首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Comparison was made between the chemical composition of soil solutions isolated by means of a suction method using porcelain cups and by centrifugation. The soil solutions were isolated from three depths of field plots, where the soil (Typic Haplohumod) had been subjected to various pretreatments.
The cups were made of mullite and corundum as shown by X-ray diffraction analysis. The material when powdered had a cation exchange capacity of about 10meq kg−1. Solutions with similar ionic strengths were obtained by the two methods, but the cups were found to release substantial amounts of Al and to adsorb H, Ca, K, Na and organic matter.
After the cups had been placed in the soil for more than 7 months, calculations suggested that the Al activity in cup solutions was controlled by amorphous gibbsite. This amorphous material was probably produced by proton-induced decomposition of part of the cup material. It is concluded that such cups are improper for isolation of soil solution from acid soils.  相似文献   

2.
Possible aluminium contamination of acid soil solutions isolated by use of porous porcelain suction cups (‘P.80 type’) was reported by Raulund-Rasmussen (1989). The aluminium release was explained by a proton-induced dissolution of cup material. Hughes & Reynolds (1990) suggested that the aluminium release and proton consumption could be explained by an ion-exchange reaction. In an attempt to understand the mechanism and thereby also the usefulness of suction cups, laboratory experiments were carried out to define mineralogical and chemical composition, stability under acid conditions, cation exchange capacity, and reactivity under conditions relevant to the field. The cups consisted of mullite and corundum (65% Al2O3) as shown by X-ray diffraction analysis. The cation exchange capacity of the cups was too low (0.65 μmolc per cup) to explain the observed contamination of isolated soil solution. Ground cup material dissolved slowly in acid. Investigations on whole cups showed that aluminium release to acid test solutions depended on the time of exposure. It is concluded that porcelain suction cups may lead to contamination of isolated soil solution depending on: (i) the intake rate, (ii) the rinsing procedure before sampling, and (iii) the composition of the soil solution (pH and aluminium ion activity being important parameters).  相似文献   

3.
Influencing soil solution by suction cup material (Ni, ceramics) The influence of suction cup material (ceramics, Ni) on the chemical composition of the soil solution was tested in the laboratory by percolating soil solutions of different concentration (pH ~ 4.0). Ceramic cups of P 80 material can be used for the collection of soil solution and its determination for the concentrations of H, Na, K, NH4, Ca, Mg, Mn, Al, S, Cl and NO3. They can't be used to determine P-concentrations. The cups must be prepared and preconditioned by leaching large amounts of equilibrium soil solution which should not be oversaturated with respect to the solubility product of AlOHSO4. The changes in the concentration of extracted soil solution when it passes through the cups depend upon the extracted volume. The lower the volume, the greater are the changes. Sintered Ni-cups show many severe disadvantages (decreasing permeability, insufficient resistence against acid solutions, large variability among single cups), and can only be used for cases where Na, Ca, K, and S are to be determined. Ceramic cups of the type ‘Czeratzki’ are comparable with those of P 80. However, they can only be used, when the concentrations don't vary too much and large amounts of water can be extracted.  相似文献   

4.
The predicted activity of Al in the soil solutions of acid forest soils often differs from that observed in the field. We have investigated the influence of soil structure and flow rate of the soil solution on the aluminum release to explain this divergence. Disturbed and undisturbed samples of soil were collected from the A and B horizons of a dystric cambisol at Waldstein (Fichtelgebirge, Germany). The samples were irrigated with solutions mixed according to field data on throughfall or soil solution composition with pH 3.5 with flow rates of 4 mm d?1, 12 mm d?1 and 36 mm d?1. The percolates were analysed for major ions. Resulting relations between pH and pAl were compared with batch experiments. In neither the A horizon nor in the B horizon did soil structure influence the relation between pH and pAl. The apparent equilibrium between pH and pAl was described as the pKapp value with pKapp= pAl—a pH (where a is an empirical constant). It was found that the pKapp values for the column percolates were in the range of variation of those found in batch experiments. Flow rate had no influence on pKapp at 4 and 12 mm d?1. At 36 mm d?1 a significant increase of pKapp was observed. This relative undersaturation of Al was more pronounced in the A horizon than in the B horizon. When flow is fast Al release into the percolating soil solution might be limited by diffusion.  相似文献   

