首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited availability of herbage during the cool season creates a problem of a supply of nutrients for livestock producers throughout the southern Great Plains of the USA and, particularly, on small farms where resource constraints limit possible mitigating strategies. Six cool‐season grasses were individually sown into clean‐tilled ground, no‐till drilled into stubble of Korean lespedeza [Kummerowia stipulacea (Maxim) Makino] or no‐till over‐sown into dormant unimproved warm‐season pastures. The dry matter (DM) yields of mixtures of cool and warm‐season herbage species were measured to test their potential for increasing cool‐season herbage production in a low‐input pasture environment. Only mixtures containing Italian ryegrass (Lolium multiflorum Lam) produced greater year‐round DM yields than undisturbed warm‐season pasture with all establishment methods. When cool‐season grass was no‐till seeded into existing warm‐season pasture, there was on average a 0·61 kg DM increase in year‐round herbage production for each 1·0 kg DM of cool‐season grass herbage produced. Sowing into stubble of Korean lespedeza, or into clean‐tilled ground, required 700 or 1400 kg DM ha?1, respectively, of cool‐season production before the year‐round DM yield of each species equalled that of undisturbed warm‐season pasture. Productive pastures of perennial cool‐season grasses were not sustained beyond two growing seasons with tall wheatgrass [Elytrigia elongata (Host) Nevski], intermediate wheatgrass [Elytrigia intermedia (Host) Nevski] and a creeping wheatgrass (Elytrigia repens L.) × bluebunch wheatgrass [Pseudoroegneria spicata (Pursh)] hybrid. Lack of persistence and low productivity limit the usefulness of cool‐season perennial grasses for over‐seeding unimproved warm‐season pasture in the southern Great Plains.  相似文献   

2.
A two-year experiment assessed herbage production and above- and below-ground characteristics of a highly productive monoculture (‘BRS Zuri’ guineagrass [Panicum maximum Jacq.]) and two mixtures of three grasses (Mixture 1: ‘BRS Zuri’ guineagrass, ‘BRS Xaraés’ palisadegrass [Brachiaria brizantha Stapf.], and ‘Basilisk’ signalgrass [Brachiaria decumbens Stapf.]; Mixture 2: ‘BRS Quênia’ guineagrass [Panicum maximum Jacq.], ‘Marandu’ palisadegrass [Brachiaria brizantha Stapf.], and ‘BRS Paiaguás’ palisadegrass [Brachiaria brizantha Stapf.]), cultivated in the Brazilian tropical savanna. Mixtures 1 and 2 were subjected to two grazing intensities (removal of 40 or 60% of pre-grazing height) and ‘BRS Zuri’ guineagrass monoculture was defoliated to a single grazing intensity of 50%. Treatments were randomly assigned to fifteen 0.25-ha plots and managed under intermittent stocking by cattle. Herbage accumulation rate was similar among pastures and years (p > .1). The root mass in the tussocks did not differ (p > .1), with mean values ranging between 0.62 to 1.81 kg DM m−2. Root density in the tussock interspaces was greater in the mixtures (p < .001), regardless of seasons (p = .405) and years (p = .292). The mixtures were dominated by guineagrass (70%) and palisadegrass (30%) at the end of the experiment, with the population of ‘Basilisk’ and ‘BRS Paiaguás’ being completely suppressed throughout the experimental period. Mixing guineagrass and brachiariagrasses can be an alternative to the traditional pastoral systems in the tropics, as it does not compromise herbage production and presents a capacity to produce more roots than a very productive monoculture of ‘BRS Zuri’ guineagrass.  相似文献   

