首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The vegetative compatibility patterns among isolates ofElegans fusaria causing wilt disease of carnation were investigated. Nitrate non-utilizing mutants were generated from 16 isolates labelledF. redolens, nine of which came from carnation, and from 33 isolates labelledF. oxysporum, 19 of which came from carnation. Pairings of the mutants revealed five vegetative compatibility groups among the isolates from carnation, corresponding withF. oxysporum f.sp.dianthi race 1 (VCG1), race 2 (VCG2) and race 4 (VCG3),F. redolens f.sp.dianthi (VCG4) andF. redolens isolates from foot rot-diseased carnations (VCG5). Besides three isolates typical ofF. redolens, VCG4 comprised a now slightly deviating subculture of the type isolate ofF. redolens f.sp.dianthi of which the cultural characteristics correspond toF. oxysporum instead ofF. redolens. This observation may be taken to support previous conclusions that the distinction between both taxa is not justified. Otherwise, the compatibility patterns did not provide decisive evidence to accept or reject conspecificity of both taxa. Isolates from carnation did not form heterokaryons with other formae speciales ofF. oxysporum.Samenvatting De vegetatieve compatibiliteitspatronen bij isolaten vanElegans-fusaria die verwelkingsziekte bij anjer veroorzaken werden onderzocht. Van 16 isolaten vanF. redolens, waarvan negen afkomstig van anjers, en van 33 isolaten vanF. oxysporum, waarvan 19 afkomstig van anjers, werden mutanten gegenereerd die zonder een organische stikstofbron geen luchtmycelium meer konden vormen. Paringen tussen mutanten van isolaten afkomstig van anjers brachten een vijftal vegetatieve compatibiliteitsgroepen aan het licht, die overeenkwamen metF. oxysporum f.sp.dianthi fysio 1 (VCG 1), fysio 2 (VCG 2) en fysio 4 (VCG3),F. redolens f.sp.dianthi (VCG4) enF. redolens isolaten afkomstig van aan voetrot lijdende anjers (VCG5). Naast drie voorF. redolens karakteristieke isolaten omvatte VCG4 ook een afwijkende subculture van het type-isolaat vanF. redolens f.sp.dianthi, die in cultuureigenschappen overeen kwam metF. oxysporum in plaats vanF. redolens. Deze waarneming geeft enige steun aan eerdere conclusies dat het onderscheid tussen beide taxa niet gerechtvaardigd is. Daarbuiten gaven de compatibiliteitspatronen geen uitsluitsel over de mogelijke conspecificiteit van beide taxa. Isolaten afkomstig van anjers vormden geen heterokaryons met andere formae speciales vanF. oxysporum.  相似文献   

2.
The potential of grafted watermelon for resistance toFusarium oxysporum f.sp.niveum on some Curcurbitaceae,Lagenaria, Luffa, Benincasa and commercial rootstocks was evaluated. Effects of grafting on yield and quality of diseased plants were evaluated. All grafted plants and rootstocks were resistant to the three known races (0, 1, and 2) ofF. oxysporum f.sp.niveum except watermelon cv. ‘Crimson Tide’, which was susceptible to race 2. Fruit yield was positively (21–112%) affected byLagenaria rootstocks but negatively affected (200–267%) byCucurbita rootstocks when compared with the control. While only minor differences in fruit quality were determined in control and grafted plants onLagenaria rootstocks, the quality parameters for watermelon grafted ontoCucurbita rootstocks were lower than in the control. The reasons for low yield and quality might be due to an incompatibility betweenCucurbita rootstocks and watermelon. These results showed that rootstock influence on disease resistance as well as yield and quality of scion fruit is important in determining the potential use of grafting applications in watermelon. http://www.phytoparasitica.org posting Feb. 2, 2003.  相似文献   

