首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The establishment and growth of Rosmarinus officinalis L. under field conditions in two low‐nutrient‐content soils were evaluated, as well as the effect of arbuscular mycorrhizal (AM) fungi on essential oil production. The reclamation was conducted in two experimental sites: a limestone quarry and a wasteland soil, both surrounded by Mediterranean vegetation. Mycorrhizal R. officinalis plants inoculated with different AM fungal isolates were used to revegetate the sites. Pre‐transplant inoculation with mycorrhizal fungi resulted in an increased survival of R. officinalis with similar results in both experimental areas. Mycorrhizal inoculation enhanced plant growth, increased essential oil yield and improved the establishment of plants under field conditions. The results indicate that the presence of the symbiosis can accelerate plant growth and alter the biosynthesis of secondary metabolites, thus improving the yield of medicinal plant extracts. It also confirmed the importance of selecting plant/symbiont combinations adapted to the environmental constraints of low‐nutrient‐content soils to design a successful application of mycorrhizal technology in marginal soils. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

3.
AM真菌接种对甘薯产量和品质的影响   总被引:3,自引:0,他引:3  
通过田间试验方法研究了接种AM真菌对甘薯产量和品质的影响。结果表明,种植6周时接种能够提高甘薯的菌根侵染率、生长和吸P量,收获时可提高甘薯的产量和品质。从接种效果看,本地分离的菌株接种效果好于异地分离菌株,混合菌株好于单一菌株。  相似文献   

4.
Abstract

A greenhouse experiment was conducted to determine the combined effects of lime, nitrogen and phosphorus on mycorrhizal activity in an oxisol subjected to imposed erosion using Vigna unquiculata (L.) Walp cv. ‘California Blackeye No. 5’ (cowpea) as a test plant. Cowpea was grown in the soil in the presence or absence of the vesicular‐arbuscular mycorrhizal fungus Glomus aqgregatum (Schenck & Smith emend. Koske) with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu and B; and with basal nutrients plus lime, N and P (complete). The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness measured in terms of leaf disc P content increased significantly when the eroded soil was amended with a combination of all of the nutrients and inoculated with Glomus aggregatum. Vesicular‐arbuscular mycorrhizal inoculation and nutrient amendment was also accompanied by significant increase in shoot P, Cu, Zn and N content, and nodule, shoot and root dry matter yield. The findings of this study demonstrate the importance of replacing lost nutrients before legumes could be successfully established on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

5.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

6.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

7.
The aim of this study was to evaluate the effects of lime, fertilizers, mycorrhizal fungi, and selected rhizobia strains on the growth of four woody legume species, Albizia lebbeck (L.) Benth., Enterolobium contortisiliquum (Vell.) Morong., Leucaena leucocephala (Lam.) de Wit, and Sesbania virgata (Cav.) Pers. in a low-fertility soil. The experiment was conducted under greenhouse condition in plastic pots (4 kg). Eight treatments and eight replicates per treatment were performed in a completely randomized design. The treatments were: (1) complete treatment (C) (NPK fertilization?+?micronutrients?+?liming?+?MR that is inoculation with mycorrhizal fungi and rhizobia); (2) C minus N (C???N that is as C without the addition of N); (3) C???N???M (as C???N without inoculation with arbuscular mycorrhizal fungi (AMF)); (4) C???N??R (as C???N without inoculation of rhizobia); (5) C???N???liming (as C???N without liming); (6) C???N???micro (as C???N without addition of micronutrients); (7) C???N???P (as C???N without addition of P); (8) control without fertilization, liming, and without inoculation with AMF and rhizobia. After 4 months of growth, we determined the yield of individual plants, nodulation, mycorrhizal colonization, and nutrient contents. Phosphorus was the most limiting nutrient for plant growth, followed by nitrogen. L. leucocephala and S. virgata had the most robust response to the addition of micronutrients and liming, showing an increase in nutrient content, plant height, and root and shoot dry matter. When compared to the single inoculation, the dual inoculation increased growth of all plants, except that of A. lebbeck, which did not respond to either rhizobia or mycorrhizal fungi inoculation.  相似文献   

8.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The interactive effect of sugar beet (SB) agrowaste and arbuscular mycorrhizal (AM) fungi inoculation in response to increasing Cu levels was evaluated in the metallophyte Oenothera picensis. Plants were grown in a Cu‐added soil (0, 100, or 500 mg Cu kg?1), in presence or absence of SB, and inoculated with: (1) indigenous Cu adapted mycorrhiza (IM) isolated from Cu‐polluted soils; (2) Claroideoglomus claroideum (CC); or (3) maintained uninoculated (control). Sugar beet application produced an increase in shoot biomass of 2 to 7 times, improving plant nutritional status and allowing their survival at the highest Cu concentrations. Moreover, AM fungi utilization had a positive effect promoting the plant establishment; nevertheless, Cu plant concentration as well as the mycorrhizal development in terms of AM colonization, AM spore density, and glomalin production were strictly dependent of the AM fungi strains used. Remarkable differences between AM fungi strains were observed at the highest soil Cu level where only plants colonized by IM were able to survive and grow when no SB residue was added. An interactive effect between AM fungi and SB produced a higher plant growth than plants without the amendment application, improving the plant establishment and allowing their survival at highest copper concentrations, suggesting that this combination could be used as a biotechnological tool for the phytoremediation of Cu‐polluted soils.  相似文献   

