首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the absorption and translocation of foliage-applied ring-labelled [14C]asulam [methyl (4-aminobenzenesulphonyl) carbamate] were carried out using glasshouse and field-grown bracken plants. Translocation of 14C from the treated frond was primarily according to a 'source to sink’pattern with intense accumulation of radioactivity in the metabolically active sinks viz. rhizome apices, frond buds, root tips and young frond tissue. In the case of field bracken, translocation and distribution of 14C was extensive in the rhizome system, accumulation occurring in the active as well as dormant buds situated on the non-frond-bearing and storage rhizome branches. Treatment of fully expanded fronds with 100μl of [14C]asulam (1 mg, 1.0–1.5 μCi) as 2 μl droplets resulted in a rapid initial uptake during the first week, followed by progressive entry and distribution with time. Basipetal translocation to the rhizome system was positively correlated with total uptake. High humidity (95%) and high temperature (30°C) stimulated uptake and subsequent basipetal translocation to a considerable degree. Uptake was greater through the stomatal-bearing abaxial than through the adaxial cuticle. Incorporation of a surfactant (Tergitol-7, 0.1%) increased penetration by up to 30%. Uptake declined markedly as the frond aged, while translocation was predominantly acropetal in young treated fronds, becoming exclusively basipetal when the fronds matured. Optimum uptake and maximum distribution of [14C]asulam in the rhizome and its associated buds was achieved when treatments were applied to almost fully expanded fronds. The translocated 14C (asulam and possibly some of its metabolites) showed a considerable degree of persistence in the rhizome system, 8% of the applied activity still remaining in the rhizome 40 weeks after treatment.  相似文献   

2.
The uptake and translocation of [14C]asulam (methyl 4-aminophenyl-sulphonylcarbamate), [14C]aminotriazole (1-H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail), a weed of mainly horticultural situations. Under controlled-environment conditions, 21°C day/18°C night and 70% r. h., the test herbicides were applied to 2-month-old and 2-year-old plants. Seven days following the application of 0.07-0.09 °Ci (1.14mg) of the test herbicides to young E. arvense, the accumulation of 14C-label (as percentage of applied radioactivity) in the treated shoots, untreated apical and basal shoots was as follows: [14C]asulam, 13.2, 0.18 and 1.02%; [14C] aminotriazole, 67.2, 3.65 and 1-91%; [14C]glyphosate, 35.9, 0.06 and 0.11%. The equivalent mean values for the accumulation of 14C-label in 2-year-old E. arvense were [14C]asulam, 12.0, 1-15 and 1.74%; [14C]aminotriazole, 58.6, 9.44 and 4.12%; [14C]glyphosate, 33.1, 0.79 and 2.32%. In the latter experiment, test plants received 0.25-0.30 °Ci (4mg) of herbicide, they were assessed after a 14-day period and the experiment was carried out at 3-week intervals between 2 June and 25 August on outdoor-grown plants. Irrespective of test herbicide or time of application, very low levels of 14C-label accumulated in the rhizome system. Only 0.2% of the applied radioactivity was recovered in 2-year-old plants and 0.4% in 2-month-old plants. In the young plants [14C]asulam accumulated greater amounts and concentrations of 14C-label in the rhizome apices and nodes than [14C]aminotriazole or [14C]glyphosate treatments. Inadequate control of E. arvense under field conditions may be due to limited basipetal translocation and accumulation of the test herbicides in the rhizome apices and nodes.  相似文献   

3.
Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

4.
Studies have been carried out on the herbicidal action of asulam [methyl (4-aminophenylsulphonyl)carbamate] and sulphanilamide, alone or in association either with 4-aminobenzoic acid (4ABA) or 4, 6-diamino-1-(3, 4-dichlorophenyl)-1, 2-dihydro-2, 2-dimethyl-1,3,5-triazine (DCDT). The soaking of wheat seeds (Triticum estivum L.) for 12 h at 30°C in asulam and DCDT in a 10:1 ratio doubled the inhibition of root growth produced by soaking in asulam alone; the addition of 4ABA partially reversed the activity of asulam. Foliar applications of a mixture of asulam + DCDT (1.1 + 0.55 kg ha?1) markedly increased the activity of asulam in susceptible wheat, wild oat (Avena fatua L.), tolerant flax (Linum usitatissimum L.), and in Stellaria media L. The activity of asulam at 1.1 kg ha?1 was reversed by 4ABA at 2.2 kg ha?1 by about 50% in wheat and wild oat, 82% in flax and 100% in S. media. The results indicate that asulam and sulphanilamide act by similar mechanisms in apparently inhibiting the biosynthesis of folic acid.  相似文献   