3.
Three experiments were conducted to determine the association between leaf number per tiller at defoliation, water‐soluble carbohydrate (WSC) concentration and herbage mass of juvenile ryegrass plants when grown in a Mediterranean environment. Seedlings of ryegrass were grown in nursery pots arranged side‐by‐side and located outside in the open‐air to simulate a mini‐sward in Experiments 1 and 2, and a mixture of annual ryegrass and subterranean clover (Trifolium subterraneum L.) was grown in a small plot field study in Experiment 3. Swards were defoliated mechanically with the onset of defoliation commencing within 28 d of germination. Frequency of defoliation ranged from one to nine leaves per tiller, whilst defoliation height ranged from 30 mm of pseudostem height that removed all leaf laminae in Experiment 1, to 50 mm of pseudostem height with some leaf laminae remaining post‐defoliation in Experiments 2 and 3. A positive relationship between herbage mass of ryegrass, WSC concentration and leaf number per tiller at defoliation was demonstrated in all experiments. In Experiment 1, the herbage mass of leaf, pseudostem and roots of tillers defoliated at one leaf per tiller was reduced to 0·10, 0·09 and 0·06 of those tillers defoliated less frequently at six leaves per tiller. However, the reduction in herbage mass from frequent defoliation was less severe in Experiment 2 and coincided with a 0·20 reduction in WSC concentration of pseudostem compared with 0·80 measured during Experiment 1. In Experiment 3, the highest harvested herbage mass of ryegrass occurred when defoliation was nine leaves per tiller. Although the harvested herbage from this sward contained senescent herbage, the in vitro dry‐matter digestibility of the harvested herbage did not differ significantly compared with the remaining treatments that had been defoliated more frequently. Leaf numbers of newly germinated ryegrass tillers in a Mediterranean environment were positively associated with WSC concentration of pseudostem and herbage mass. A minimum period of two to three leaf appearances was required to restore WSC concentrations to levels measured prior to defoliation thereby avoiding a significant reduction in herbage mass. However, maximum herbage mass of a mixed sward containing ryegrass and subterranean clover was achieved when defoliation was delayed to nine leaves per tiller.  相似文献   

4.
The objective was to compare alternative models for fitting to data on degradation of dry matter (DM), organic matter (OM) and crude protein (CP) in the rumen of two harvests of four temperate grasses, made into hay in Belgium, and one harvest of three tropical grasses commonly used in Burundi. Fifteen non-linear models were used and these included generalized Mitscherlich, simple Mitscherlich (or exponential), generalized Michaelis–Menten, Gompertz, logistic, simple Michaelis–Menten, segmented Van Milgen and von Bertalanffy models. Degradation profiles of DM, OM and CP obtained in sacco from the rumen of three mature sheep were fitted to all the models. The convergence success rate along with acceptable parameters was used as a first tool to eliminate models. Comparisons between the remaining twelve models were then made using the run test of sign, the root mean square prediction error, the root mean square error, the lack of fit test and the variance ratio test criteria. On the basis of an overall assessment using these tests, the Gompertz lagged model was the best suited to fit the degradation data of both temperate and tropical grasses. This study confirmed the superiority of sigmoid type functions over diminishing return-type models.  相似文献   

5.
The dry matter (DM) yield and degradability of 6‐week‐old harvests of tropical forages were measured over a season. The forages were nitrogen‐fertilized Guinea grass (Panicum maximum, NFG), unfertilized Guinea grass (UFG), Verano stylo (Stylosanthes hamata,VS), a Guinea grass–Verano stylo mixture (GSM) and Guinea grass in the grass–Verano stylo mixture (GGSM). Six‐week‐old forages were made possible through a cutting regime, which produced four harvests in the growing season. The DM yields of the forages differed significantly (P < 0·001) and showed a significant reduction (P < 0·01) across the season. Crude protein and neutral‐detergent fibre concentrations were significantly (P < 0·01) different between the forages but there was no difference between harvests. The DM degradability of the forages at all harvests were significantly (P < 0·001) different with differences in the soluble fraction (a), degradable fraction (b), potential degradability (PD) and effective degradability (ED), but rate of degradability (c) did not show any significant difference between the forages. Significant (P < 0·01) differences were found between harvests for b and PD, and for the interaction between forage and harvest for b, PD and ED but were not found for the a and c fractions. Both the PD and ED values of all the forages fell with advancing harvests. Although the 6‐week‐old harvests of forage were found not to influence the characteristic reduction in yield of tropical grasses over time, it is concluded that such a management system could be used to obtain forage of relatively high nutritive value during the growing season.  相似文献   

