首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Analysis of spatial-temporal variations of desert vegetation under the background of climate changes can provide references for ecological restoration in arid and semi-arid areas.In this study,we used the Global Inventory Modeling and Mapping Studies(GIMMS)NDVI data from 1982 to 2006 and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI data from 2000 to 2013 to reveal the dynamics of desert vegetation in Hexi region of Northwest China over the past three decades.We also used the annual temperature and precipitation data acquired from the Chinese meteorological stations to analyze the response of desert vegetation to climatic variations.The average value of NDVImax(the maximum NDVI during the growing season)for desert vegetation in Hexi region increased at the rate of 0.65×10–3/a(P0.05)from 1982 to 2013,and the significant increases of NDVImax mainly appeared in the typical desert vegetation areas.Vegetation was significantly improved in the lower reaches of Shule and Shiyang river basins,and the weighted mean center of desert vegetation mainly shifted toward the lower reaches of the two basins.Almost 95.32% of the total desert vegetation area showed positive correlation between NDVImax and annual precipitation,indicating that precipitation is the key factor for desert vegetation growth in the entire study area.Moreover,the areas with non-significant positive correlation between NDVImax and annual precipitation mainly located in the lower reaches of Shiyang and Shule river basins,this may be due to human activities.Only 7.64% of the desert vegetation showed significant positive correlation between NDVImax and annual precipitation in the Shule River Basin(an extremely arid area),indicating that precipitation is not the most important factor for vegetation growth in this basin,and further studies are needed to investigate the mechanism for this phenomenon.  相似文献   

2.
Coal mining has led to serious ecological damages in arid desert region of Northwest China. However, effects of climatic factor and mining activity on vegetation dynamics and plant diversity in this region remain unknown. Wuhai City located in the arid desert region of Northwest China is an industrial city and dominated by coal mining. Based on Landsat data and field investigation in Wuhai City, we analyzed the vegetation dynamics and the relationships with climate factors, coal mining activity and ecological restoration projects from 2000 to 2019. Results showed that vegetation in Wuhai City mostly consisted of desert plants, such as Caragana microphylla, Tetraena mongolica and Achnatherum splendens. And the vegetation fractional coverage(VFC) and greenness rate of change(GRC) showed that vegetation was slightly improved during the study period. Normalized difference vegetation index(NDVI) was positively correlated with annual mean precipitation, relative humidity and annual mean temperature, indicating that these climate factors might play important roles in the improved vegetation. Vegetation coverage and plant diversity around the coal mining area were reduced by coal mining, while the implementation of ecological restoration projects improved the vegetation coverage and plant diversity. Our results suggested that vegetation in the arid desert region was mainly affected by climate factors, and the implementation of ecological restoration projects could mitigate the impacts of coal mining on vegetation and ecological environment.  相似文献   

3.
This study investigated the seasonal variations of the normalized difference vegetation index(NDVI) and its relationships with climatic variables and topography in a small-scale(20 km×20 km) area(i.e., Tsogt-Ovoo village) within the desert steppe zone of Mongolia using in-situ observed climate data and satellite remote sensing data. We found that the topography is very important for vegetation growth in the desert steppe although the summer precipitation is the constraining factor. The unexpectedly high NDVI(up to 0.56), as well as the high aboveground biomass, in the valley bottom was primarily resulted from the topography-modulated redistribution of overland flow after relatively heavy precipitation events during the growing season. This makes the valley bottoms in desert steppes not only reliable feeding resources for livestock but also heavens for wild lives. But, the detected large standard deviation of annual maximum NDVI(NDVI_(max)) from 2000 to 2013 in the valley bottom in response to rather variable precipitation implies that the valley bottoms under desert steppe climates are more vulnerable to climatic change.  相似文献   