5.
Sorption of pesticides and DOC on glass and ceramic suction cups Suction cups are widely used for the sampling of soil solution. Due to sorption and desorption processes the concentration of dissolved substances in the samples may vary considerably depending on the material of the suction cups. In order to minimize these losses, a new glass suction cup was developed. In laboratory studies, aqueous solutions of pesticides and DOC were percolated through both types of suction cups; the concentration of pesticides and DOC in the percolates was examined. The pesticides pendimethaline, terbuthylazine, metolachlor and chlortoluron were tested at concentrations of 2, 20, and 200 μg 1−1. The average losses due to sorption by the suction cups were 10% (1.1—31%) for the ceramic cups and 3.1% (0—11%) for the glass cups. Sorption effects increased with increasing hydrophobicity of the pesticides and decreasing pesticide concentrations. Thus, at a concentration of 2 μg 1−1 ceramic cups sorbed 31% of pendimethaline compared with 7.7% in the case of glass cups. Corresponding tests with soilborne DOC solutions yielded comparable results. Ceramic suction cups adsorbed up to 50% of the DOC input concentration, while glass cups retarded 2.4% on average. These results are especially noteworthy because soilborne dissolved organic substances are effective sorbents and carriers for pesticides. The new type of glass suction cups may help to improve the results of pesticide field studies and, in consequence, the assessment and prediction of the leaching behavior of pesticides.  相似文献   

6.
In order to evaluate micro-scale heterogeneities 55 micro suction cups were placed in an array at 15 mm intervals in a profile face of a cambic podzol. The chemistry of soil solution (mineral anions, pH, UV absorption as a measure for DOC) was compared with solid-phase properties from soil samples (2 cm3 volume), which had surrounded the suction cups. Sequential extraction techniques (water, NF4Cl, hydroxylamin-hydrochloride, citrate-bicarbonate, oxalate, dithionite-citrate-bicarbonate) and base titrations were applied to characterize the solid phase. Although the average soil solution concentrations between horizons often differed significantly, the spatial distributions of pH and SO42? did not correlate with soil horizon borders. Even if concentration isolines and soil horizon borders were parallel, marked concentration gradients could be observed within individual soil horizons. The less intense the interaction between solute ion and soil matrix, the greater was the variation in solution concentration within a soil horizon. For the soil solid phase only a weak correlation of slow buffer reactions to soil horizons was found. The distribution of extractable Fe and Al was typical for a podzol profile, however, with very steep gradients within single soil horizons. Except for pH, which was related mainly to citrate-bicarbonate extractable aluminium, no solid-phase characteristic showed a clear correlation with soil solution chemistry.  相似文献   

7.
Aluminum tolerant oat cultivars are needed for use on acid soil sites where neutralization of soil acidity by liming is not economically feasible. Oat germplasm in Poland has not been examined for range of Al tolerance. Eleven Polish oat cultivars were screened for Al tolerance in nutrient solutions containing 0, 5 and 15 mg L‐1 Al. Three of these cultivars showing high to moderate tolerance to Al in nutrient solutions were also grown in greenhouse pots of soil and in field plots of soil over a pH range of 3.8 to 5.5 as determined in 1 N KC1.

The eleven oat cultivars differed significantly in tolerance to Al in nutrient solutions. Based on relative root yield (15 mg L‐1 Al/no A1%), the cultivars ‘Solidor’ and ‘Diadem’ were most tolerant and ‘Pegaz’ and ‘B‐20’ were least tolerant. For these three cultivars, the order of tolerance to acid soil agreed with the order of tolerance to Al in nutrient solution ‐ namely, Solidor > Diadem > Leanda. Hence, for these cultivars, the nutrient solution methods used appear adequate for selecting plants that are more tolerant to Al in strongly acid soils. Additional study is needed to assess the value of this method for screening a broad range of germplasm.

