首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Race specific powdery mildew resistance in 23 winter wheat cultivars, eight spring wheat cultivars, and 14 lines/cultivars possessing known powdery mildew resistance genes, has been studied by analyzing host/pathogen interactions. The cultivars were tested as intact seedlings, and as detached primary leaf segments on water agar; both methods revealed reproducible and concordant results. The 45 cultivars/lines were divided into 24 resistance spectra according to the patterns of reaction to the powdery mildew isolates used. Of the 31 cultivars investigated, eight did not possess any of the resistance genes detected, and the remaining 23 were divided in 16 resistance spectra. The race specific resistance of nine cultivars was conferred by the single resistance genes Pm2, Pm4b, Pm5/Ml-i: or Pm6, while the race specific resistance of 14 cultivars was conferred by 2, 3, 4 or 5 genes in combination.  相似文献   

2.
The objective of the study was to provide information about the occurrence and distribution of resistance genes in wheat cultivars, including old cultivars, land races and advanced breeding lines grown in China. Ninety-four accessions were analysed with a set of 11 differential powdery mildew isolates. Forty-four cultivars did not possess any major mildew resistance genes. Thirty cultivars revealed the response pattern of individual resistance genes. The most frequently encountered gene was Pm8, which occurred singly in 11 cultivars, combined either with Pm4a in three cultivars or with Pm4b in another three cultivars. However, 12 cultivars possessing the wheat-rye translocated chromosome pair T1BL-1RS did not express Pm8. Gene Pm2 was found in four cultivars and in combination with Pm6 in one cultivar. Genes Pm4a and Pm4b were observed in four and five cultivars, respectively. Another six cultivars carried Pm5. A gene combination of Pm2+Pm4b+Pm6 was found in one cultivar. Twelve cultivars and breeding lines exhibited a response pattern that could not be assigned to resistance genes or gene combinations present in the differential cultivars. Five out of these 12 cultivars/lines showed resistance to all the isolates tested. There is an urgent need to search for novel sources of mildew resistance in order to sustain resistance to existing and emerging powdery mildew pathogens.  相似文献   

3.
小麦地方品种小白冬麦抗白粉病基因分子标记   总被引:1,自引:0,他引:1  
薛飞  翟雯雯  段霞瑜  周益林  吉万全 《作物学报》2009,35(10):1806-1811
小麦农家品种小白冬麦对小麦白粉病具有良好抗性,对病原菌拥有较广的抗谱,并与其他已知抗白粉病基因的抗谱不同,遗传分析证实小白冬麦的苗期抗性由一个隐性抗白粉病基因控制。为了寻找与小白冬麦所携带抗白粉病基因连锁的分子标记,采用小白冬麦和感病品种Chancellor(CC)正反交组合,在2个F2群体125和107个单株上进行验证。结果显示,抗白粉病基因mlxbd与引物Xgwm577、Xgwm1267等紧密连锁,通过中国春及其第7部分同源群缺体-四体系,双端体系和缺失系将其定位在7B染色体长臂末端区域(7BL-10,Bin 0.78~1.00), 利用与mlxbd最近的引物Xgwm577扩增23个含有已知抗白粉病基因的小麦品种,检测发现这个引物不能单独用于分子标记辅助选择育种。  相似文献   

4.
利用华北地区流行的白粉菌菌株E09和E20,分别对河南省小麦新品种(系)区域和预备试验参试材料908份(2009—2013年度)和412份(2009—2012年度)进行苗期白粉病抗性鉴定,同时利用与Pm2、Pm4a、Pm8和Pm21基因连锁的分子标记检测相关抗病基因的分布。结果显示,抗E09的材料占21.9%(199/908),抗E20的材料占9.5%(39/412),同时抗E09和E20的材料仅占3.6%(15/412)。在908份供试材料中,580份含有1BL/1RS,占63.9%,含Pm8或新的1RS来源抗白粉病基因;另有2份材料含6AL/6VS来源广谱抗白粉病基因Pm21,8份可能携带Pm2,2份可能含有Pm4a;有6份材料可能含有多个抗白粉病基因。表明河南省近年育成的小麦新品种(系)依然含有对我国白粉菌菌系有效的抗白粉病基因,但抗源遗传基础较窄,部分已经或正在丧失抗性,应加快引进和利用新的多样化抗病基因资源。  相似文献   