4.
Grassland degradation is influenced by climate change and human activities, and has become a major obstacle for the development of arid and semi-arid areas, posing a series of environmental and socio-economic problems. An in-depth understanding of the inner relations among grassland vegetation dynamics, climate change, and human activities is therefore greatly significant for understanding the variation in regional environmental conditions and predicting future developmental trends. Based on MODIS (moderate resolution imaging spectroradiometer) NDVI (normalized difference vegetation index) data from 2000 to 2020, our objective is to investigate the spatiotemporal changes of NDVI in the Xilin Gol grassland, Inner Mongolia Autonomous Region, China. Combined with 12 natural factors and human activity factors in the same period, the dominant driving factors and their interactions were identified by using the geographic detector model, and multiple scenarios were also simulated to forecast the possible paths of future NDVI changes in this area. The results showed that: (1) in the past 21 a, vegetation cover in the Xilin Gol grassland exhibited an overall increasing trend, and the vegetation restoration (84.53%) area surpassed vegetation degradation area (7.43%); (2) precipitation, wind velocity, and livestock number were the dominant factors affecting NDVI (the explanatory power of these factors exceeded 0.4). The interaction between average annual wind velocity and average annual precipitation, and between average annual precipitation and livestock number greatly affected NDVI changes (the explanatory power of these factors exceeded 0.7). Moreover, the impact of climate change on NDVI was more significant than human activities; and (3) scenario analysis indicated that NDVI in the Xinlin Gol grassland increased under the scenarios of reduced wind velocity, increased precipitation, and ecological protection. In contrast, vegetation coverage restoration in this area was significantly reduced under the scenarios of unfavorable climate conditions and excessive human activities. This study provides a scientific basis for future vegetation restoration and management, ecological environmental construction, and sustainable natural resource utilization in this area.  相似文献   

5.
Vegetation dynamics and its response to climate change in Central Asia   总被引:1,自引:0,他引:1  
YIN Gang 《干旱区科学》2016,8(3):375-388
The plant ecosystems are particularly sensitive to climate change in arid and semi-arid regions. However, the responses of vegetation dynamics to climate change in Central Asia are still unclear. In this study, we used the normalized difference vegetation index(NDVI) data to analyze the spatial-temporal changes of vegetation and the correlation of vegetation and climatic variables over the period of 1982–2012 in Central Asia by using the empirical orthogonal function and least square methods. The results showed that the annual NDVI in Central Asia experienced a weak increasing trend overall during the study period. Specifically, the annual NDVI showed a significant increasing trend between1982 and 1994, and exhibited a decreasing trend since 1994. The regions where the annual NDVI decreased were mainly distributed in western Central Asia, which may be caused by the decreased precipitation. The NDVI exhibited a larger increasing trend in spring than in the other three seasons. In mountainous areas, the NDVI had a significant increasing trend at the annual and seasonal scales; further, the largest increasing trend of NDVI mainly appeared in the middle mountain belt(1,700–2,650 m asl). The annual NDVI was positively correlated with annual precipitation in Central Asia, and there was a weak negative correlation between annual NDVI and temperature. Moreover, a one-month time lag was found in the response of NDVI to temperature from June to September in Central Asia during 1982–2012.  相似文献   

6.
榆林地区植被指数动态变化及其对气候和人类活动的响应   总被引:1,自引:0,他引:1  
榆林地区是中国典型生态脆弱区,植被生态系统对气候变化和人类活动影响较为敏感。以榆林地区2000—2015年MODIS NDVI为基础,结合气温、降水数据,利用线性趋势法、相关系数、偏相关系数及缓冲区方法,分析了区域NDVI(归一化差异植被指数)动态变化及其对气候和人类活动的响应,结果表明:(1)榆林地区总体上NDVI较小,植被覆盖水平较低。2000—2015年NDVI以每年0.009 6的线性速率递增,空间上主要表现出线性增加趋势,占总面积的97.06%,减少趋势面积较小且主要与人类活动有关,分布在区域西南部山区、城镇附近及中、东部的河流谷地。(2)相关分析表明,榆林地区NDVI与气温以负相关为主,而与降水以正相关为主,反映出干旱、半干旱地区水分是植物生长的主导因子。(3)NDVI变化过程反映出人类活动范围中,市级行政中心缓冲区人类活动强度高于县级行政中心缓冲区。市级行政中心缓冲区范围可划分为5 km以内受人类活动剧烈影响区域、5~9km受人类活动影响递减区域和9 km以外未受人类活动影响区域。  相似文献   