Superior tolerance of the Solidor cultivar to acid soil was associated with significantly higher concentrations of N in the grain. Hence, results suggest that selecting for acid soil or Al tolerance may increase N efficiency in oats.  相似文献   

8.
The Al species in the soid and liquid phases were studied in eight soils developed from slates in a watershed subjected to acid deposition. From soil solution data the mechanisms possibly controlling Al solubility are also discussed. The soils are acidic, organic matter rich and with an exchange complex saturated with Al. In the solid phase, more than 75% of non-crystalline Al was organo-Al complexes, mostly highly stable. In the soil solutions, monomeric inorganic. Al forms were predominant and fluoro-Al complexes were the most abundant species, except in soil solutions of pH<4.8 and Al L/F ratio >3, in which Al3+ predominated and sulphato-Al complexes were relatively abundant. The most stable phases were kaolinite, gibbsite and non-crystalline Al hydroxides. In most samples, Al solubility was controlled by Al-hydroxides. Only in a few cases (solutions of pH 4-5, Al3+ activity >40 µmol L-1 and SO4 content >200 µmol L-1), Al-sulphates such as jurbanite also could exert some control over Al solubility. In adition to these minerals, a possible role of organo-Al complexes or the influence of adsorption reactions of sulphate is considered, especially for samples with very low Al3+ content (<0.5 µmol L-1).  相似文献   

9.
This paper presents aluminium (Al)-solubility data for two acid forest soils (Inceptisol and Spodosol), obtained in connection with lysimeter measurements (tension-cup and zero-tension lysimeters) and batch equilibrium experiments. The solubility of Al obtained in the batch experiments was used as a reference to test whether Al3+in soil solutions collected by the lysimeters was in equilibrium with secondary forms of solid-phase Al (Al(OH)3or organically bound Al). The relation between pH and Al3+activity found for the zero-tension lysimeter solutions collected from the Inceptisol agreed well with that obtained in the batch experiment. This suggests that Al3+in the lysimeter solutions were in, or close to, equilibrium with the solid phase, whether this was organically bound Al (A horizon) or an Al(OH)3phase (B horizon). For the tension-cup lysimeters, solutions obtained from the Inceptisol B and Spodosol Bs1 horizons were generally close to equilibrium with respect to secondary solid-phase Al (apparently Al(OH)3; average ion activity product was 109.3and 108.8, respectively), whereas the Inceptisol A and Spodosol Bh solutions were not. The Al solubility in Inceptisol A and Spodosol Bh horizons was consistently higher than that obtained in the batch equilibrium experiment, indicating that the sampled solution partly originated from the underlying horizons. Thus, tension-cup lysimeters should be used with care in soils (or in parts of soil profiles) having steep solute concentration gradients because the soil volume from which the sample is drawn with this lysimeter type seems to be poorly defined.  相似文献   

10.
Abstract

Diethylaminoethyl cellulose (DEAE cellulose), a weak anion exchange resin, has been used to isolate dissolved organic matter (DOM) from soil solutions collected from three different soil types, to investigate the amount of DOM isolated from soil solutions of various origin, and the extent to which inorganic ions are isolated together with DOM. The concentration of DOM in the various soil solutions ranged from 2.5 to 32.8 mg#lbL‐1 DOC. More than 80% of dissolved organic carbon (DOC) was usually isolated with DEAE cellulose. High concentrations of aluminum (Al) and sulfate (SO4 2‐) in the soil solutions have reduced DOC recovery. More than 90% of potassium (K+), calcium (Ca2+), and magnesium (Mg2+), were removed during the isolation procedure, but 10 to 20% of Al and 30 to 40% of iron (Fe) were isolated together with the DOC, probably due to strong complexation to DOM. The advantages of using DEAE cellulose were that the use of strong acids and bases was limited and that pH adjustments of the sample, leading to chemical modification of DOM, was not required.  相似文献   