5.
The effects of the herbicides hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] and chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide) on the metabolism of enzymatically isolated leaf cells from soybean [Glycine max (L.) Merr., cv. ‘Essex’] were examined. Photosynthesis, protein, ribonucleic acid (RNA), and lipid syntheses were assayed by the incorporation of specific radioactive substrates into the isolated soybean leaf cells. These specific substrates were NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetate, respectively. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was the most sensitive and first metabolic process inhibited by hexazinone. RNA and lipid syntheses were also inhibited significantly by hexazinone whereas the effect of this herbicide on protein synthesis was less. The most sensitive and first metabolic process inhibited by chlorsulfuron was lipid synthesis. Photosynthesis, RNA, and protein syntheses were affected significantly only by the highest concentration of this herbicide and longest exposure. Although these two herbicides may exert their herbicidal action by affecting other plant metabolic processes not examined in this study, hexazinone appears to be a strong photosynthetic inhibitor, while the herbicidal action of chlorsulfuron appeared to be related to its effects on lipid synthesis.  相似文献   

6.
The effects of the herbicide isouron and of its plant degradation products designated as metabolite l {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-N-methylurea} and metabolite 2 {N-[5-(1,1-dimethylethyl)-3-isoxazolyl]-urea} on the metabolism of enzymatically isolated leaf cells of soybean [Glycine max (L.) Merr., cv. Essex] were compared under laboratory conditions. Photosynthesis, protein synthesis, ribonucleic acid synthesis, and lipid synthesis were assayed by the incorporation of NaH14CO3, [14C]-leucine, [14C]-uracil, and [14C]-acetate, respectively, into the isolated cells. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10 and 100 μM of the three herbicides. The urea derivative of isouron (metabolite 2) was the least active of the three compounds. The activity of the mono-methylated derivative of isouron (metabolite 1) was comparable to that of isouron and the sensitivity of the four processes to both chemicals decreased in the order: photosynthesis > ribonucleic acid synthesis > lipid synthesis > protein synthesis. The concentration of isouron that caused a 50% inhibition of photosynthesis of the isolated soybean leaf cells was calculated at 0.51 μM. The effects of isouron and metabolite 1 on photosynthesis, lipid and RNA synthesis appeared to be independent of incubation lime as maximal inhibition occurred within 30 min. Inhibition of protein synthesis by both chemicals was time-dependent, increasing in magnitude with concomitant increases in incubation time.  相似文献   

7.
Colony growth and germ tube emergence of sporangia and encysted zoospores of Phytophthora infestans were highly sensitive to cymoxanil (ED50 0.5–1.5 μg/ml), whereas differentiation of sporangia and zoospore release were insensitive at concentrations up to 100 μg/ml. Treated sporangia did not show distorted germ tubes. Oxygen consumption for glucose oxidation by germinating sporangia and zoospore motility were not inhibited at concentrations up to 100 μg/ml. Cymoxanil hardly affected the uptake of radiolabeled precursors of DNA, RNA, and protein at concentrations up to 100 μg/ml. Incorporation of [14C]phenylalanine into protein was completely insensitive. RNA synthesis as measured by [3H]uridine incorporation was differentially inhibited in the various developmental stages of the fungus. Inhibition did not occur at differentiation of sporangia, whereas at cyst and sporangial germination and mycelial growth this process was inhibited 20–45% at a concentration of 100 μg cymoxanil/ml. Endogenous RNA polymerase activity of isolated nuclei was not inhibited by cymoxanil. DNA synthesis as measured by [methyl-3H]thymidine incorporation was inhibited 20–80% at the various stages of development at cymoxanil concentrations higher than 10 μg/ml. Metalaxyl, a specific inhibitor of ribosomal RNA synthesis, inhibited [3H]uridine incorporation 40–60% at all developmental stages. The data suggest that although DNA synthesis is affected more than RNA synthesis, inhibition of both biosynthetic processes is a secondary effect. The primary mode of action of cymoxanil thus remains unknown.  相似文献   