6.
The literature about tannins, polyphenolic secondary metabolites of plants, with both beneficial and adverse function according to their concentration and chemical structure, is vast and often conflicting. Tannins in forages have often been described as antinutritional factors, but this review aims to update information on beneficial effects on animals and the environment. Although research on the relation between tannins and animal production and health, for example, dry‐matter intake, digestibility, rumen fermentation and diseases, has mainly focused on condensed tannins, this review also discusses potential benefits from the use of hydrolysable tannins as a feed additive. Attention is given to the use of tannins in the mitigation of methane emissions from ruminants in forage‐based feeding systems and as a natural and ecologically friendly resource for improvement of nutrient utilization and environmental sustainability in meat and dairy farming.  相似文献   

7.
We investigated differences between forage species with regard to micronutrients that are essential to sustain livestock health. Five grasses (timothy, perennial ryegrass, meadow fescue, tall fescue and cocksfoot), three legumes (red clover, white clover and birdsfoot trefoil) and four forbs (ribwort plantain, salad burnet, caraway and chicory) were grown on one micronutrient‐poor/low pH soil and one micronutrient‐rich/high pH soil (outdoor pot experiment). In addition, six grasses (timothy, perennial ryegrass, meadow fescue, tall fescue, Festulolium hybrid and cocksfoot) and one legume (red clover) were field‐grown on the micronutrient‐poor soil. Of the twelve pot‐grown species, herbage of chicory, red clover and white clover generally had the highest micronutrient concentrations (maximum Co, Cu, Fe and Zn concentrations were 0·23, 9·8, 233 and 109 mg kg?1 DM, respectively), except for Mo, which was highest in the clovers (10·6 mg kg?1 DM), and Mn, which was highest in cocksfoot (375 mg kg?1 DM). Soil type had the strongest effect on plant Mo and Mn concentrations. We also investigated differences in micronutrients between varieties, but they were generally few and negligible. The results indicate that choice of forage species is of major importance for micronutrient concentrations in herbage and that soil type exerts a major effect through pH. Forage of chicory, red clover and white clover generally met the requirements of high‐yielding dairy cows with regard to most micronutrients; therefore, diversification of seed mixtures so as to include these species could increase micronutrient concentrations in forage.  相似文献   

8.
Barley grain yield in rainfed Mediterranean regions can be largely influenced by terminal drought events. In this study the ecophysiological performance of the ‘Nure’ (winter) × ‘Tremois’ (spring) barley mapping population (118 Doubled Haploids, DHs) was evaluated in a multi-environment trial of eighteen site–year combinations across the Mediterranean Basin during two consecutive harvest years (2004 and 2005). Mean grain yield of sites ranged from 0.07 to 5.43 t ha−1, clearly dependent upon both the total water input (rainfall plus irrigation) and the water stress index (WSI) accumulated during the growing season. All DHs were characterized for possessing molecular marker alleles tagging four genes that regulate barley cycle, i.e. Vrn-H1, Vrn-H2, Ppd-H2 and Eam6. Grain yield differences were initially interpreted in terms of mean differences between genotypes (G), environments (E), and for each combination of genotype and environment (GE) through a “full interaction” ANOVA model. Variance components estimates clearly showed the greater importance of GE over G, although both were much lower than E. Alternative linear and bilinear models of increasing complexity were used to describe GE. A linear model fitting allelic variation at the four genes explained genotype main effect and genotype × environment interaction much better than growth habit itself. Adaptation was primarily driven by the allelic constitution at three out of the four segregating major genes, i.e. Vrn-H1, Ppd-H2 and Eam6. In fact, the three genes together explained 47.2% of G and 26.3% of GE sum of squares. Grain yield performance was more determined by the number of grains per unit area than by the grain weight (phenotypic correlation across all genotypic values: r = 0.948 and 0.559, respectively). The inter-relationships among a series of characters defining grain yield and its components were also explored as a function of the length of the different barley developmental phases, i.e. vegetative, reproductive, and grain filling stages. In most environments, the best performing (adapted) genotypes were those with faster development until early occurrence of anthesis. This confirmed the crucial role of the period defining the number of grains per unit area in grain yield determination under Mediterranean environments.  相似文献   