3.
Thirty-four isolates ofFusarium oxysporum f.sp.melonis (F.o.m.) obtained from 205 fields in melon-producing areas in the southeastern Anatolia Region of Turkey were identified on the basis of colony morphology and pathogenicity by the root dip method. In this region the mean prevalence of wilt disease was 88.1% and the mean incidence of disease was 47.5%. Physiologic races 0, 1, 2, and 1,2 of the pathogen were determined by their reactions on differential melon cultivars ‘Charentais T,’ ‘Isoblon’, ‘Isovac’ and ‘Margot’ in the greenhouse. Race 1,2, representating 58.8% (20/34) of all isolates, was widely distributed. Of the other pathogenic isolates, eight were identified as race 0, five as race 1, and one as race 2. This is the first report of physiologic races ofF.o.m. in Turkey. Of 44 melon cultivars tested in the greenhouse for resistance toF.o.m. races, 36 were found to be moderately resistant to race 0, 17 were susceptible to race 1,2, 34.1% were highly resistant to race 1, and 52.2% had moderate resistance to race 2. http://www.phytoparasitica.org posting July 16, 2002.  相似文献   

4.
A transgenic cucumber line (CR32) over-expressing the rice class I chitinase gene exhibited resistance to Phytophthora rot (Phytophthora nicotianae var. parasitica) but not to Fusarium wilt (Fusarium oxysporum f. sp. cucumerinum). The infection behavior of these fungi on CR32 and nontransgenic plants was examined with an optical microscope. In zoosporangia of P. nicotianae var. parasitica, the rates of germination and penetration on leaves of both CR32 and nontransgenic plants were almost equal. After infection, however, the growth of infection hyphae was markedly suppressed in CR32 compared with their growth in the nontransgenic plants. In F. oxysporum f. sp. cucumerinum, the infection hyphae localized in petiole vessels of both CR32 and nontransgenic plants, and growth did not differ in the two plants. We investigated the antifungal activity of a high-molecular-weight fraction (HF) and a low-molecular-weight fraction (LF) of crude leaf extracts from CR32 and from the nontransgenic line. CR32 HF, which included the rice chitinase, had antifungal activity only against F. oxysporum f. sp. cucumerinum. In contrast, CR32 LF, which did not have the rice chitinase, had strong antifungal activity against the two fungi. These results suggested that a low-molecular-weight antifungal substance(s) was induced in CR32 and might function as a factor of resistance to P. nicotianae var. parasitica, which has cell walls that almost never contain chitin. Because rice chitinase has already been demonstrated not to localize in vessels of CR32, the infection localization of F. oxysporum f. sp. cucumerinum in vessels might enable the fungus to avoid antifungal substance(s), resulting in Fusarium wilt in transgenic cucumber.  相似文献   

5.
Filtrates from shake-cultures of Fusarium oxysporum f. sp. lycopersici race 1, concentrated to 20% of the original volume, caused cell death in tomato leaf protoplasts from near-isogenic lines corresponding to the compatible cultivar/race reactions of whole plants. Maximum activity was found in late log phase cultures on Czapek-Dox supplemented with 2% casamino acids. Selective toxicity was associated only with the protein fraction of the culture filtrate. LD50 values for susceptible Ace and Moneycross to F. oxysporum f. sp. lycopersici race 1 culture filtrates were 1·92 and 0·36 μg protein ml−1. Corresponding values for cvs Royal Ace and MM161, each containing the I-gene conferring resistance to race 1, were >350. Culture filtrates from F. oxysporum f. sp. lycopersici race 2 gave LD50 values of 2·34 and 2·08 μg protein ml−1 on cvs Ace and Royal Ace, both susceptible to race 2. The LD50 of cv. Ace to a non-pathogenic isolate of F. xysporum f. sp. lycopersici was > 350. Culture filtrates from non-host formae of F. oxysporum were 9–149-fold less toxic on cv. Ace. Protoplasts from Pisum sativum, Lactuca sativa, Zea mays, Gossypium barbadense and Solanum melongena, all non-hosts of F. oxysporum f. sp. lycopersici, were 6–175 times less sensitive to F. oxysporum f. sp. lycopersici filtrates than susceptible tomato. The putative toxins lycomarasmin and fusaric acid showed no differential toxicity to I+ and I tomato protoplasts. The results are discussed in the wider context of host-pathogen interaction in which specificity is considered as the recognition of susceptibility by a proteinaceous toxic metabolite of the pathogen. This hypothesis is further extended to include the specificity of F. oxysporum formae and races.  相似文献   