11.
Abstract. Ceramic suction cups were used to obtain samples of soil solution from permanently grazed swards receiving 200 kg N/ha/y. The suction cups were installed in 1 ha plots at 10, 30 and 60 an depth in a poorly drained, heavy clay soil in S. W. England. The plots were hydrologically isolated from each other by perimeter drains which channelled surface runoff water into v-notch weirs. In one treatment, artificial drainage by a system of field and mole drains also converged to outfalls through v-notch weirs, which enabled samples to be taken. Nitrate and a range of other ionic constituents were examined over a 12 month period in soil solutions taken from the suction cups and compared with leachate obtained from the field drains and surface channels. Field drain samples frequently exceeded the EC limit of 11.3 mg nitrate-N/1, but concentrations in suction cups obtained during the same period did not, and were up to ten-fold less. Although correlations for ions were found between different sampling depths and drainage samples, no clear patterns emerged. It was concluded that suction cups were inappropriate for the determination of the overall leaching losses in this soil type, but provided useful data on changes in ionic concentrations which occurred in different soil horizons through to drainage outfalls.  相似文献   

12.
Arnica montana and Cirsium dissectum are characteristic species of species-rich heathlands and adjacent grasslands, which declined during the last decades in the Netherlands. It has been shown in a recent field survey that the decline of A. montana and C. dissectum might be caused by soil acidification. Calluna vulgaris is not susceptible to soil acidification. It was hypothesized that increased aluminium concentrations in the soil as a result of acidifying atmospheric inputs caused the decline of A. montana and C. dissectum whereas C. vulgaris would not be sensitive to enhanced aluminium concentrations. We studied the effects of different Al:Ca-ratios and of Al concentrations on the development of A. montana, C. dissectum and C. vulgaris in nutrient solution experiments. All three species showed aluminium accumulation in the shoots related with increased aluminium concentrations in the nutrient solutions. This accumulation was correlated with a reduction in growth when plants were cultured at high Al concentrations (200–500 µmol l-1), in both A. montana and C. dissectum. In addition, indications of Al toxicity were observed in these plant species, e.g. poor root development, yellowish leaves and reduced contents of Mg and P in the plants. C. vulgaris did not show reduced growth or poor plant development due to high Al concentrations. The negative effects of aluminium in A. montana and C. dissectum were partly counterbalanced when plants were grown on the same Al concentrations but with increased Ca concentrations, resulting in lower Al:Ca-ratios. No effects of enhanced calcium concentrations on C. vulgaris have been observed.  相似文献   

13.
The cause of the decrease in the Fe2+ concentration of the soil solution in the later period of soil waterlogging was investigated. After 7-d incubation of the soil solutions separated from previously waterlogged soils (PWdS), a greyish precipitate (PPT) was observed in the soil solutions. The color of the PPT became reddish brown after separation from the solutions and freeze-drying. The PPT observed in 14-d-PWdS contained 352.6 g Fe kg-1, 62.5 g C kg-1, 22.6 g P kg-1, 11.3 g Si kg-1, 9.9 g N kg-1, 0.7 g Al kg-1 and a trace amount of Mn. However, Ca, Mg, K, and Na could not be detected. It was concluded that the separated PPT was dominated by amorphous ferric hydroxide based on the chemical analysis, broad IR absorption band at 585 cm-1 and exothermic peak at 301°C. The data of chemical analysis and the characteristic IR bands of the PPT suggested that organic substances and presumably aluminosilicate anion were adsorbed onto the freshly-formed ferric hydroxide. The dominant phase of the greyish PPT in the reductive soil solution was considered to be ferrous PPT and was assumed to consist mainly of carbonate and/or hydroxide, and concomitantly of phosphate. The formation of the ferrous PPT in the soil solution in the later period of soil waterlogging was considered to (i) cause the decrease of concentration of Fe2+ ion and of other divalent cations such as Ca2+ due to the re-adsorption of Ca2+ on soil clays through the cation exchange reaction with Fe2+ ion, and consequently (ii) enhance the dispersion of the soil colloidal suspension.  相似文献   