8.
The effect of temperature on the activity and metabolism of glyphosate, as its mono(isopropylammonium) salt, in single-node rhizome fragments of Elymus repens was investigated in controlled environment cabinets. Post-treatment temperatures of 26/16° (day/night) reduced the activity of the herbicide compared with that at 10/6°, respectively. Under both temperature regimes and using [14C]glyphosatemono(isopropylammonium), more [14C]glyphosate accumulated in the node tissues and buds than in the internodes, but at teh higher temperature the rate of glyphosate metabolism was greater, and more 14C was lost as [14C]carbon dioxide. Evidence is presented to indicate that plant extracts contained at least two components which yielded glyphosate and aminomethylphosphonic acid after both acid or base treatment, but not on incubation with β-glucosidase. It is therefore tentatively suggested that these metabolites are not β-glycosides but perhaps are conjugates with other natural plant constituents involving the phosphonyl and/or amino groups of the herbicide.  相似文献   

9.
The patterns of regeneration of Pteridium aquilinum (L.) Kuhn. (bracken) rhizome segments grown in pot culture are described. The overall capacity for regeneration was unaffected by the rhizome type planted, i.e., whether it consisted of only a length of frond-bearing ‘short shoote’ or whether this was attached to part of the main storage and exploratory ‘long shoot’. In all cases rhizomes extended, produced new lateral buds and developed fronds during the first summer. Regenerative capacity was also similar for segments with or without apical buds. Different patterns of growth were observed in plants grown from different types of segment: in particular, more new lateral buds were produced on rhizome segments originally lacking an apex. As rhizomes extended, the distance between successive lateral buds increased. The results are discussed in relation to the possible roles of correlative inhibition and patterns of translocation between fronds and rhizomes and to information on field populations.  相似文献   

10.
The persistence of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), [14C]dicamba (3,6-dichloro-2-methoxybenzoic-7-14C acid) and propanil [N-(3,4-dichlorophenyl)propionamide] at rates equivalent to 1 kg ha?1, were studied under laboratory conditions in a clay loam, a heavy clay and a sandy loam at 85% of field capacity and at 20±1°C, both singly and in the presence of herbicides normally applied with these chemicals as tank-mix or split-mix components. The degradation of bromoxynil was rapid with over 90% breakdown occurring within a week in the heavy clay and sandy-loam soils, while in the clay-loam approximately 80% of the bromoxynil had broken down after 7 days. In all three soils degradation was unaffected by the presence of asulam, diclofop-methyl, flamprop-methyl, MCPA, metribuzin or propanil. Propanil underwent rapid degradation in all soil treatments, with over 95% of the applied propanil being dissipated within 7 days. There were no noticeable effects on propanil degradation resulting from applications of asulam, barban, bromoxynil, dicamba, MCPA, MCPB, metribuzin or 2,4-D. The breakdown of [14C]dicamba in a particular soil was unaffected by being applied alone or in the presence of diclofop-methyl, flampropmethyl, MCPA, metribuzin, propanil or 2,4-D. The times for 50% of the applied dicamba to be degraded were approximately 16 days in both the clay loam and sandy loam, and about 50 days in the heavy clay.  相似文献   

11.
[2-14C]Mevalonic acid incorporation into gibberellic acid precursors was measured in cell-free extracts from sorghum [Sorghum bicolor (L.) Moench var. G-522 DR] coleoptiles. 14C incorporation into ent-kaur-16-ene was inhibited ca. 90% by 10?7 to 10?4M metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide]. [14C]Geranylgeraniol (GG) content increased. [14C]Farnesol content was not altered and [14C]geraniol content decreased. Total 14C incorporation was decreased by metolachlor. In the safener [α-(cyanomethoximino)benacetonitrile]-treated sorghum seed coleoptile cell-free system, total 14C incorporation increased, [14C]kaurene and relative kaurence content increased 4× up to 105M metolachlor, and [14C]farnesol, and [14C]GG contents increased while relative farnesol and relative GG contents were not influenced by metolachlor. Thus, the inhibition of kaurene synthesis by metolachlor was reversed by the safener. Since the biosynthetic processes are mevalonic acid → geraniol → farnesol → GG → copalylol → kaurene, these data corroborate a proposed gibberellic acid biosynthesis inhibition between GG and kaurene as well as a partial blockage between mevalonic acid and geraniol. Thus, a portion of metolachlor-induced growth inhibitions of sorghum could be explicable on the basis of gibberellic acid biosynthesis inhibitions.  相似文献   