5.
12个小麦品种(系)白粉病抗性的遗传分析   总被引:4,自引:3,他引:1  
利用17个不同来源和毒力的白粉菌菌株对12个小麦品种(系)进行苗期抗性鉴定和抗病性遗传分析,同时利用Pm2和Pm8基因的特异分子标记检测了相应基因。供试的12个品种至少能够抗11个白粉菌菌株。用E09、E20和Bg2菌株接种F2群体,抗感植株分离比例和适合性测验证明这12个品种对不同白粉菌菌株的抗性均受1对显性基因控制。抗谱分析和基因紧密连锁分子标记(Xcfd81)分析表明良星66很可能含有Pm2或其等位基因。ω-黑麦碱基因(1RS染色体)和Glu-B1基因(1BS染色体)特异分子标记分析结果证明,山农20和郑麦9962含有T1BL·1RS易位染色体,即可能携带Pm8基因。由于Pm8基因对大多数菌株表现感病,所以这2个品种除Pm8外,还具有其他抗病基因。偃展4110与天民668对参试菌株的反应型表现一致,其他材料对不同菌株的反应型表现不同。  相似文献   

6.
TIBL-1RS wheat-rye translocation cultivars utilized in wheat programmes worldwide carry powdery mildew resistance gene Pm8. Cultivar‘Amigo’possesses resistance gene Pm17 on its TIAL-1RS translocated chromosome. To be able to use Pm17efficiently in breeding programmes, this gene was transferred to a TIBL-1RS translocation in line Helami-105, and allelism between Pm8 and Pm17was studied. The progenies of the hybrids in the F2 generation and F3 families provided evidence that the two genes are allelic. Genetic studies using monosomic analyses confirmed that in cultivar‘Amigo', Pm17 and leaf rust resistance gene Lr24 are located on a translocated chromosome involving 1 A and 1B, respectively.  相似文献   

7.
X. M. Chen    Y. H. Luo    X. C. Xia    L. Q. Xia    X. Chen    Z. L. Ren    Z. H. He    J. Z. Jia 《Plant Breeding》2005,124(3):225-228
The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.  相似文献   

8.
L. Szunics  Lu. Szunics  G. Vida  Z. Bedő  M. Svec 《Euphytica》2001,119(1-2):145-149
Important microevolutional processes have taken place in the wheatpowdery mildew population over the last thirty years. There has been aconsiderable change in the race composition of the pathogen populationand in the prevalent races. Of the 78 races identified, only eleven have`lived' for more than 15 years. Many races were only isolated in one ortwo years. The number of virulence genes rose from 2.03 in 1973 to 5.63in 1993. On the basis of race composition and virulence the wheatpowdery mildew population between 1971 and 1999 can be divided intofour distinct groups. A large proportion of the powdery mildew isolates arevirulent to most resistance genes. Complete resistance is provided byresistance genes Pm4a (Khapli) and partial resistance by Pm2 + Mld (Halle st. 13471), Pm4b+ (TP 315/2) and Pm1 + 2 + 9 (Normandie). The majority of cultivated varieties carry theresistance gene Pm8 due to the presence of the 1B/1R translocation.  相似文献   

9.
Molecular mapping of powdery mildew resistance genes in wheat: A review   总被引:40,自引:3,他引:40  
Powdery mildew, caused by Blumeria graminis f. sp. tritici (syn. Erysiphe graminis f. sp. tritici), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Molecular mapping and cloning of genes for resistance to powdery mildew in hexaploid wheat will facilitate the study of molecular mechanisms underlying resistance to powdery mildew diseases and help understand the structure and function of powdery mildew resistance genes, and permit marker-assisted selection in breeding programs. So far, 48 genes/alleles for resistance to powdery mildew at 32 loci have been identified and located on 16 different chromosomes, of which 21 resistance genes/alleles have been tagged by restriction fragment length polymorphisms (RFLPs), random-amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), sequence characterized amplified regions (SCARs), sequence-tagged sites (STS) or simple sequence repeats (SSRs). Several quantitative trait loci (QTLs) for adult plant resistance (APR) to powdery mildew have been associated with molecular markers. The detailed information on chromosomal location and molecular mapping of these genes has been reviewed. Isolation of powdery mildew resistance genes and development of valid molecular markers for pyramiding resistance genes in breeding programs is also discussed.  相似文献   