6.
By random amplified polymorphic DNA (RAPD) analysis of the representative isolates of each race of Fusarium oxysporum f. sp. lactucae, RAPD fragments of 0.6, 1.6, and 2.9kb were obtained. The 0.6-kb RAPD fragment was common to the representative isolates of all three races. Amplification of the 1.6- and 2.9-kb fragments were unique to the isolates of races 1 and 2, respectively. Sequence tagged site (STS) marker FLA0001, FLA0101, and FLA0201 were generated from the 0.6-, 1.6-, and 2.9-kb RAPD fragments, respectively. Polymerase chain reaction (PCR) analysis showed that FLA0001 was common to all 49 isolates of F. oxysporum f. sp. lactucae. FLA0101 was specifically generated from all 23 isolates of race 1 but not from races 2 or 3. FLA0201 was specifically amplified from all 12 isolates of race 2 but not from races 1 or 3. In two isolates of F. oxysporum f. sp. lactucum, PCR amplified FLA0001 and FLA0101 but not FLA0201. On the other hand, these STS markers were not detected from isolates of five other formae speciales. Because these STS markers were not generated from isolates of other plant pathogenic fungi, bacteria, or plant materials examined in this study, PCR analysis combined with the three STS markers should be a useful means for rapid identification of races of F. oxysporum f. sp. lactucae.  相似文献   

7.
用PDA培养基平板法测定了0.4%OS-诱抗剂水剂对水稻纹枯病菌、小麦纹枯病菌、油菜菌核病菌、辣椒立枯病菌、瓜类绵腐病菌、黄瓜枯萎病菌的生物活性,其EC50值分别为34.56、59.33、33.17、85.92、91.91、122.87μg/mL,OS-诱抗剂对水稻纹枯病、油菜菌核病较好。高效液相色谱分析表明,经OS-诱抗剂处理后的植物提取液中酚类物质的种类和含量相对于对照有明显的变化,说明OS-诱抗剂对植物的防病作用可能是促使植物体内产生了酚类抗病物质。  相似文献   

8.
经分离、培养对不同菌种培养性状的观察,确定了侵染黄瓜、黑籽南瓜造成死秧的镰刀菌主要为尖镰孢菌黄瓜专化型、尖镰孢菌西瓜专化型、串珠镰刀菌和腐皮镰孢菌4种。经致病性测定,4种镰刀菌均能侵染黄瓜,引起发病造成死秧,可分为强致病类型和中强致病类型。经抗病性鉴定,黑籽南瓜种子只有南瓜4号为耐病品种;黄瓜种子也只有津优31号为耐病品种。  相似文献   

9.
An hexane extract from roots of Black Boo Stammi, a cultivar of date palm, resistant toFusarium oxysporum f. sp.albedinis, contained substances which inhibited the spore germination and the growth of the germ tubes of the three isolates of the pathogen that were tested. Extract from roots of Jihel, a susceptible cultivar, lacked these substances.Samenvatting In een hexaanextract van wortels van de dadelpalm, cv. Black Boo Stammi die resistent is tegen de Bayoudziekte, bevonden zich stoffen die de sporekieming en de groei van kiembuizen onderdrukken. Dit gold voor alle drie isolaten vanFusarium oxysporum f. sp.albedinis, die werden getoetst. In extracten van de vatbare cultivar Jihel werden de kieming en de groei niet geremd.  相似文献   