14.
Processes governing the mobilization of Al and Cd in podzols and cambisols of S. Sweden having different tree layer vegetation (Picea abies, Fagus sylvatica, or Betula pendula) were investigated. Speciation of Al and Cd in soil solutions were performed by a column cation exchange procedure (cf. Driscoll, 1984) in combination with thermodynamic calculations. Podzols in spruce and beech stands were characterized by a high release of organic compounds from the O/Ah horizons, resulting in a high organic complexation of Al (c. 93%) in the soil solution from the E horizon (15 cm lysimeters). Organic complexes were mainly adsorbed/precipitated in the upper Bh horizon and the overall transport of Al at 50 cm depth was governed by a pH dependent dissolution of a solid-phase Al pool. In the cambisols, inorganic Al forms were predominant at both 15 and 50 cm depth, and Al solubility was closely related to solution pH. Secondary minerals like synthetic gibbsite, jurbanite, kaolinite or imogolite could generally not explain measured solution Al3+ activities. Results instead indicated that the relatively large organically bound solid-phase Al pools present in both soil types could do so. The column fractionation procedure could be used only qualitatively for Cd, but results strongly indicated that Cd-organo complexes contributed significantly to the overall mobilization of Cd in the podzol E horizons. In all other soil solutions, Cd2+ was the predominant species. Both solid-phase and solution chemistry suggests that ion exchange processes controlled the Cd2+ activities in these solutions. All reactive solidphase Cd was extractable by NH4Cl and Cd2+ activities could in most cases effectively be modeled by the use of ion exchange equations. Solubilized Al3+ efficiently competed for exchange sites and played an important role for the Cd mobilization in these soils.  相似文献   

15.
The molar ratio of base nutrient cations to total dissolved aluminum (BC : Altot) in the soil solution was measured at six forest sites in Switzerland in acid mineral soils to determine whether the ratio measured in the field was lower than the critical value of 1, as predicted by the mapping of exceedances of critical loads of acidity. The soil chemistry was then related to the soil solution composition to characterize the typical effective base saturation (BS) and BC : Al ratio in soil leading to critical BC : Altot in the soil solution. The median BC : Altot ratio in the soil solution never reached the critical value in the root zone at any sites for the whole observation period (1999–2002), suggesting that the BC : Altot ratios measured in the field might be higher than those modeled for the determination of critical loads of acidity. The gibbsite model usually applied for the calculation of critical loads was a poor predictor of the Al3+ activity at the study sites. A curvilinear pH‐pAl3+ relationship was found over the whole range of pH (3.8–6.5). Above a pH of 5.5, the slope of the pH‐pAl3+ relation was close to 3, suggesting equilibrium with Al(OH)3. It decreased to values smaller than 1.3 below a pH of 5.5, indicating complexation reactions with soil organic matter. The BS and the BC : Al ratios in the soils were significantly correlated to the BC : Altot ratios in the soil solution. The soil solutions with the lowest BC : Altot ratios (≤ 2) were typically found in mineral soils with a BS below 10 % and a BC : Al ratio in the soil lower than 0.2. In acid pseudogleyed horizons overlying a calcareous substrate, the soil solution chemistry was strongly influenced by the composition of the underlying soil layers. The soil solutions at 80 cm had pH values and BC : Altot ratios much higher than expected. This situation should be taken into account for the calculations of critical loads of acidity.  相似文献   