10.
普通小麦品系DH155对白粉病菌表现高抗。为明确DH155所携带抗白粉病基因的遗传方式及与抗病基因连锁SSR标记,利用DH155与高感小麦品系SN2890杂交获得的F2和F2:3群体进行接种鉴定和遗传分析,发现DH155对白粉菌菌株E09的抗性受1对显性基因控制,暂命名为Ml DH155。BSA和分子标记分析结果显示,Ml DH155与SSR标记Xcfd81和Xcfd18连锁。利用已发表的中国春和粗山羊草D基因组序列开发新标记,进一步将Ml DH155定位于标记Xsdau K525和Xsdau K527之间,其遗传距离分别为0.2 c M和0.8 c M。将DH155与感白粉病优良品系HB133-4和旱10杂交,在F2~F4代,结合优良农艺性状选择、分子标记辅助选择和抗白粉病鉴定,获得3个高抗白粉病且农艺性状优异的株系(SDAU2100、SDAU2101和SDAU2102)。利用14个白粉菌菌株对DH155进行苗期接种鉴定表明,DH155对13个菌株表现抗病反应型。这些菌株对DH155的毒力谱与已知抗白粉病基因Pm2相似,但DH155对Bg78-3和Bg44-5菌株的反应型与携带Pm2的Ulka/8*Cc不同。结合本试验结果和Pm2基因的相关报道,推测Ml DH155可能是Pm2或其等位基因。  相似文献   

11.
利用双向电泳技术,分析了高感白粉病和对白粉病表现免疫的2种小麦在接种白粉病菌前后的叶片蛋白的变化。结果表明:无论抗病小麦Pm3b还是易感小麦Chancellor,在白粉菌接种前后,叶片蛋白都有明显变化。都有部分蛋白消失。对于抗病小麦Pm3b,在白粉病菌接种后,在电泳图谱上还发现诱导产生许多新的叶片蛋白。经统计,在白粉菌接种后,抗病小麦Pm3b的叶片诱导产生至少20个新蛋白。推测可能与小麦受白粉病菌诱导后一些抗性蛋白大量表达有关。  相似文献   

12.
13.
Summary The current powdery mildew (Sphaerotheca fuligninea) resistant cucumber varieties suffer from leaf chlorosis during autumn, winter and early spring cultivation in the Netherlands. Therefore screening was carried out for novel powdery mildew resistance genes. From 177 accessions, derived from different sources, 108 accessions proved to be partially resistant to S. fuliginea. Crosses were made with 53 resistant accessions to distinguish the presence of novel genes. It is likely that the accessions C. sativus 2145, C. sativus LV 41, PI 188807, Vladivostokij, White and Yellow 1 have one or more recessive powdery mildew resistance genes, different from powdery mildew resistance genes of the line NPI, which was used for variety breeding. Powdery mildew resistance tests with S. fuliginea give similar results in different regions of the world.Abbreviations pmr powdery mildew resistance  相似文献   

