typic Haplosaprists (organic 1 and 2), a Typic Hapludalf (sand), and an unclassified loam textured soil (loam), in a 17-month field study utilizing 90-cm-long lysimeters. A magnesium-salt-coated biochar was produced and characterized using X-ray powder diffraction (XPD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray adsorption (XANES) spectroscopy, and its phosphate adsorption capacity was determined at laboratory scale. It was also applied as a 3-cm layer, 27 cm below the soil surface of the same lysimeters and examined as a mitigation measure to reduce P leaching.

Results and discussion

Total-P loads from the 17-month, unamended lysimeters were in the order of organic 2 (1.2 kg ha?1)?>?organic 1 (1.0 kg ha?1)?>?sand (0.3 kg ha?1)?>?loam (0.2 kg ha?1). Macropore flow, humic matter competition for sorption sites, and fewer sorption sites likely caused higher P losses from the organic soils. Analysis by XRD and SEM revealed magnesium was primarily deposited as periclase (MgO) on the biochar surface but hydrated to brucite (Mg(OH)2) in water. The Langmuir maximum adsorption capacity (Qmax) of the coated biochar was 65.4 mg P g?1. Lysimeters produced mixed results, with a 74% (P?<?0.05), 51% (NS), and 30% (NS) reduction in phosphate-P from the organic 1, organic 2, and sand, respectively, while P leaching increased by 230% (NS) from the loam.

Conclusions

The findings of this study indicate that P leached from organic arable soils can be greater than from mineral soils, and therefore, these organic soils require further investigation into reducing their P losses. Metal-enriched biochar, applied as an adsorptive layer below the topsoil, has the potential to reduce P losses from medium- to high-P organic soils but appear to be less useful in mineral soils.

  相似文献   

4.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

5.
《Applied soil ecology》2006,31(1-2):53-61
Two soils from a secondary tropical forest at La Union, Philippines, predominantly vegetated with Swietenia marcrophylla and Gmelina arborea were amended with different leaf litter types (Eucalyptus camaldulensis, S. macrophylla, G. arborea, and Calliandra calothyrsus) and incubated in the laboratory for 49 days at 25 °C. The experiment was carried out to elucidate the reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio. This has been measured repeatedly in tropical forest soils. In the non-amended soils, the microbial biomass C-to-N ratio of 12.1 exceeded the soil organic C-to-total N ratio of 11, while the ergosterol-to-microbial biomass C ratio of 0.14% and the ATP-to-microbial biomass C ratio of 4.1 μmol g−1 were both low. At the end of the incubation, the addition of the different leaf litter types led generally to a decrease in the microbial biomass C-to-N ratio and to an increase in the ATP-to-microbial biomass C ratio, adenylate energy charge (AEC) and especially to an increase in the ergosterol-to-microbial biomass C ratio. The increase in the ATP-to-microbial biomass C ratio and the decrease in the microbial biomass C-to-N ratio were positively related to the N concentration in the leaf litter, the increase in the ergosterol-to-microbial biomass ratio negatively. The reasons for a low ATP-to-microbial biomass C ratio and a high microbial biomass C-to-N ratio are P deficiency and probably a reduced access of soil microorganisms to N containing organic components at low soil organic C levels.  相似文献   

6.
The impact of exotic plant invasions on soil communities and nutrient cycling processes has received an increasing attention in recent years. To test whether the exotic plant invasions affect nematode communities through altering litter quality, we compared mass loss and nematode colonization during the stem litter decomposition of invasive Spartina alterniflora and native Phragmites australis in salt marshes of the Yangtze River estuary, China. Plastic drinking straws were synchronously used as controls. The addition of plant residues was found stimulating the growth of nematodes, particularly bacterial feeders on day 16 after burial. A top-down control of bacterivous nematodes by carnivores existed in nematode succession during the litter decomposition. With higher nitrogen content and lower C:N ratio, stem litter of the invasive S. alterniflora decayed faster and supported more abundant nematodes than the native P. australis. The greater nematode abundance in S. alterniflora was mainly due to two dominant genera of bacterial nematodes, namely Diplolaimelloides and Diplolaimella. Lower values of maturity index and structure index in S. alterniflora than in P. australis litter indicate that a more degraded food web condition resulted from the faster litter decay. A considerable difference in nematode community structures between two litter types only occurred in a certain period of the decomposition (from 8 to 32 days after burial), suggesting that the changes in faunal community structure are time dependent. In summary, this study confirmed the hypothesis that the invasion of S. alterniflora stimulates the growth of bacterial nematodes by producing higher quality of litter than the native P. australis. The results obtained here suggest that the invasion of exotic plant is likely to alter ecosystem functions indirectly through exerting its effect on soil decomposer communities such as nematodes.  相似文献   