9.
Pasture legumes are important components of both mixed farming rotations and permanent pastures in temperate climates. Breeding of two widely sown pasture legumes, subterranean clover (Trifolium subterraneum L.) and French serradella (Ornithopus sativus Brot.), is constrained by the long generation cycle, typically enabling only one generation per year. We hypothesized manipulation of culture medium and conditions would enable the development of a laboratory‐based protocol for in vitro reproduction in subterranean clover and French serradella. In vitro flowering and viable seed set was induced from both species. For subterranean clover, the most effective treatment was culturing on modified MS medium with 1 μm kinetin and 0·1 m sucrose under a 100 μmol m?2 s?1 light intensity and continuous photoperiod. For French serradella, culture on a hormone‐free B5 medium with 5 mm NH4Cl and 0·1 m sucrose under a 100 μmol m?2 s?1 light intensity and 20 h photoperiod was optimum. It is expected this technique will have application in accelerating generation turnover within breeding programs, for the study of factors influencing flowering in pasture legumes, and for the propagation of valuable yet enfeebled plants such as embryo‐rescued hybrids.  相似文献   

10.
Seasonal changes in herbage mass and herbage quality of legume‐based swards under grazing by sheep or cattle were investigated at four locations in climatically different zones of Europe: Sardinia (Italy), southern France, northern Germany and south‐west England (UK). At each location standard treatments were applied to legumes typical of species widely used in each locality: Medicago polymorpha in Italy, Medicago sativa in France, and Trifolium repens in Germany and in UK. At each site comparisons were made of two other legumes: Trifolium subterraneum and Hedysarum coronarium in Italy, Onobrychis sativa and Trifolium incarnatum in France, Trifolium pratense and Lotus corniculatus in Germany, and Trifolium ambiguum and L. corniculatus in UK. Legumes were sown in mixture with locally appropriate companion grasses, and measurements were made over two or three grazing periods. In Italy M. polymorpha swards gave the greatest herbage mass in grazing period 1 but H. coronarium was more persistent. At the French site all legumes established poorly with no significant herbage mass differences between treatments. At both the UK and German sites L. corniculatus maintained a high proportion of legume in the sward; T. repens showed poor persistence under continuous sheep grazing in UK but persisted under cattle grazing in Germany, while T. ambiguum was slow to establish in the UK, and T. pratense proved to be of comparable herbage mass to the standard T. repens‐based sward in the last year of the experiment. The concentration of crude protein and in vitro digestibility of organic matter in the dry matter of herbage showed greater within‐season variation than between treatments at each site. It is concluded that, in addition to currently used species, legume‐based swards containing H. coronarium, O. sativa and L. corniculatus all have potential to contribute to forage production for low‐input grazing and their use merits further consideration in systems of livestock production in Europe.  相似文献   

11.
An experiment was conducted on four genotypes of Cenchrus ciliaris, two genotypes of C. setigerus and one genotype each of Panicum maximum, P. antidotale and Lasirus sindicus grasses at CCS Haryana Agricultural University, Haryana, India in 2003 and 2004. Two cuts were taken in the months of September and November in each year. Measurements were made of seven morphological characteristics and the nutritive value of the grasses. The total green fodder yield was highest in C. ciliaris cv. IGFRI in 2003 and in C. ciliaris cv. CAZRI 75 in 2004. Total dry matter (DM) yield was highest in P. maximum cv. IGFRI and C. ciliaris cv. CAZRI 75 in 2003 and 2004, respectively. Crude protein and digestible DM yields were highest in C. ciliaris cv. CAZRI 75. It was concluded that C. ciliaris cv. CAZRI 75 can be recommended as the one with the most potential among the studied grasses for use in the arid regions of south‐west Haryana, India.  相似文献   