10.
Ascochyta blight caused by Ascochyta rabiei and fusarium wilt caused by Fusarium oxysporum. f. sp. ciceris are the two most serious diseases of chickpea (Cicer arietinum). Quantitative trait loci (QTL) or genes for ascochyta blight resistance and a cluster of resistance genes for several fusarium wilt races (foc1, foc3, foc4 and foc5) located on LG2 of the chickpea map have been reported independently. In order to validate these results and study the linkage relationship between the loci that confer resistance to blight and wilt, an intraspecific chickpea recombinant inbred lines (RIL) population that segregates for resistance to both diseases was studied. A new LG2 was established using sequence tagged microsatellite sites (STMS) markers selected from other chickpea maps. Resistance to race 5 of F. oxysporum (foc5) was inherited as a single gene and mapped to LG2, flanked by the STMS markers TA110 (6.5 cM apart) and TA59 (8.9 cM apart). A QTL for resistance to ascochyta blight (QTLAR3) was also detected on LG2 using evaluation data obtained separately in two cropping seasons. This genomic region, where QTLAR3 is located, was highly saturated with STMS markers. STMS TA194 appeared tightly linked to QTLAR3 and was flanked by the STMS markers TR58 and TS82 (6.5 cM apart). The genetic distance between foc5 and QTLAR3 peak was around 24 cM including six markers within this interval. The markers linked to both loci could facilitate the pyramiding of resistance genes for both diseases through MAS.  相似文献   

11.
Simultaneous inoculation with races 1 and 2 of the vascular wilt pathogenFusarium oxysporumf.sp.lycopersiciprovided a high level of protection against race 2 in three tomato cultivars carrying resistance geneI, which confers resistance to race 1 but not race 2. However, simultaneous inoculation did not provide any protection in cultivars lacking this gene. Protection resulted in reduction and delay of wilt symptoms. Similarly, avirulent races ofF. oxysporumf.sp.melonisprotected muskmelon plants against virulent races of the sameforma specialis.A ratio 10:1 between spore concentrations of inducer and challenger organism gave the highest cross protection, but ratio 0.1:1 still provided significant disease reduction. Cross protection was also obtained when inoculation with the inducer organism was performed 6 or 12 h before inoculation with the challenger organism. Autoclaved spores of the inducer did not have any protective effect, indicating that living propagules were required to initiate protection. The results suggest the presence of a gene-for-gene interaction betweenF. oxysporumf.sp.lycopersici-tomato andF. oxysporumf.sp.melonis-muskmelon, in which cross protection against a virulent race is mediated by recognition of a specific elicitor from the avirulent race by the plant resistance gene product and by subsequent induction of the plant defense reaction.  相似文献   

12.
Differentin vivo resistance/susceptibility levels of 14 carnation cultivars toFusarium oxysporum f.sp.dianthi race 2, the causal agent of Fusarium wilt disease of carnation, were also expressed in anin vitro system and assayed as the degree of fungal colonization of callus cultures at 20° C. Temperature influenced thein vitro expression of carnation resistance. An incubation temperature of 27° C increased the colonization of calli derived from both the susceptible (‘Corrida’ and ‘Ambra’) and the resistant (‘Pulcino’ and ‘Pallas’) cultivars. At 15°C, the colonization of calli derived from Pulcino and Pallas diminished significantly more than for Ambra and Corrida. Inhibition of fungal growth on resistant calli was correlated to retardation in hyphal development. Both scanning electron microscopy and light microscopy observations showed that hyphae did not penetrate into carnation cells.  相似文献   

13.
In 1994, Fusarium wilt of melon cultivars which are resistant to races 0 and 2 of Fusarium oxysporum f. sp. melonis was observed in southern area of the Lake Biwa region, Shiga prefecture. In commercial fields, mature plants of cv. Amus which were grafted onto cv. Enken Daigi 2, and of cv. FR Amus showed yellowing, wilting and finally death before harvesting of fruits. Diseased plants had vascular and root discolorations, and their stem sections yielded typical colonies of F. oxysporum. When the Shiga strains were tested for their pathogenicity to 12 species of cucurbits, they caused wilts only on melon. Using race differential cultivars of melon, the Shiga strains were classified as race 1 of F. oxysporum f. sp. melonis, which has not been reported in Japan. To further characterize their pathogenicity, the strains were used to inoculate 46 additional cultivars of melon, oriental melon and oriental pickling melon. All the race 1 strains were pathogenic to the cultivars tested, and their host range was apparently different from those of strains belonging to other races (races 0, 2 and 1,2y). DNA fingerprinting with a repetitive DNA sequence, FOLR3, differentiated race 1 strains from strains of races 0 and 2, but not from race 1,2y strains. Received 2 July 1999/ Accepted in revised form 30 September 1999  相似文献   