16.
Kentucky bluegrass, Poa pratensis L., is generally regarded as an acid‐soil‐sensitive species. However, previous studies in our laboratory showed that cultivars within the species differed widely in tolerance to acid Tatum subsoil (pH 4.6) which is used routinely to screen plants for aluminum (Al) tolerance. In the early studies, specific differential Al tolerance was not demonstrated. The objective of the current study was to test the hypothesis of differential Al tolerance more precisely in nutrient solutions. In one experiment, acid‐soil‐tolerant Victa and Fylking and acid‐soil‐sensitive Windsor and Kenblue cultivars were grown for 35 days in nutrient solutions containing 0, 2, 4, 6, 12, and 24 mg Al L‐1, at initial pH 4.5, with no subsequent adjustment. In a second experiment, Victa and Windsor were grown for 30 days in solutions containing 0, 4, and 6 mg Al L‐1, at initial pH 4.5, with no further adjustment. For Victa and Windsor, tolerance to Al in nutrient solution corresponded with tolerance to acid Tatum subsoil, however, the cultivar difference in tolerance, based on relative root dry weight, was only about 2‐fold, compared with 20‐fold in acid Tatum subsoil. Fylking and Kenblue cultivars, which showed a wide difference in tolerance to acid Tatum subsoil, did not show distinct differences in tolerance to Al in nutrient solutions. Possible reasons for this discrepancy are discussed. Superior Al tolerance of Victa (compared with Windsor) was associated with a greater plant‐induced increase in the pH of its nutrient solutions and a corresponding decrease in concentrations of soluble Al in the filtered solutions at the end of the experiments. Greater Al sensitivity in Windsor (compared with Victa) was not related to reduced uptake of phosphorus (P) or excessive uptake of Al; neither cultivar accumulated appreciable Al concentrations in its shoots. The observed differential acid soil and Al tolerance among bluegrass cultivars appears worthy of further study. Improved understanding of Al tolerance mechanisms would contribute to fundamental knowledge of plant mineral nutrition and could aid plant breeders in tailoring plants for greater tolerance to acid subsoils.  相似文献   

17.
Using a soil from a newly reclaimed area where high dispersibility of fine particles had led to poor physical properties in the field, changes in dispersibility and charge characteristics after artificial precipitation of Al hydroxides onto the soil were investigated. Al hydroxides were precipitated by neutralization with NaOH of an acidic A1C13 solution in which the soil samples were placed.

When the titration rates were changed, no significant differences in dispersibility were observed in the resultant soils. In the systems with the addition of 2 g kg-1 or less of A1(OH)3, dispersion ratios of clays were almost identical with those of blank samples although the specific surface areas were reduced. In the systems with 5 g kg-1 or more of A1(OH)3, considerable effects of Al hydroxides on reduction of clay dispersibility were recognized (e.g. 10 g kg-1 addition yielded less than one-third of the original ratio of the clay dispersion). A slightly larger decrease in dispersion was observed by the addition of 15 g kg-1 or more. As the amount of added Al increased, the amount of negative charges of the soil decreased while that of positive charges increased. The charge characteristics of the system with the addition of 20 g kg-1 of A1(OH)3 were closer to those of the adjacent forest soil which was characterized by a very low dispersibility. It was inferred that added Al hydroxides polymerized to form Al polycation species that were not readily exchangeable, neutralizing negative charges of clays, and acting as interparticle bonding between the clays. On the other hand, forest soils were considered to have acquired a physical stability against the dispersion of fine particles as free Al oxides had been accumulated in the process of natural weathering. It was concluded that charge characteristics primarily determined the dispersion and flocculation behavior of soils and that Al hydroxides were important modifiers of charge characteristics of soils.  相似文献   

18.
Abstract

Macadamia (Macadamia integrifolia) is increasingly becoming an important tree crop in many parts of the world. However, knowledge about the plant's nutritional behavior, especially under adverse soil conditions, has been deficient. To address this deficiency, a pot experiment was conducted to study the effects of Al, Mn and Ca (soil acidity and liming) on macadamia seedlings. Three soils having different mineralogy and fertility were used; soil pH was adjusted based on lime requirement curves so that several pH levels ranging from 4.5 to 7.5 were obtained for each soil. Chemical composition of the soil solution and of recently fully mature leaves was monitored periodically to assess the growth response.