12.
Remote sensing of nitrogen (N) concentration and in vitro dry matter digestibility (IVDMD) in herbage can help livestock managers make timely decisions for adjusting stocking rate and managing pastures during the grazing season. Traditional laboratory analyses of N and IVDMD are time-consuming and costly. Non-destructive measurements of canopy hyperspectral reflectance of pasture may provide a rapid and inexpensive means of estimating these measures of nutritive value. Using a portable spectroradiometer, canopy reflectance was measured in eight warm-season grass pastures in the USA in June and July in 2002 and 2003 to develop and validate algorithms for estimating N concentration and IVDMD of herbage. Nitrogen concentration of herbage was linearly correlated (r = 0·82; P < 0·001) with a ratio of reflectance in the 705- and 1685-nm wavebands (R705/R1685) and IVDMD was correlated with R705/R535 (r = 0·74; P < 0·001). Compared with simple linear regressions of N concentration and IVDMD in herbage with two-waveband reflectance ratios, multiple regression, using maximum r2 improvement, band-depth analysis with step-wise regression, and partial least-squares regression enhanced the correlation between N concentration and IVDMD of herbage and canopy reflectance values (0·81 ≤ |r| ≤ 0·90; P < 0·001). Validation of the prediction equations indicated that multiple regression only slightly improved accuracy of a model for predicting N concentration and IVDMD of herbage compared with simple linear regression of reflectance ratios. Results suggest that the N concentration and IVDMD of herbage of warm-season grass pastures can be rapidly and non-destructively estimated during the grazing season using canopy reflectance in a few narrow wavebands.  相似文献   

13.
Limited information is available regarding the recovery and loss of fertilizer nitrogen (N) applied to intensively managed tropical grass pastures. An experiment was carried out in Brazil to determine the fertilizer‐N recovery and ammonia volatilization loss in an elephant grass (Pennisetum purpureum, Schum.) pasture fertilized with 100 kg N ha?1 as urea or ammonium sulphate, labelled with 15N, in late summer (LS) or in mid‐autumn (MA). Herbage mass was highest and litter mass was lowest in LS (P < 0·05). The N concentration of herbage was highest in autumn (P < 0·05) and the total N content in soil was lower in LS than in MA (P < 0·05), reflecting the high N uptake capacity of the grass. Proportionately higher 15N recovery in litter mass (P < 0·05) was observed in autumn (0·094) than in LS (0·0397) and the 15N recovery in herbage was 0·046 higher for ammonium sulphate‐fertilized pastures (P < 0·05; proportionately 0·243 for ammonium sulphate and 0·197 for urea). Around 0·60 of the fertilizer‐15N recovered was retained in soil and in non‐harvestable fractions of the plant. The NH3 volatilization loss was higher in LS and most of the N loss occurred soon after fertilizer application. Urea and ammonium sulphate fertilizers were equally effective in sustaining herbage dry matter yield in the short term. However, the use of ammonium sulphate, rather than urea, would be preferable for LS applications when the objective is to reduce NH3 volatilization losses.  相似文献   

14.
Mediterranean forage systems suffer from limited availability of fresh forage because of water deficits and extreme temperatures. Consequently, fresh forage is unavailable for at least 6–7 months a year, and farmers must buy feed to support livestock production. With the aim of overcoming these limitations, a 2‐year trial was conducted on three distinct sites in Sicily (at 10, 600 and 1200 m elevation) with thirty‐four varieties of forage species belonging to nine biennial/perennial and thirteen annual species. Results showed that by integrating grasses and legumes, species from environments with different climatic conditions enable the season of forage production to be extended from mid‐April to mid‐November. Quality traits of forage in different areas varied in relation to species and varieties. In general, the sown‐forage quality was better than in pastures and fallows in the same areas commonly used to feed animals. This also leads to a reduction in the use of supplementary feeds. Among the tested species, Lolium multiflorum and Medicago sativa emerged as the most promising for filling the forage‐deficit periods, and Trifolium spp. and Vicia sativa were found to be superior for increasing forage quality. The results are discussed in the context of adapting Mediterranean forage supplies for ensuring greater sustainability of livestock production in mountain, hill and plain areas. The proposed forage chain arrangement represents part of local potential adaptation to climate limitations and climate change.  相似文献   

15.
There is limited information on the effects of the increase in the density of shrubs on herbage production and nutritive value of natural grasslands in the Mediterranean region, currently facing major land use changes. Herbage production of drymatter (herbaceous fractions, of plant functional groups and by species), crude protein (CP), neutral‐detergent fibre (NDF), acid‐detergent fibre (ADF), acid‐detergent lignin (ADL) and hemicellulose concentrations and in vitro organic matter digestibility were determined at the time of peak of annual growth across four types of grassland vegetation each characterized by different shrub cover regimes. A sharp reduction in herbage production and a reduction in nutritive value were found as a result of the increase in shrub cover. These changes appeared to be closely related to the shift in plant functional groups detected as shrub density increased. Herbage production from grasses and legumes was found to be more sensitive to shrub cover changes than herbage production from forbs, whereas, as grassland types became denser, annual species were gradually replaced by perennials and C4 grasses by C3 ones. The impact of shrub encroachment on Mediterranean grasslands is discussed in relation to their use by livestock.  相似文献   