7.
Allelopathy may contribute to the formation of mono-dominant stands of exotic species, but the effects of allelochemicals can be highly conditional. We explored variation in the production of phenolics in leaves, accumulation of phenolics in soils, and the inhibitory effects of soils under an aggressive invader Prosopis juliflora across a range of invaded sites and potential mechanisms by which soils alter the effects of P. juliflora leaf litter. For eight sites in Northwest India we compared the concentration of total phenolics and the seedling growth of Brassica campestris in soils from beneath P. juliflora to that in soils collected away from P. juliflora canopies. We then explored these effects in detail in soils from two sites that differed substantially in texture by germinating seeds of B. campestris in these soils amended with P. juliflora macerated leaf leachate. Finally, we tested the effects of l-tryptophan in soils from these two sites on the seedling growth of B. campestris. Across all sites soil beneath P. juliflora contained higher levels of total phenolics and suppressed the growth of B. campestris than soil that was not under P. juliflora. We observed much variation among P. juliflora-invaded sites in the total phenolic levels of soils and the degree to which they suppressed B. campestris and the concentration of phenolics in soils significantly correlated with the root length of B. campestris when grown in these soils. Soil from two sites amended with P. juliflora macerated leachate suppressed seedling growth of B. campestris, with the effect being higher in sandy soil than sandy loam soil. In soil amended with leachate the strong suppression of B. campestris corresponded with much higher total phenolic and l-tryptophan concentrations. However, in other tests l-tryptophan did not affect B. campestris. Our results indicate that the allelopathic effects of P. juliflora can be highly conditional and that variation in soil texture might contribute to this conditionality.  相似文献   

8.
Indigenous soil macroinvertebrates (moth larvae, weevil larvae, earthworms) are cardinal agents of nutrient release from litter on sub-Antarctic Marion Island (47°S, 38°′E). Their populations are threatened through predation by introduced house mice, which do not prey on an introduced slug Deroceras panormitanum. A microcosm study was carried out to explore whether slugs affect rates of carbon and inorganic nutrient mineralisation from plant litter differently to an indigenous caterpillar (larva of a flightless moth Pringelophaga marioni). Caterpillars stimulated N, Ca, Mg and K mineralisation from plant litter two to five times more than slugs did, whereas the two invertebrate types stimulated C and P mineralisation to the same degree. Consequently, ratios of C:N and N:P released from the litter were different for slugs and caterpillars. Such differences might affect peat nutrient quality and ultimately the peat accumulation-decomposition balance, an important driver of ecological succession. This suggests that slugs cannot simply replace caterpillars without consequences for ecosystem structure and functioning on the island.  相似文献   

9.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

10.
In the highly weathered soils of humid tropical forests, iron (Fe) plays a key role in ecosystem biogeochemical cycling through its interactions with carbon (C) and phosphorus (P). We used a laboratory study to explore the role of C quantity and quality in Fe reduction and associated P mobilization in tropical forest soils. Soils were incubated under an ambient atmosphere headspace (room air) with multiple levels of leaf litter leachate or acetate additions. Net Fe reduction occurred in all the treatments and at every time point. The more complex mixture of organic compounds in leaf litter leachate stimulated Fe reduction as much acetate, an easily fermentable C source. At the end of the experiment, Fe reduction was generally greater with higher C additions than in the low C additions and controls. The microbial biomass P had increased significantly suggesting rapid microbial uptake of P liberated from Fe. This occurred without increases in the available (NaHCO3) P pool. The immobilization of P by microbes during the incubation provides a P conservation mechanism in these soils with fluctuating redox potential, and may ultimately stimulate more C cycling in these highly productive ecosystems. Iron cycling appears to be an important source of P for the biota and can contribute significantly to C oxidation in upland tropical forest soils.  相似文献   

11.
Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the 14C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (<∼40‰ given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by ∼750‰ between high-14C and low-14C treatments. Assuming any difference in 14C between the high- and low-14C plots would reflect C derived from these manipulated litter additions, we estimate that <∼6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the 14C signatures of the PLFA compounds (averaging 200-220‰) is much higher that of the 2004-5 leaf litter (115‰) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from 14C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the 14C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA Δ14C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of 14C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.  相似文献   