14.
Two diseases of adzuki bean, brown stem rot (BSR, caused by Cadophora gregata f. sp. adzukicola) and adzuki bean Fusarium wilt (AFW, caused by Fusarium oxysporum f. sp. adzukicola), are serious problems in Hokkaido and have been controlled using cultivars with multiple resistance. However, because a new race of BSR, designated race 3, was identified, sources of parental adzuki bean for resistance to race 3 were needed. Therefore, we examined 67 cultivars and lines of cultivated and wild adzuki bean maintained at the Tokachi Agricultural Experiment Station using a root-dip inoculation method. Consequently, nine adzuki bean cultivars, one wild adzuki bean accession and 30 lines (including two lines resistant to all the three races of BSR and AFW) were confirmed to be resistant or tolerant to race 3 of BSR, and we found a cultivar Akamame as well as a wild adzuki bean Acc2515 to be a new source for a resistance gene to the race 3. This cultivar also holds promise as a source of resistance against other races of BSR and AFW.  相似文献   

15.
Two Fusarium species, F. oxysporum f.sp. asparagi and F. proliferatum, are known to be involved in the root and crown rot complex of asparagus. We have investigated reports on the involvement of F. redolens, a third species, which until recently was considered conspecific with F. oxysporum because of morphological similarities. RFLP analysis of the rDNA internal transcribed spacer region and AFLP fingerprinting identified eight strains from asparagus unambiguously as F. redolens. Four of these were tested and found to be pathogenic to asparagus either in this study (two strains) or in a previous one in which they were classified as F. oxysporum (three strains). Disease symptoms and disease development were the same as with F. oxysporum f.sp. asparagi and F. proliferatum. Present data and literature reports identify F. redolens as a host-specific pathogen involved in root, crown and spear rot of asparagus. The pathogen is formally classified as F. redolens Wollenw. f.sp. asparagi Baayen.  相似文献   

16.
为快速、准确地对番茄枯萎病菌Fusarium oxysporum f. sp. lycopersici(FOL)和番茄颈腐根腐病菌F. oxysporum f. sp. radicis-lycopersici(FORL)进行检测,基于尖孢镰刀菌F. oxysporum多聚半乳糖醛酸外切酶基因pgx4的单核苷酸多态性(single nucleotide polymorphism,SNP)位点,设计FORL、FOL生理小种1(FOL-R1)、2(FOL-R2)和3(FOL-R3)的竞争性等位基因特异性PCR-SNP(kompetitive allele specific PCR-SNP,KASP-SNP)引物,建立番茄颈腐根腐病菌和番茄枯萎病菌KASP-SNP检测技术,并通过与常规PCR比对及ITS与pgx4序列分析对该检测技术的可靠性进行验证。结果显示,在FORL、FOL-R1、FOL-R2和FOL-R3中存在35个变异SNP位点,设计出18对KASP-SNP引物,筛选出FORL_KASP、FOLrace1_KASP、FOLrace2_KASP和FOLrace3_KASP共4对分型清晰的...  相似文献   

17.
Tomato plants, susceptible toFusarium oxysporum f. sp.lycopersici, were inoculated by immersing the roots in a conidial suspension ofF. oxysporum f. sp.lycopersici race 1,F. oxysporum f. sp.dianthi race 2 or a mixture of both fungi. Plants inoculated withF. oxysporum f. sp.lycopersici showed disease symptoms after 2 weeks, whereas plants inoculated withF. oxysporum f. sp.dianthi or a mixture of both fungi remained symptomless for over 7 weeks, the duration of the experiment. In another experiment root systems of plants were split and each half was separately inoculated. One half was firstly inoculated withF. oxysporum f. sp.dianthi or treated with water, followed after a week by a second inoculation of the other half withF. oxysporum f. sp.lycopersici or by a water treatment. The disease symptoms in the half firstly inoculated withF. oxysporum f. sp.dianthi were significantly delayed, compared to plants of which that half had been treated with water. BecauseF. oxysporum f. sp.dianthi reduced disease symptoms caused byF. oxysporum f. sp.lycopersici without any direct interaction with this pathogen, it is concluded thatF. oxysporum f. sp.dianthi is able to induce resistance againstF. oxysporum f. sp.lycopersici in tomato plants.  相似文献   