12.
Growth of Penicillium digitatum was inhibited after a 40-min incubation in a culture medium containing 0.5 mM sec-butylamine, and the dry weight of the hyphae was 50% of the control value after 180 min. Respiration of the hyphae was reduced 13% after a 20-min contact with 0.5 mM sec-butylamine but this treatment did not influence the uptake of amino acids, glucose, or phosphate nor intensify the efflux of 33P- or 14C-labeled metabolites from the cells. The syntheses of cell walls and total lipids were inhibited 20–30% after a 90-min incubation with sec-butylamine, and nucleic acid synthesis was reduced to about 50% of the control value at this time. sec-Butylamine inhibited the incorporation of labeled carbon from [14C]glucose into the protein fraction of the hyphae to a greater degree than 14C derived from labeled proline, lysine, or leucine. These observations suggested that sec-butylamine interfered primarily with the intermediary metabolism of glucose rather than inhibiting a later stage of macromolecule synthesis. Hyphae incubated with [14C]glucose and sec-butylamine accumulated pyruvic acid to a level seven times greater than in control hyphae. Furthermore, sec-butylamine strongly inhibited 14CO2 evolution from hyphae metabolizing [14C]pyruvate whereas CO2 derived from acetate or glucose after a 45-min incubation was only slightly reduced by sec-butylamine. These observations implicate pyruvate oxidation as the primary site of sec-butylamine action in young hyphae of P. digitatum.  相似文献   

13.
The metabolism of [14C]asulam (methyl 4-aminophenylsulphonylcarbamate), [14C] aminotriazole (1H-1,2,4-triazol-3-ylamine) and [14C]glyphosate (N-(phosphonomethyl)glycine) were assessed in Equisetum arvense L. (field horsetail). Following application of the test herbicides (4mg?0.3 °Ci herbicide/shoot) to the shoots of 2-year-old pot-grown plants, the total recovery of 14C-label after 1 week and 8 weeks was high for all three herbicides (>80-0% of applied radioactivity). Asulam was persistent (>69-7% of recovered radioactivity) in both shoots and rhizomes. Sulphanilamide, a hydrolysis product of asulam, accounted for the remainder of the recovered radioactivity. Aminotriazole showed evidence of conjugation in shoots and rhizomes. The principal 14C-labelled component in shoots was composed of high proportions of aminotriazole (>76-3%) together with the metabolites: X (ninhydrin positive), β-(3-amino-1,2,4-triazolyl-1-)α-alanine, Y (diazotization positive) and various unidentified compounds. Rhizomes generally contained lower proportions of intact aminotriazole (>59.4%) together with the metabolites X,Y and unidentified compounds. The proportion of aminotriazole did not decrease with time in shoots or rhizomes; however, the ratio of metabolite X: Y moved in favour of Y as the interval after treatment increased. Glyphosate was extensively metabolised in shoots and rhizomes to yield aminomethylphosphonic acid (AMPA) and various unidentified compounds. Differential metabolism appears to be one of the factors which may govern the persistence and toxicity of the test herbicides in E. arvense.  相似文献   

14.
The persistence of [14C]MCPA at a rate equivalent to 1 kg ha?1 was studied under laboratory conditions in a clay loam, heavy clay and sandy loam at 85% of field capacity moisture and 20±1°C both alone and in the presence of tri-allate, trifluralin, tri-allate and trifluralin, malathion, Vitaflow DB, malathion and Vitaflow DB, bromoxynil, bromoxynil and asulam, bromoxynil and difenzoquat, dicamba, dicamba and mecoprop, linuron, MCPB, metribuzin, propanil, TCA, benzoylprop-ethyl, diclofop-methyl, and flamprop-methyl. Except in the soils treated with asulam, the half-lives of [14C]MCPA in all three soil types were similar, being approximately 13±1 days, thus indicating that none of the other chemicals studied adversely affected the soil degradation of MCPA. In the asulam treated soils, the half-lives of the MCPA were about 3 days longer than in non-asulam treated soils; the effect was most marked in the clay loam.  相似文献   

15.
The effect of non-ionic nonylphenol (NP) surfactants containing 4–14 ethylene oxide (EO) molecules on the distribution of asulam and diflufenican was investigated in Pteridium aquilinum L. Kuhn and Avena fatua L. The distribution of the herbicides was dependent on the EO content and concentration of surfactant and differed between plant species and herbicide. The surface properties of contact angle, droplet diameter and surface tension were examined. For solutions of asulam, the greatest reductions in contact angle, surface tension and greatest droplet diameter were obtained with surfactants of EO 6.5–10 (at 0.001–0.1%). For solutions of diflufenican, these responses were greatest when applied with surfactant of EO 4. Surfactants of EO 6.5–10 increased the uptake and translocation of [14C]asulam in P. aquilinum, particularly at surfactant concentrations of 0.01 % and 0.1 %. All surfactants increased uptake of [14C]asulam in A. fatua with no significant effects of surfactant EO number or concentration. For both species, there was a positive correlation between the optimum surface characteristics of the herbicide droplets and the uptake of asulam. With diflufenican, greatest uptake and translocation by mature frond tissue of P. aquilinum occurred at the highest concentration of surfactant EO 4; in A. fatua, however, uptake and translocation were not significantly affected by any of the surfactants.  相似文献   