12.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

13.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

14.
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding α-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P<0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T. pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic α-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.  相似文献   

15.
Fungal decomposition of and phosphorus transformation from spruce litter needles (Picea abies) were simulated in systems containing litter needles inoculated with individual saprotrophic fungal strains and their mixtures. Fungal strains of Setulipes androsaceus (L.) Antonín, Chalara longipes (Preus) Cooke, Ceuthospora pinastri (Fr.) Höhn., Mollisia minutella (Sacc.) Rehm, Scleroconidioma sphagnicola Tsuneda, Currah & Thormann and an unknown strain NK11 were used as representatives of autochthonous mycoflora. Systems were incubated for 5.5 months in laboratory conditions. Fungal colonization in systems and competition among strains were assessed using the reisolation of fungi from individual needles. After incubation, needles were extracted with NaOH and extracts were analysed using 31P nuclear magnetic resonance spectroscopy (NMR). Needle decomposition was determined based on the decrease in C:N ratio. Systems inoculated with the basidiomycete S. androsaceus revealed substantial decrease in C:N ratio (from 25.8 to 11.3) while the effect of ascomycetes on the C:N ratio was negligible. We suppose that tested strains of saprotrophic ascomycetes did not participate substantially in litter decomposition, but were directly involved in phosphorus transformation and together with S. androsaceus could transform orthophosphate monoesters and diesters from spruce litter needles into diphosphates, polyphosphates and phosphonates. These transformations seem to be typical for saprotrophic fungi involved in litter needle decomposition, although the proportion of individual phosphorus forms differed among studied fungal strains. Phosphonate presence in needles after fungal inoculation is of special interest because no previous investigation recorded phosphonate synthesis and accumulation by fungi. Our results confirmed that the 31P NMR spectroscopy is an excellent instrumental method for studying transformations of soil organic phosphorus during plant litter decomposition. We suggest that polyphosphate production by S. androsaceus may contribute to the phosphorus cycle in forest ecosystems because this fungus is a frequent litter colonizer that substantially participates in decomposition.  相似文献   

16.
The agricultural lands of typic tundra of the Yamal Peninsula in Russia are pastures for reindeer (Rangifer tarandus sibiricus Murr.) herds. Currently, degradation of tundra soil cover is mainly caused by mechanical impacts of tracked vehicles used in construction operations. The objective of this study was to evaluate changes in morphological, micro-structural, and physical properties of Cryozems and Cryogenic peaty soils affected by these tracked vehicles. Soil samples were taken from the surface and underlying horizons before and 5 years after four and 100 passes of tracked vehicles. Surface horizons (0–10 cm) of the undisturbed Cryozems and Cryogenic peaty soils were organogenic. Passage of tracked vehicles caused mixing of these horizons with lower sandy loam and loam mineral horizons. Properties of the organomineral horizons formed in this way differed essentially from those of the surface horizons of the undisturbed soils. Microaggregates were completely disturbed, even after only four passes of tracked vehicles. Large inter-aggregate pores disappeared and thin pores or cracks formed as a result of vehicle-induced mechanical impacts. Humification of plant residues was observed to be faster in the compacted organomineral horizons of disturbed soils compared with undisturbed ones. The organic substances formed in the compacted organomineral horizons readily moved downward within the soil profile or were lost during runoff events. High correlation coefficients of organic carbon content with both specific surface area and water retention showed that the above-mentioned organic substances were hydrophilic. Specific surface area and water retention of the disturbed soils rose with increasing organic carbon content. The results obtained in this study demonstrated a high susceptibility of Cryozems and Cryogenic peaty soils to mechanical impacts.  相似文献   

17.
Desert soils are infertile, and the ability to improve them by P-fertilization is limited by the solubility of phosphate. We aimed to understand the function of phosphate solubilizing bacteria and the mechanisms behind phosphate solubilization in desert soils. Vegetated and barren desert soils, mine spoil and a fertile temperate grassland loam were sampled. Bacteria and fungi were isolated and identified, and their phosphate-solubilizing abilities were measured in vitro. The release of plant available PO4, SO4, NO3 and NH4 from desert soils did not compare with that of a grassland soil. Desert soils had substantially lower solubilization than grassland, 162 and 99–121 µg PO4-P g?1 dry soil, respectively. Phosphate-solubilizing bacteria and fungi were inhabiting the soils. Si addition increased phosphate solubilization of fungi by 50%. The isolated microbes were shown, using 31P nuclear magnetic resonance (NMR) analysis, to rapidly take-up both intracellular and extracellular phosphate during the phosphate solubilizing process. Desert soil had potentially active microbial populations that are capable to solubilize inorganic phosphorus; S and Si as the limiting factors. Acidification as the main mechanism to solubilize mineral phosphate was not as evident in our desert soils as in former studies dealing more fertile soils.  相似文献   