14.
规模化定位小麦品种携带的抗白粉病基因对于抗病性种质创新和新品种选育具有重要的意义。本研究采用Illumina Infinium iSelect 90k SNP芯片结合集群分离分析法(bulked segregate analysis,BSA)对36个河南省小麦新品系携带的抗白粉病基因进行了定位。SNP芯片检测表明,在24个小麦品系构建的抗、感池DNA间可检测到一个明显富集的SNP峰,表明其可能携带单一主效抗白粉病基因;在其他12个小麦品系构建的抗、感池DNA间可检测到多个SNP峰,推测其可能含多个抗白粉病基因。有26个小麦品系在2AL染色体上检测到的SNP数目最多,推测其携带位于2AL染色体上的Pm4b抗白粉病基因。开发出与2AL染色体上抗白粉病基因紧密连锁的分子标记Xwggc116,可用于这些小麦品系中抗白粉病基因的分子检测。研究结果表明高通量SNP分析技术平台可以用来规模化定位小麦品种中的抗白粉病基因,明确了河南省抗白粉病小麦品系中携带Pm2、Pm4b、Pm21和新1BL/1RS易位等有限的抗白粉病基因,抗病基因资源非常狭窄,亟需引进新的多样化抗病基因资源,拓宽遗传基础,培育抗病小麦新品种。  相似文献   

15.
分子标记辅助选择小麦抗白粉病基因Pm2、Pm4a、Pm21 的聚合体   总被引:19,自引:0,他引:19  
利用与小麦抗白粉病基因Pm2、Pm4a和Pm21紧密连锁的PCR标记,对含有Pm2、Pm4a和Pm21的小麦品系复合杂交后代经3轮分子标记选择,得到了一批聚合有Pm2+Pm4a+Pm21 3个基因的抗病植株,以及若干株Pm2+Pm21、Pm4a+Pm21和Pm2+Pm4a 2个基因聚合的植株。同时,还对中选植株进行抗病性人工接种鉴定。结果表明,含有Pm21的聚合体与Pm21基因单独存在时抗性相当,均对白粉病免疫,聚合体Pm2+Pm4a的抗性好于Pm2或Pm4a单独存在时的抗性。为降低分子标记选择成本,将检测Pm4a和Pm21的2种PCR放在一个反应体系中进行,扩增产物经1次电泳,可同时检测出Pm4a和Pm21,不同引物之间没有明显交叉扩增现象。  相似文献   

16.
C. XIE  Q. SUN  Z. NI  T. YANG  E. NEVO  T. FAHIMA 《Plant Breeding》2004,123(2):198-200
Specific oligonucleotide primers, designed for the sequences of known plant disease resistance genes, were used to amplify resistance gene analogues (RGAs) from wheat genomic DNA. This method was applied in a bulked segregant analysis to screen for the RGA markers linked to the powdery mildew resistance gene Pm31, introgressed into common wheat from wild emmer. Two RGA markers (RGA200 and RGA390) were found to be closely linked to Pm31 and completely co‐segregating with the marker allele of Xpsp3029 linked to Pm31, with a genetic distance of 0.6 cM. These two RGA markers were then integrated into the formerly established microsatellite map of Pm31 region. The result showed the effectiveness of the RGA approach for developing molecular markers linked to disease resistance genes and demonstrated the efficiency of denaturing polyacrylamide‐gel electrophoresis for detecting polymerase chain reaction polymorphism.  相似文献   

17.
The inheritance of the powdery mildew resistance gene Pm9 originating from the hexaploid spring wheat cultivar ‘Normandie’ was analyzed in relation to Pm1 and Pm2. Two leaf segments of individual P1?, P2?, F1? and F2-plants of the cross ‘Normandie’ (Pm1, 2, 9) בFederation’ (no known Pm gene) were inoculated separately with two powdery mildew isolates. Using powdery mildew isolate No. 6 virulent for Pm1 and Pm2 but avirulent for Pm9, a 1 resistant (r): 3 susceptible (s) F2-segregation was found for the Pm9 gene. Using powdery mildew isolate No. 3 virulent for Pm1 and Pm9 but avirulent for Pm2, a 3 (r): 1 (s) F2-segregation was found for the Pm2 gene. Combining the data of both experiments (leaf segments of identical plants had been used), a 9 (sr): 3 (ss): 3 (rr): 1 (rs) segregation resulted for the F2 of this cross: therefore, independent inheritance of the genes Pm2 and Pm9 can be concluded. Similarly, the cross ‘Mephisto’ (Pm1, 2, 9) בAmor’ (no known Pm gene) was analyzed. The Pm9 gene again showed a monogenically recessive inheritance, whereas Pm1 showed a monogenically intermediate segregation upon inoculation with powdery mildew isolate No. 9a virulent for Pm2 and Pm9 but avirulent for Pm1. Combining the single gene segregations, linkage between both genes was found among the progenies. A distance of 8.5 cM was calculated. Analyzing a set of spring wheat cultivars with seven defined powdery mildew isolates, the presence of Pm1, Pm2 and Pm9 in these lines was verified; in most cases, Pm1 occurred together with Pm9.  相似文献   