7.
Climate change and human activities can influence vegetation net primary productivity (NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural values, is one of the most susceptible regions to climate change and human disturbancesin the world. To assess the impact of climate change and human activities on vegetation dynamics in the grassland ecosystems ofthe northeastern Qinghai-Tibet Plateau, we applied a time-series trend analysis to normalized difference vegetation index (NDVI) datasets from 2000 to 2015 and compared these spatiotemporal variations with trends in climatic variables over the same time period. The constrained ordination approach (redundancy analysis) was used to determine which climatic variables or human-related factors mostly in?uenced the variation of NDVI. Furthermore, in order to determine whether current conservation measures and programs are effectivein ecological protection and reconstruction, we divided the northeastern Qinghai-Tibet Plateau into two parts: the Three-River Headwater conservation area (TRH zone) in the south and the non-conservation area (NTRH zone) in the north. The results indicatedan overall (73.32%)increasing trend of vegetation NPP in grasslands throughout the study area. During the period 2000-2015, NDVI in the TRH and NTRH zones increased at the rates of 0.0015/aand 0.0020/a, respectively.Specifically, precipitation accounted for 9.2% of the total variation in NDVI, while temperature accounted for 13.4%. In addition, variation in vegetation NPP of grasslands responded not only to long- and short-term changes in climate, as conceptualized in non-equilibrium theory, but also to the impact of human activities and their associated perturbations. The redundancy analysis successfully separated the relative contributions of climate change and human activities, of whichvillage populationand agricultural gross domestic product were the two most important contributors to the NDVI changes, explaining 17.8% and 17.1% of the total variationof NDVI (with the total contribution >30.0%), respectively. The total contributionpercentages of climate change and human activitiesto the NDVI variation were27.5% and 34.9%, respectively, inthe northeastern Qinghai-Tibet Plateau. Finally, our study shows that the grassland restoration in the study area was enhanced by protection measures and programs in the TRH zone, which explained 7.6% of the total variation in NDVI.  相似文献   

8.
Net primary productivity(NPP), as an important variable and ecological indicator in grassland ecosystems, can reflect environmental change and the carbon budget level. The Ili River Valley is a wetland nestled in the hinterland of the Eurasian continent, which responds sensitively to the global climate change. Understanding carbon budget and their responses to climate change in the ecosystem of Ili River Valley has a significant effect on the adaptability of future climate change and sustainable development. In this study, we calculated the NPP and analyzed its spatio-temporal pattern of the Ili River Valley during the period 2000–2014 using the normalized difference vegetation index(NDVI) and an improved Carnegie-Ames-Stanford(CASA) model. Results indicate that validation showed a good performance of CASA over the study region, with an overall coefficient of determination(R2) of 0.65 and root mean square error(RMSE) of 20.86 g C/(m~2·a). Temporally, annual NPP of the Ili River Valley was 599.19 g C/(m~2·a) and showed a decreasing trend from 2000 to 2014, with an annual decrease rate of –3.51 g C/(m~2·a). However, the spatial variation was not consistent, in which 55.69% of the areas showed a decreasing tendency, 12.60% of the areas remained relatively stable and 31.71% appeared an increasing tendency. In addition, the decreasing trends in NPP were not continuous throughout the 15-year period, which was likely being caused by a shift in climate conditions. Precipitation was found to be the dominant climatic factor that controlled the inter-annual variability in NPP. Furthermore, the correlations between NPP and climate factors differed along the vertical zonal. In the medium-high altitudes of the Ili River Valley, the NPP was positively correlated to precipitation and negatively correlated to temperature and net radiation. In the low-altitude valley and high-altitude mountain areas, the NPP showed a negative correlation with precipitation and a weakly positive correlation with temperature and net radiation. The results suggested that the vegetation of the Ili River Valley degraded in recent years, and there was a more complex mechanism of local hydrothermal redistribution that controlled the growth of vegetation in this valley ecosystem.  相似文献   