18.
紫茎泽兰叶片凋落物对入侵地4 种草本植物的化感作用   总被引:5,自引:2,他引:3  
为了明确紫茎泽兰叶片凋落物对入侵地草本植物的化感作用, 研究了不同浓度紫茎泽兰叶片凋落物水提液对入侵地草本植物多年生黑麦草、白三叶、辣子草和紫花苜蓿种子萌发和幼苗生长的影响, 同时结合土培试验研究了叶片凋落物在入侵地土壤中的化感作用。结果表明, 除多年生黑麦草外, 水提液对其他3 种草本植物种子萌发均产生了显著的化感抑制作用, 且水提液的浓度越高抑制效果越强; 低浓度水提液对紫花苜蓿和辣子草的幼苗生长存在显著化感促进作用, 高浓度的水提液对除多年生黑麦草外的其他3 种植物幼苗的生长存在显著化感抑制作用, 水提液对多年生黑麦草幼苗生长的影响不显著; 土壤中按照50 g·kg-1的比例添加叶片凋落物后, 显著抑制了白三叶的生长, 而添加活性炭后, 白三叶的单株生物量相对于未添加活性炭的处理增加71.25%, 进一步证实叶片凋落物在土壤中的化感抑制作用。这说明外来入侵植物紫茎泽兰可能通过其叶片凋落物在入侵地土壤中降解, 释放化感物质, 抑制伴生植物的种子萌发和幼苗生长, 为自身创造有利的生长环境, 实现其成功入侵和扩张。  相似文献   

19.
The influence of pH was examined, over the range from 6 to 14, on the amounts of p-hydroxybenzoic, vanillic, p-coumaric, ferulic and syringic acids, p-hydroxybenzaldehyde and vanillin, extracted from four soils and associated roots or leaf litter. Adjustment of pH was obtained by the addition of graded amounts of Ca(OH)2 to water or by 2 m NaOH. The roots associated with three of the soils were from permanent pasture, perennial ryegrass and red clover, while the leaf litter associated with the fourth soil was from beech.The amounts of each phenolic compound extracted increased continuously with increasing pH, from a “threshold” value which varied between pH 7.5 and 10.5. The amounts extracted by water alone from the soil under permanent pasture, at pH 5.8, were equivalent to concentrations in the soil solution ranging from 1.4 μm for p-hydroxybenzoic acid to < 10 nm for ferulie acid. Amounts of up to 2000 times greater than these were extracted by 2 m NaOH. Similar effects of extractant pH were found with the other soils.Comparisons of the amounts of the phenolic compounds extracted from the soils, with the amounts extracted from the associated roots or leaf litter, suggested that substantial proportions of the soil phenolic compounds were either derived from organic residues more than 4 yr old or were the result of microbial synthesis.  相似文献   

20.
Seven most efficient phytase and phosphatases producing fungi were isolated from the soils of arid and semi-arid regions of India and tested for their efficiency on hydrolysis of two important organic P compounds: phytin and glycerophosphate. The native soil organic P may be exploited after using these organisms as seed inoculants, to help attain higher P nutrition of plants. The identified organisms belong to the three genera: Aspergillus, Emmericella and Penicillium. Penicillium rubrum released the most acid into the medium during growth. Aspergillus niger isolates were found to accumulate biomass the fastest. A significant negative correlation (r=−0.593,n=21, p<0.01) was observed between the development of fungal mat and pH of the media. The extracellular (E) phosphatases released by different fungi were less than their intracellular (I) counterpart, but the trend was reversed in case of phytase production. The E:I ratio of different fungi ranged from 0.39 to 0.86 for acid phosphatase, 0.29 to 0.41 for alkaline phosphatases and 9.4 to 19.9 for phytase. The efficiency of hydrolysis of different organic P compounds of different fungi varied from 2.12-4.85 μg min−1 g−1 for glycerophosphate to 0.92-2.10 μg min−1 g−1 for phytin. The trend of efficiency was as follows: Aspergillus sp.>Emmericella sp.>Penicillium sp. The results indicated that the identified fungi have enough potential to exploit native organic phosphorus to benefit plant nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号