16.
Under terminal drought conditions, cereal varieties with limited tillering have been suggested to be advantageous, because they have fewer nonproductive tillers, thereby limiting water consumption prior to anthesis. In this study, four field trials were conducted over two growing seasons in southern Spain, under rainfed and irrigated conditions. Twenty-five genotypes were studied to evaluate the contribution of the main stem (MS) and tillers to grain yield and its components. Significant differences were found among genotypes for these contributions under non-stressed environments, but these differences were not significant under water-stress conditions. The contribution of the MS to plant grain yield was higher than that of tillers (68% vs. 32%) and was stable between years in irrigated trials. However, in the rainfed trials, MS contributed differently depending on year-to-year climate variations. Thus, under favorable weather conditions the contribution of MS to grain yield was higher than in the unfavorable year (85% vs. 59%). In irrigated environments, MS and tiller grain yield depended on the number of grains per spike, spikelets per spike, and thousand kernel weight (TKW). Under water-limited conditions, MS yield depended on the number of grains per spike and grains per spikelet, whereas the number of spikelets and TKW had less influence on MS grain yield. Furthermore, under water-stress conditions, high tillering genotypes showed yield levels similar to the genotypes with restricted tillering. Additionally, there was no significant evidence of a positive or negative effect of maximum tiller number on grain yield under rainfed conditions.  相似文献   

17.
Three different lignocellulosic energy crops (a local clone of Arundo donax L., Miscanthus x giganteus Greef et Deu. and Cynara cardunculus L. var. altilis D.C. cv. “Cardo gigante inerme”) were compared over 5 years (2002–2007) for crop yield, net energy yield and energy ratio. In a hilly interior area of Sicily (Italy), two different irrigation treatments (75 and 25% of ETm restoration) and two nitrogen fertilization levels (100 and 50 kg ha−1) were evaluated in a split-plot experiment. In the fourth and fifth years of the field experiment (2005–2007) no fertilizer or irrigation was used.From crop establishment to the third year, above ground dry matter yield increased over all studied factors, in A. donax from 6.1 to 38.8 t ha−1 and in M. x giganteus from 2.5 to 26.9 t ha−1. Fifteen months after sowing, C. cardunculus yielded 24.7 t ha−1 of d.m. decreasing to 8.0 t ha−1 in the third year. In the fourth and fifth years, above ground dry matter yields of all crops decreased, but A. donax and M. x giganteus still maintained high productivity levels in both years. By contrast the yield of C. cardunculus yield fell to less than 1 t ha−1 of d.m. by the fourth year.Energy inputs of A. donax and M. x giganteus were higher in the year of establishment than that of C. cardunculus (34 GJ ha−1 for A. donax and M. x giganteus and 12 GJ ha−1 for C. cardunculus), mainly due to irrigation.Net energy yield showed low or negative values in the establishment year in A. donax and M. x giganteus. In the second and third year, net energy yield of A. donax was exceptionally high (487.2 and 611.5 GJ ha−1, respectively), whilst M x giganteus had lower values (232.2 and 425.9 GJ ha−1, respectively). M x giganteus attained its highest net energy yield in the fourth year (447.2 GJ ha−1). Net energy yield of C. cardunculus reflected energy output of the crop, being high in the first compared to subsequent years (364.7, 277.0 and 119.2 GJ ha−1, respectively for the first, second and third years).A significant effect of the different irrigation treatments was noted on all the studied parameters in all species. Conversely, only A. donax was affected by nitrogen fertilization.  相似文献   