9.
In this paper,10-day spatio-temporal response of vegetation to the change of temperature and precipitation in spring,summer,autumn and whole year during the period of 1998―2009 was analyzed based on the data of SPOT VEGETATION-NDVI and 10-day average temperature or precipitation from 54 meteorological stations in Xinjiang.The results show that the response of 10-day NDVI to temperature was more significant than that to precipitation,and the maximal response of vegetation to temperature and precipitation lagged for two 10-day periods.Seasonally,the effect of temperature and precipitation on vegetation NDVI was most marked in autumn,then in spring,and it was not significant in summer.The response of vegetation to 10-day change of meteorological factors was positive with a long affecting duration in spring,and it had a relatively short affecting duration in autumn and summer.Spatially,the 10-day maximal response of NDVI to temperature in northern Xinjiang was higher than that in southern Xinjiang.The correlation between the 10-day NDVI in whole year and the temperature in the 0-8th 10-day period was significantly higher than that between the annual NDVI and the annual temperature at all meteorological stations;the interannual change of NDVI was accordant well with the change of annual precipitation.However,the effect of precipitation within a year on NDVI was not strong.The results indicated that interannual change of temperature was not the dominant factor affecting the change of vegetation NDVI in Xinjiang,but the decrease of annual precipitation was the main factor resulting in the fluctuation of vegetation coverage.Ten-day average temperature was an important factor to promote vegetation growth in Xinjiang within a year,but the effect of precipitation on vegetation growth within a year was not strong.  相似文献   

10.
ZHOU Lei 《干旱区科学》2016,8(1):109-124
The climatically sensitive Qinghai province of China has been recognized as a hotspot for studies on the feedbacks of terrestrial ecosystems to global climate change. Thus, investigating vegetation coverage and its natural drivers in Qinghai is an important focus of ecosystem research. On the basis of Moderate Resolution Imaging Spectroradiometer(MODIS) Enhanced Vegetation Index(EVI) time series data, we estimated the vegetation coverage in this region using the dimidiate pixel model. Trend analyses, correlations between meteorological parameters, changes in vegetation coverage, and the temporal and spatial relationships between soil texture and vegetation coverage were used to investigate the possible drivers of vegetation coverage variations. The results indicated that the reduction of vegetation coverage slowed down in the period from 2000 to 2012. Annual mean temperature was the main climatic driver of the total extremely low and low vegetation coverage areas in Qinghai, followed by the precipitation anomalies. The extremely low and low vegetation coverage areas were mainly distributed in regions with a mean annual relative air humidity of <40% and the spatial distributions of these two area types differentiated along the 200-mm rainfall contours. The total extremely low and low vegetation coverage areas were mainly characterized by sandy clay loam soil, followed by loamy sand and sandy soil. Regions with sandy loam or loam soil have the greatest risk of vegetation coverage reductions. Knowledge of vegetation coverage variation and its natural drivers in the ecologically fragile region of Qinghai can provide scientific support for managing environmental change and desertification.  相似文献   

11.
HE Guohua 《干旱区科学》2019,11(6):939-953
Land evapotranspiration (ET) is an important process connecting soil, vegetation and the atmosphere, especially in regions that experience shortage in precipitation. Since 1999, the implementation of a large-scale vegetation restoration project has significantly improved the ecological environment of the Loess Plateau in China. However, the quantitative assessment of the contribution of vegetation restoration projects to long-term ET is still in its infancy. In this study, we investigated changes in land ET and associated driving factors from 1982to 2014 in the Loess Plateau using Budyko-based partial differential methods. Overall, annual ET slightly increased by 0.28 mm/a and there were no large fluctuations after project implementation. An attribution analysis showed that precipitation was the driving factor of inter-annual variability of land ET throughout the study period; the average impacts of precipitation, potential evapotranspiration, and vegetation restoration on ET change were 61.5%, 11.5% and 26.9%, respectively. These results provide an improved understanding of the relationship between vegetation condition change and climate variation on terrestrial ET in the study area and can support future decision-making regarding water resource availability.  相似文献   

12.
基于SPOT/NDVI华北地区植被变化动态监测与评价   总被引:4,自引:0,他引:4  
利用1998-2011年SPOT NDVI数据反映华北地区植被覆盖变化情况,结合该地区土地覆盖数据以及1982-2011年84个气象站点的气温和降水数据,分别从时间和空间两个方面对其进行植被动态监测与评价,并简要分析其变化原因。结果表明:1)从时间上来看,华北地区NDVI在1998-2011年总体呈增长趋势,表明该地区植被覆盖情况整体上得到改善,其中,森林和农田NDVI增长最快;2)从空间上来看,华北地区地表植被覆盖得到改善的区域比退化区域面积要大,其中,森林和农田的恢复效果最为明显,而灌丛、草地、沙漠退化面积均超过改善面积,表明华北地区水土流失和荒漠化现象依然严峻;3)在华北地区气候长期趋于暖干化的背景下,华北植被变化与降水变化关系比与气温变化关系密切,表明植被覆盖变化受降水影响较大,此外,人类活动也是引起植被覆盖变化的重要驱动因子。  相似文献   