16.
Experimental systems were produced from fragments of bracken rhizome and picloram-14C was applied to frond laminae, rhizome apices, frond buds and roots and translocation assessed 7 days after treatment. The isotope was readily taken up by all organs and freely translocated to associated fractions of the rhizome except in the case of laminae from which distribution was very poor. Accumulation of activity in the roots was considerable following treatment of the frond buds but was limited in the frond buds. Poor translocation of herbicide from treated frond laminae is considered a possible explanation of poor control in the field when bracken is sprayed in July. Lapplication du picioram e14C à la fougère Des systèmes expérimentaux ont étéétablis en utilisant des fragments de rhizome de fougére et du piciorame 14C a été appliqué sur les limbes des frondes, les apex des rhizomes, les bourgeons des frondes et les racines. La migration fut évaluée sept jours aprés le traitement. L'isotope a été facilement absorbé par tous les organes et librement transporté aux fractions correspondantes du rhizome, sauf dans le cas des limbes è partir desquels la distribution a été très faible. L'accumulation de ractivité dans les racines a été considérable è la suite du traitement des bourgeons de frondes mais a été Iimitée dans les bourgeons de frondes. Une faible migration de I'herbicide depuis les limbes des frondes est considérée comme une explication possible du désherbage mediocre auchamp, lorsque la fougère est traitée en juillet. Die Anwendung von PicIoram-14C zu Adlerfarn Aus Rhizomstücken von Adlerfarn wurden Versuchsp-flanzen gezogen und auf die Wedelspreiten, Rhizomapices, Wedelknospen und Wurzein- Picloram-14C appliziert. Die Transiokation des Herbizids wurde eine Woche nach der Behandlung gemessen. Das lsotop wurde von alien Pflan-zenorganen schnell aufgenommen und in die dem Rhizom benachbarten Pflanzenteile transloziert; bei Behandlung der Wedelspreiten war jedoch nur eine geringe Verteilung fest-zustellen. Nach Behandlung der Wedelknospen war in den Wurzein eine beträchtliche, aber in den Wedelknospen nur eine geringe Aktivitätsanreicherung feststellbar. Für den schwachen Bekämpfungserfolg des Adierfarns im Freiland bei Spritzungen im Juli, wird die geringe Transiokation des Herbizids aus den Wedelspreiten als mögliche Erklärung angesehen.  相似文献   

17.
Field and glasshouse experiments were conducted from 1995 through 1996 to evaluate application timing of asulam (methyl sulfanilylcarbamate) for torpedograss (Panicum repens L.) control in relation to plant age in sugarcane. Above‐ground shoots of torpedograss were completely controlled with asulam at 2–4 kg active ingredient (a.i.) ha?1 applied 60 or 80 days after planting (DAP) in artificially infested pots. But some newly developed rhizome buds survived after asulam application resulting in 1–25 and 76–100% or more regrowth in 60 and 80 DAP‐applied pots, respectively. Whereas the herbicide at 2–4 kg a.i. ha?1 applied within 60 DAP completely controlled above‐ground shoots, applied 80 DAP at 2 kg a.i. ha?1 it did not completely control the weed in the artificially infested field. Regrowth levels were 1–25 and 76–100% or more in 60 and 80 DAP‐applied plots, respectively. Asulam at 2–3 kg a.i. ha?1 applied 20, 40, 60 or 80 DAP in a naturally infested field completely controlled above‐ground shoots and regrowth levels were 76–100 or more, 51–75, 1–25 and 26–50% in these same DAP applied plots, respectively. The herbicide applied at 4 kg a.i. ha?1 caused chlorosis on younger sugarcane leaves (one‐leaf stage), but when applied at 2–3 kg a.i. ha?1, no injury symptoms were shown. The herbicide at 2–4 kg a.i. ha?1 applied within 60 DAP resulted in remarkably higher yield and shoot biomass of sugarcane than that applied 80 DAP. This study suggested that asulam at 2–3 kg a.i. ha?1 should be applied 60 days after planting for the maximum control of torpedograss regrowth and better yield of sugarcane. This study also indicated that torpedograss cannot be completely controlled with a single application of asulam in a naturally infested field because of rhizome fragmentation by cross plowing and distribution of rhizomes into different soil layers that require different times to emerge. The shoots emerging after asulam application could not be controlled. Another study is required to determine the interval between sequential applications of asulam for better control of torpedograss in a naturally infested field.  相似文献   