Results suggested that Al was detrimental to physiological processes of macadamia seedlings when leaf Al was greater than 275 mg kg and soil‐solution Al exceeded 1.2 mg L‐1. Furthermore, Al seemed to have reduced Mn uptake by the plant, although macadamia could accumulate as much as 1200 mg Mn kg‐1 in leaves without apparent toxic symptoms. The internal Ca requirement of the plant was not clearly defined; however, maximum growth could be expected when soil solutions contained 160 mg Ca L‐1 , which corresponded to 0.9 cmol(+)kg‐1 of exchangeable Ca (or 10% of CEC) in a highly weathered Oxisol.  相似文献   

19.
Eastern gamagrass, Tripsacum dactyloides L., has been reported to tolerate a wide variety of soil conditions, including drought, flooding, and acidity, but its specific tolerance to aluminum (Al) has not been tested. One strain of this species, PMK Select Lot 94 SFG‐1, was tested for its tolerance to excess Al in an acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic, Typic Hapludult) and in nutrient solutions containing Al. Roots were able to penetrate unfertilized Tatum subsoil at pH levels as low as 4.1–4.2 (1:1 soil‐water), at Al saturations of 64 to 77% of CEC, and to tolerate Al concentrations in nutrient solution that would be lethal for many crop plants. For example, with 4 mg Al L‐1 and a final solution pH of 4.67, shoot and root dry weights were 75 and 76%, respectively, of those with no Al. Even with 24 mg Al L‐1 and a final solution pH of 4.13, shoot and root dry weights were 45 and 46%, respectively, of those for the no Al check treatment. Hence, this strain of gamagrass shows promise for use on soils having acidic, Al‐toxic subsoil layers that act as root barriers and predispose plants to injury by drought. Roots of gamagrass are also reported to penetrate hard clay pans and to create root channels for subsequent crops that lack this ability. Current studies indicate that the strain tested was susceptible to a chlorosis resembling iron (Fe) deficiency when grown in a Jiffy Mix potting mixture or with excess Al in nutrient solutions. Hence, gamagrass is tentatively being classified as a calcifuge [Al tolerant‐Fe‐inefficient]. In the current experiment, considerable plant to plant variability was noted regarding susceptibility to this chlorosis factor and to a purpling symptom resembling phosphorus (P) deficiency. Results indicate that an exhaustive screening of gamagrass populations could identify strains that are more suitable for specific soil situations.  相似文献   

20.
Al chemistry was studied in two acidic watersheds, one with a podzol, the other with an acid brown soil, in the Vosges mountains (N.E. France), by analysing both leaching and centrifugation soil solutions and spring waters over 3 yr. In the podzol, Al was mobilized in the eluvial horizons under the predominant influence of organic acidity, then leached down the profile as organic and F-bound Al. Strong undersaturation with respect to proto-imogolite and imogolite showed that the proto-imogolite theory of podzolization could not apply. Al was transferred from the soil to spring water mostly as Al3+ and Al-F. Al3+, as well as additional minor species (AlOH2+, AlSO4 +), originated from the redissolution of the top of the spodic horizons under the influence of both soil solution acidity and the occurrence of mobile anions derived from atmospheric deposition. Conversely, in the acid brown soil, Al mobilization was regulated by nitrate and occurred mainly as Al3+. Most of Al was retained in the deep soil and only traces of monomeric Al reached spring water. In the podzol eluvial horizons, soil solutions were undersaturated with respect to all relevant mineral phases and their chemical composition agree with the concept of a mobilization of Al from the solid soil organic Al and a control of Al3+ activity by complexation reaction with the solid and soluble soil organic matter and F. In the acid brown soil, soil solutions were found to be in equilibrium with natural alunite, and the formation of this mineral, if confirmed, would account for the occurrence of 'open' vermiculites instead of the expected hydroxy-Al interlayered vermiculites. Al solubility control in surface water of both watersheds remains unclear. The Al-F species in both watersheds and the likely control of Al solubility by alunite in the acid brown soil emphasize the influence of acid deposition on Al chemistry in acid watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号