13.
延河流域NDVI与主要气候因子的时空相关性研究   总被引:3,自引:2,他引:1  
基于RS技术提取延河流域2000-2004年的NDVI影像,基于GIS技术生成流域气温和降水的内插分布图,并利用线性回归分析法和空间回归分析法分别对NDVI与气温和降水的时间、空间相关关系进行研究,以期为区域水资源可持续利用和生态环境的可持续发展提供科学依据。结果表明:(1)延河流域的植被NDVI存在明显的时空差异性,...  相似文献   

14.
近10 a来祁连山植被覆盖变化研究   总被引:7,自引:1,他引:6  
NDVI作为植被生长状况及植被覆盖度的最佳指示因子,被认为是监测地区或全球植被和环境变化的最有效指标。基于2000-2011年250 m分辨率的MODIS NDVI数据并结合气候资料,采用最大值合成法、均值法、斜率分析法、相关分析法,研究祁连山生长季植被覆盖的时空变化及其与气候因子的相关性。结果表明:祁连山植被覆盖总体上自西向东递增,呈现东多西少的分布格局;植被覆盖变化存在明显的空间差异,表现为中西部植被覆盖增加,增加面积为79 149 km2,占祁连山总面积的52.93%;东部植被覆盖减少,减少面积为22 865 km2,占祁连山总面积的11.09%。近10 a来植被覆盖整体上呈增加趋势,生长季各月植被覆盖整体上呈增加趋势,全球气候变暖导致的降水增加是祁连山植被覆盖增加的主要原因。NDVI与气温、降水的相关性较高并存在一定的滞后性,6、7月NDVI分别与前期1月和前期2月的降水显著相关,相关系数分别为0.788和0.684;8、9月NDVI分别与当月、前期1月的气温极显著相关,相关系数分别为0.825和0.829。  相似文献   

15.
全球气候变化对于农业生产活动和生态环境保护有着深刻的影响。本文用时间序列分析中的距平曲线和短期预测方法分析了泾河流域内14个气象站点1960~1999(1971-2000)年气温和降水量的变化趋势,并用简单气候偏差指数计算了逐年的降水量变差;同时用变异系数计算了14个站点1960~1999(1971-2000)年的降水量年际变差。结果表明:近40年来14个站点的年均温度呈现明显的上升趋势,平均增温0.7℃略高,年平均增温率为0.0225℃/a;年降水量呈现微弱的减少趋势,但是波动幅度和变异系数都在增加,降水量年际间偏差呈现先减少后又增加的趋势。年内气候变化的趋势变化表现为:冬季温度升高;春季、夏季降水量占全年的百分比有显著增加趋势,而秋季降水所占的百分比显著减少。最后分析了全球变化背景下泾河流域近40年来气候出现的这种暖干化趋势对流域农业生产和生态环境的可能影响,可为相关部门调整农业结构、种植结构,优化种植模式等决策提供指导。  相似文献   

16.
1982-2006年新疆植被活动的年际变化及其季节差异   总被引:3,自引:0,他引:3  
利用1982-2006年NOAA/AVHRR归一化植被指数(NDVI)时间序列,结合植被、地形和气候等资料,研究新疆植被活动的年际变化及其季节差异.结果表明:过去的25年,占新疆植被面积27%的地区生长季(4~10月)NDVI显著增加(P<0.05),其中近一半地区年增加速率大于0.003,而显著减少地区的面积仅占4%...  相似文献   