18.
为明确普通小麦-华山新麦草易位系9020-17-25-6的抗条锈病基因及其遗传特点,利用中国条锈菌小种CYR29对9020-17-25-6、铭贤169及其杂交后代F1、F2、F3代进行苗期抗条锈性鉴定及遗传分析,选取48条RGAP引物和491对SSR引物对接种CYR29的F2代群体进行筛选,寻找与抗病基因连锁的分子标记。结果表明:9020-17-25-6对CYR29具有良好的抗条锈性,由1对显性基因独立控制,暂定名为Yr Hua9020。筛选到2个RGAP标记(M1和M2)和位于染色体3AS上的4个SSR标记(Xwmc11、Xwmc532、Xcfd79、Xgwm2)与Yr Hua9020连锁,与目的基因的遗传距离分别为6.9、9.5、17.8、12.2、7.2和17.8 c M。与已定位于3A染色体上的抗条锈病基因的比较研究表明,Yr Hua9020是一个与已知基因不同的新的抗条锈病基因。  相似文献   

19.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FO), is one of the major diseases in cucumber (Cucumis sativus) production. Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on the incidence of Fusarium wilt and changes in the microbial population and community in roots of cucumber plants. EBL pre-treatment to either roots or shoots significantly reduced disease severity followed by an improved plant growth regardless of the treatment methods applied. EBL applications decreased the Fusarium population on root surfaces and in nutrient solution, but increased the population of fungi and actinobacteria on root surfaces. PCR-DGGE analysis showed that FO-inoculation had significant effects on the bacterial community on root surfaces as expressed by a decreased diversity index and evenness index, but EBL applications alleviated these changes. Moreover, several kinds of decomposing bacteria and growth-promoting bacteria were identified from root surfaces of FO-inoculated plants and EBL-pre-treated plants, respectively. Overall, these results show that the microbial community on root surfaces was affected by a complex interaction between phytohormone-induced resistance and plant pathogens.  相似文献   

20.
为研发对枸杞炭疽病有良好防治效果的生防制剂,利用枸杞炭疽病菌Colletotrichum acutatum对实验室已分离保存的芽胞杆菌菌株进行室内筛选,并对拮抗效果较好的菌株进行形态学和分子生物学鉴定、病原菌孢子萌发抑制试验、生物学功能测定、稳定性测定、抑菌谱测定以及室内离体防治效果试验和田间防治效果试验。结果表明,菌株F3A对枸杞炭疽病菌有较好的拮抗作用,对枸杞炭疽病菌菌丝的抑制率为62.13%;结合形态学特征、16S rDNA以及gyrA基因序列分析,将菌株F3A鉴定为贝莱斯芽胞杆菌Bacillus velezensis;菌株F3A具有溶解有机磷和无机磷的能力,在含色氨酸和不含色氨酸的金氏培养液中产吲哚乙酸量分别为5.76 mg/L和5.74 mg/L;菌株F3A产蛋白酶和葡聚糖酶的活性较高;菌株F3A连续培养20代后,对枸杞炭疽病菌的抑制率为61.21%,该菌对棉花枯萎病菌Fusarium oxysporum f.sp.vesinfectum、番茄早疫病菌Alternaria solani、黄瓜枯萎病菌F.oxysporum f.sp.cucumerinum、番茄灰霉病菌Botrytis cinerea、番茄叶霉病菌Cladosporium fulvum、茄子菌核病菌Sclerotinia sclerotiorum和黄芪根腐病菌F.solani的抑制率分别为40.71%、53.58%、32.00%、53.00%、79.27%、71.13%和66.08%;菌株F3A发酵液的保护作用明显优于治疗作用,菌株F3A发酵液1倍稀释液室内预防效果为90.32%;喷施菌株F3A发酵液1倍稀释液3 d和7 d后的田间防治效果分别为78.26%和63.19%。表明菌株F3A有作为开发枸杞炭疽病生物农药的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号