18.
An Israeli accession (TTD140) of wild emmer, Triticum turgidum var. dicoccoides, was found resistant to several races of powdery mildew. Inoculation of the chromosome-arm substitution lines (CASLs) of TTD140, in the background of the Israeli common wheat cultivar ‘Bethlehem’ (BL), with five isolates of powdery mildew revealed that only the line carrying the short arm of chromosome 2B of wild emmer (CASL 2BS) exhibited complete resistance to four of the five isolates. To map and tag the powdery mildew resistance gene, 41 recombinant substitution lines, derived from a cross between BL and CASL 2BS, were used to construct a linkage map at the gene region. The map, which encompasses 69.5 cM of the distal region of chromosome arm 2BS, contains six RFLP markers, a morphological marker (glaucousness inhibitor, W1 I), and the powdery mildew resistance gene. Segregation ratios for resistance in F2 of BL × CASL 2BS and in the recombinant lines, combined with the susceptability of F1 progeny to all tested isolates, indicate that resistance is controlled by a single recessive allele. This alleleco-segregated with a polymorphic locus detected by the DNA marker Xwg516, 49.4 cM from the terminal marker Xcdo456. The new powdery mildew resistance gene was designated Pm26. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
小麦多基因聚合体YW243的改良与利用   总被引:1,自引:0,他引:1  
YW243是兼抗白粉、黄矮、三锈5种病害的普通小麦新种质。将其与农艺性状优良的丰产品种进行回交转育,选育出丰产、抗病的小麦新品系CB031、CB032、CB034和CB035。对这些新品系与YW243及回交亲本的抗性、品质、丰产性进行鉴定、比较分析,并用分子标记解析它们抗病性的遗传基础及其决定品质的高分子量麦谷蛋白亚基组成。结果表明,CB031是抗白粉病高产小麦新品系,至少含抗白粉病基因Pm2+6和高分子量麦谷蛋白亚基1, 7+9, 2+12;CB032和 CB034均为白粉病、条锈病免疫的小麦新品系,CB032至少含抗白粉病基因Pm2+Pm4+Pm21、抗条锈病基因YrX 4个基因和高分子量麦谷蛋白亚基7+9, 2+12;CB034至少含Pm21基因和高分子量麦谷蛋白亚基7+9, 5+10;CB035为免疫白粉病的优质小麦新品系,至少含Pm2+6+Pm21基因和高分子量麦谷蛋白亚基7+8, 2+12。CB031、CB032、CB034和CB035的穗粒性状、千粒重和秆高等农艺性状均较YW243有所改善。YW243是一个优良性状易于遗传、不良性状易于改造的育种亲本,有良好的应用前景。  相似文献   

20.
J. Lutz    E. Limpert    P. Barto&#;  F. J. Zeller 《Plant Breeding》1992,108(1):33-39
Major genes for resistance to powdery mildew were analysed in 24 Czechoslovakian wheat cultivars and, in part, in their parents. For this purpose individual isolates of the pathogen, able to differentiate host lines with known resistance genes, were selected. Eight of nineteen winter wheat cultivars do not possess any major resistance gene. Three cultivars have one and seven have two genes. One cultivar carries a combination of three genes (Pm2, Pm4b, Pm8). The most common resistance genes are Pm4b, Pm5 and Pm8. Pm2 is once combined with Pm6. Only one of five spring cultivars lacked a major resistance gene. Mlk is once present alone and twice combined with Pm5. There is one spring cultivar with a novel combination of three genes: Pm1, Pm5 and another gene needing further characterization. The observations are discussed with additional results of parent lines and further information on pedigrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号