18.
The rapid effects of the thiocarbamate herbicide S-ethyl dipropyl thiocarbamate (EPTC) and the herbicide protectant N,N-diallyl-2,2-dichloroacetamide (DDCA) on macromolecular syntheses and glutathione (GSH) levels in maize cell cultures were studied to determine whether stimulation of GSH could be the primary mechanism of action of DDCA. EPTC (0.5 and 1 mM) reduced incorporation of radioactive precursors within 1 hr after treatment, and affected incorporation of [3H]acetate into lipids more than incorporation of [3H]adenosine into acid-precipitable nucleic acids, or [14C]protein hydrolysate into protein. [14C]EPTC was rapidly biotransformed within 8 hr by maize cell suspensions. Measureable decreases in GSH levels following treatment with 1 mM EPTC occurred after 15 hr. DDCA stimulated incorporation of [3H]acetate into lipids within 4 hr but did not affect incorporation of [14C]protein hydrolysate into protein or [3H]adenosine incorporation into nucleic acids. Measureable increases in GSH following DDCA treatment began after 12 hr. Treatment with EPTC and DDCA in combination inhibited incorporation of [3H]acetate into lipids less than EPTC given alone. Increases in GSH levels could be observed following pretreatments with glutathione precursors, but no protectant activity could be detected, in contrast to treatments with DDCA. It is suggested that DDCA has an initial rapid effect on lipid metabolism followed by a slower effect involving increases in cellular GSH.  相似文献   

19.
Radioactive dinitramine (1) was incorporated at 12 Ib/acre (0.6 ppm) in Anaheim silty loam soil and its degradation studied over an 8-month period. For both specifically—14CF3 and -Ring-UL-[14C] labeled (1), only ca. 20% of the radioactivity was lost from the incorporated zone. Mehanol- or acetonitrile-extractable radioactivity decreased rapidly over the initial 60 days reaching 20% after 244 days. Two compounds were isolated and characterized as (1), 0.05 ppm, and 6-amino-1-ethyl-2-methyl-7-nitro-5-trifluoromethylbenzimidazole (2), 0.06 ppm. Two other compounds were tentatively identified by TLC as monodealkylated dinitramine (3), 0.01 ppm, and 6-amino-2-methyl-7-nitro-5-trifluoromethylbenzimidazole (4), 0.01 ppm, Sodium hydroxide (10%) and anionic surfactant (10%) were effective in removing up to 50% of the residual bound radioactivity (i.e., nonacetonitrile extractable), while dimethylamine (25%) released 26%; extraction by acid was less effective.  相似文献   

20.
Buffers and leaf discs of mature tobacco (Nicotiana tabacum L.) were utilized to study [14C]-ethylene and 14CO2 evolution from radiolabeled ethephon, (2-chloroethyl)phosphonic acid. Metabolic fate of [14C]ethephon in leaf discs was investigated by use of thin-layer chromatography, high-voltage paper electrophoresis, autoradiography, and liquid scintillation spectroscopy. The evolution of labeled ethylene generally increased with increasing buffer pH, buffer volume, and dosage of [14C]ethephon. [14C]Ethylene was evolved, increasingly with time, from [14C]ethephon either added to the buffer or applied to leaf discs. The rate of [14C]ethylene evolution was maximum during the first day and leveled off on the fourth day. More than 50% of the total [14C]ethylene evolution over a 96-hr period was recovered during the first 24 hr after [14C]ethephon application. No 14CO2 was evolved when [14C]ethephon was degraded in the presence of buffer or leaf discs. Only ethephon itself, and no detectable metabolite thereof, was discovered in the methanolic extract of the leaf disc tissue. An insignificant amount of 14C activity (approximately 2% of the extracted 14C) was detected in the residue. By means of gas chromatography, it was confirmed that in buffers and tobacco leaf tissue ethephon breaks down to release ethylene but not CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号