17.
Fang HAN 《干旱区科学》2015,7(2):251-263
 Variations in temperature and precipitation affect local ecosystems. Considerable spatial and temporal heterogeneity exists in arid ecosystems such as desert steppes. We analyzed the spatiotemporal dynamics of climate and vegetation phenology in the desert steppe of Inner Mongolia, China, using meteorological data from 11 stations (1961–2010) and phenology data from 6 ecological stations (2004–2012). We also estimated the gross primary production for the period of 1982–2009 and found that the annual mean temperature increased at a rate of 0.47ºC/decade during 1961–2010, with the last 10 years being consistently warmer than the 50-year mean. The most significant warming occurred in winters. Annual precipitation slightly decreased during the 50-year period, with summer precipitation experiencing the highest drop in the last 10 years, and spring precipitation, a rise. Spatially, annual precipitation increased significantly in the northeast and eastern central area of the region next to the typical steppe. From 2004 to 2012, vegetation green-up and senescence date advanced in the area, shortening the growing season. Consequently, the primary productivity of the desert steppe decreased along precipitation gradient from southeast to northwest. Temporally, productivity increased during the period of 1982–1999 and significantly decreased after 2000. Overall, the last decade witnessed the most dramatic climatic changes that were likely to negatively affect the desert steppe ecosystem. The decreased primary productivity, in particular, decreases ecosystem resilience and impairs the livelihood of local farmers and herdsmen.  相似文献   

18.
Under the combined influence of climate change and human activities, vegetation ecosystem has undergone profound changes. It can be seen that there are obvious differences in the evolution patterns and driving mechanisms of vegetation ecosystem in different historical periods. Therefore, it is urgent to identify and reveal the dominant factors and their contribution rates in the vegetation change cycle. Based on the data of climate elements (sunshine hours, precipitation and temperature), human activities (population intensity and GDP intensity) and other natural factors (altitude, slope and aspect), this study explored the spatial and temporal evolution patterns of vegetation NDVI in the Yellow River Basin of China from 1989 to 2019 through a residual method, a trend analysis, and a gravity center model, and quantitatively distinguished the relative actions of climate change and human activities on vegetation evolution based on Geodetector model. The results showed that the spatial distribution of vegetation NDVI in the Yellow River Basin showed a decreasing trend from southeast to northwest. During 1981-2019, the temporal variation of vegetation NDVI showed an overall increasing trend. The gravity centers of average vegetation NDVI during the study period was distributed in Zhenyuan County, Gansu Province, and the center moved northeastwards from 1981 to 2019. During 1981-2000 and 2001-2019, the proportion of vegetation restoration areas promoted by the combined action of climate change and human activities was the largest. During the study period (1981-2019), the dominant factors influencing vegetation NDVI shifted from natural factors to human activities. These results could provide decision support for the protection and restoration of vegetation ecosystem in the Yellow River Basin.  相似文献   

19.
2000-2010年祁连山植被MODIS NDVI的时空变化及影响因素   总被引:3,自引:0,他引:3  
利用2000-2010年间的MODIS/NDVI数据和对应的气候资料,研究了近10年来祁连山植被的时空变化及影响因素。结果表明:1)10年来,祁连山年最大化NDVI(MNDVI)增加了2.4%,植被改善、无变化和退化的面积分别占总面积的26.32%、66.42%和7.26%。植被改善的区域分布在冷龙岭、拉脊山、大通山、达坂山、青海南山、走廊南山、托来山等山地以及西宁盆地、湟水谷地周边地区,减少的区域分布在乌鞘岭、庄浪河、古浪河、大通河、石羊河、黑河、疏勒河等河流河谷。2)祁连山不同植被类型MNDVI的年际变化趋势不同。灌丛地、荒漠草原、高寒稀疏草甸MNDVI呈快速增加趋势,高山草原、高山灌丛草甸和高寒草甸MNDVI呈增加趋势,落叶阔叶林、针阔混交林、常绿针叶林MNDVI呈快速下降趋势。3)影响祁连山植被生长的主要因子是气温和降水,局部地区密集的人类活动也能成为影响植被生长的关键因子。  相似文献   

20.
利用趋势分析、滑动平均和Mann-Kendall检验等统计方法对彰武县1953-2010年历年日平均气温、平均最低(高)气温、降水量、日照时数、风速等资料进行分析,结果显示:(1)58年来年及四季平均气温均呈上升趋势,尤以春季增温最明显;不同年代际中2000年代是最暖的时期。(2)月平均最高气温无变化,而月平均最低气温上升较明显。(3)年及夏、秋、冬季降水量呈减少趋势,而春季呈增加趋势;不同年代际中2000年代是降水量最少的10年。(4)年及四季日照时数呈减少(增大)趋势,而年平均风速呈增大趋势。气候变化对当地生态环境的改善、农业经济发展以及风能资源的利用都有影响,应引起我们的重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号