18.
Agronomic data on most broad‐leaved species of grasslands are scarce. The aim of this study was to obtain novel information on herbage DM yield and forage quality for several forb species, and on species differences and seasonal patterns across harvests and in successive years. Four non‐leguminous forbs [salad burnet (Sanguisorba minor), caraway (Carum carvi), chicory (Cichorium intybus) and ribwort plantain (Plantago lanceolata)] and three leguminous forbs [yellow sweet clover (Melilotus officinalis), lucerne (Medicago sativa) and birdsfoot trefoil (Lotus corniculatus)] and a perennial ryegrass–white clover mixture were investigated in a small‐plot cutting trial in Denmark during 2009 and 2010. Plots were harvested four times per year. On average, annual herbage yield was highest for lucerne (15·4 t DM) and grass–white clover (12·5 t DM ha?1), and lowest for salad burnet (4·6 t DM ha?1) and yellow sweet clover (3·9 t DM ha?1). Ribwort plantain and lucerne had the highest concentrations of acid detergent fibre (339 and 321 g kg?1 DM respectively) and lignin (78 and 67 g kg?1 DM respectively); contents in other species were similar to grass–white clover (275 and 49 g kg?1 DM respectively). No common feature was found within the functional groups of non‐leguminous forbs and leguminous forbs, other than higher crude protein contents (198–206 g kg?1 DM) in the legumes. DM yield and fibre content were lowest in October. Digestibility declined with higher temperature and increasing fibre content. Results are discussed in terms of the potential of forbs to contribute to forage resources in farming practice.  相似文献   

19.
A meta‐analysis was performed to determine the effects of feeding ruminants with tropical legume silages on intake, digestibility and performance using a data set with 218 treatments (162 containing legumes, 56 without legumes) from 62 trials. First, a regression analysis was performed for diets containing legumes. Dry‐matter intake (DMI) and digestibility decreased with increasing legume proportion, with greater effects on large compared with small ruminants. Milk yield (MY) by dairy cows was not affected by legumes. Average daily gain (ADG) by cattle was maximized with legume silage inclusion between 200 and 400 g/kg DM, but no effect appeared for small ruminants. A second analysis compared diets without legumes with diets with medium (101–400 g/kg DM) and high (401–800 g/kg DM) legume inclusion. There were no differences in DMI, MY and ADG between the medium inclusion and without legumes, but all these parameters decreased with high inclusion. Digestibility was lower in diets with legume silages than in diets without legumes, regardless of the inclusion level. Feed conversion efficiency (FCE) was highest in diets with medium inclusion and lowest with high legume inclusion. While high legume inclusion negatively affected performance, including legume silages up to 400 g/kg DM seems to enhance or at least maintain MY, ADG and FCE, despite lower intake and digestibility. The reasons for such apparent paradox remain unclear. Well‐designed studies focusing on, e.g. microbial protein synthesis, energy metabolism, protein/carbohydrates characteristics, are required to better understand the effects of tropical legumes silages on nutrients’ utilization.  相似文献   

20.
Environmental and plant factors critical to the grain yields of bread (Triticum aestivum L.), durum (T. durum L.) and emmer (T. dicoccum L.) wheat cultivars were investigated at two Mediterranean rain-fed field sites: Adana in southeastern Turkey (2009 and 2010) and Aleppo in northern Syria (2009). The grain yield (GY) and biological yield (BY) of most cultivars were higher in Adana than in Aleppo, and the lower GY in Aleppo resulted from lower harvest index (HI) and lower BY due to higher temperatures and lower rainfall. The variations in the HI among cultivars were greater in Adana than in Aleppo. The GY was closely related to the HI but not the BY across cultivars at each site, and a higher GY was accompanied by a superior conversion-efficiency of incident radiation during the grain filling period for grain yield [GY/Ra, where Ra is the cumulative radiation for 30 days after heading (D30)] across all observations. The GY/Ra correlated negatively with the average temperature for D30, and higher HI values resulted in higher GY/Ra. In Adana, the time from anthesis to physiological-maturity decreased as the average temperature for D30 increased, resulting in a lower HI. Cultivars exhibiting the early heading trait can effectively escape the negative impacts of terminal high-temperature and water-shortage conditions on the HI. The results suggested that the HI is a critical factor for GY across diverse wheat cultivars under terminal high-temperatures and water-shortages in Mediterranean areas, and the BY is also an important factor under severe water-limitation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号