10.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

11.
Thirty‐day‐old seedlings of Cassia siamea were transplanted into pots containing a subsurface Oxisol uninoculated or inoculated with Glomus agaregatum at two target soil solution phosphorus (P) concentrations. While no evidence of Vesicular‐arbuscular mycorrhizal fungal (VAMF) colonization was noted in the uninoculated soil, C. siamea roots were colonized to the extent of 63 and 61% at soil P concentrations of 0.02 and 0.2 mg/L, respectively. VAMF colonization led to significant increases in tissue P concentrations measured at harvest at both soil P concentrations. However, shoot dry matter yield was significantly increased only at the first soil P concentration. Shoot dry matter yield of mycorrhizal C. siamea at soil P concentration of 0.02 mg/L was comparable to mycorrhizal growth of C. siamea at soil P concentration of 0.2 mg/L but inferior to the nonmycorrhizal growth of the legume. Based on these response patterns, C. siamea was classified as a highly mycorrhizal dependent species.  相似文献   

12.
Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.  相似文献   

13.
Thirty three‐day‐old seedlings of nonmycorrhizal Sauropus androgynus were transplanted into pots containing a subsurface Oxisol uninoculated or inoculated with Glomus aggregation at three target soil solution phosphorus (P) concentrations. While no evidence of vesicular‐arbuscular mycorrhizal fungal (VAMF) colonization was noticed in the uninoculated soil, sauropus roots were colonized to the extent of 54%, 60% and 38% in the inoculated soil if target soil P concentrations were 0.014, 0.02 and 0.2 mg/L. VAMF colonization led to significant increases in tissue P and shoot dry matter accumulation at the first two soil P concentrations but not at the highest concentration. Root dry matter yield of mycorrhizal sauropus was greater than that of nonmycorrhizal sauropus at all soil P concentrations tested. Although mycorrhizal inoculation effects at soil P concentrations of 0.014 and 0.02 mg/L were comparable, growth of mycorrhizal plants was greater at the latter P concentration than at the former. Growth of mycorrhizal sauropus at this P concentration was also comparable to non‐mycorrhizal growth of the plant at soil P concentration of 0.2 mg/L. Based on the growth responses observed sauropus was classified as a highly mycorrhizal dependent species.  相似文献   

14.
Maize roots are colonized by arbuscular mycorrhizal fungi, but less mycorrhizal symbiosis is expected as the plant-available phosphorus (P) concentration of soil increases, based on greenhouse and growth bench experiments. The objective of this study was to evaluate maize root colonization by arbuscular mycorrhizal fungi in a sandy loam soil with a gradient of plant-available P concentrations resulting from P fertilizer inputs. The field experiment received inorganic and organic P fertilizers for 3 years, and this created a 20-fold difference in the plant-available P concentration, from 12 to 204 mg Mehlich-3 extractable P kg−1. The proportion of maize roots colonized with arbuscular mycorrhizal fungi increased from 26 ± 2% during vegetative growth (V8 and VT growth stages) to 46 ± 2% in the reproductive R2 and R6 stages. The P fertilizer input did not affect maize root colonization by arbuscular mycorrhizal fungi. More arbuscular mycorrhizal fungi colonization of maize roots occurred in soil with increasing plant-available P concentrations (r = .12, = .05, n = 237), and this was associated with greater P uptake in the maize shoots (r = .53, < .001, n = 240). We conclude that the root-mycorrhizal symbiosis was more strongly related to maize growth than the plant-available P concentration under field conditions.  相似文献   

15.
Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experiment was carried out to study the colonization rate, growth, nutrition, and chlorogenic acid content of Lonicera confusa seedlings inoculated with arbuscular mycorrhizal (AM) fungi, Glomus etunicatum and Glomus intraradices. Before transplanting into a field, both AM-inoculated and uninoculated control plants were cultured in nursery beds. In the plants inoculated with the AM fungi, the colonization rate decreased linearly with time and a greater decrease was observed in the plants inoculated with G. intraradices than with G. etunicatum, while the AM colonization increased from 0% to 12.1% in the uninoculated control plants 5 years after transplanting. Plant height, crown diameter, number of new branches, and flower yield increased significantly by AM inoculation as compared to the uninoculated control. Phosphorus concentrations in leaves and flowers increased, and plant uptake of nutrients, e.g., nitrogen (N), P, and potassium (K), was also enhanced significantly by AM inoculation. The Lonicera confusa seedlings had a better response to inoculation of G. intraradices than G. etunicatum in both growth and chlorogenic acid content in flowers. In contrast, both plant P uptake and P concentrations in leaves and flowers were similar between two fungal inoculations. The positive responses of Lonicera confusa to AM inoculation in growth, nutrient uptake, flowering, and chlorogenic acid content in flowers suggested that AM inoculation in nursery beds could promote the plant growth and increase chlorogenic acid content in flowers of Lonicera confusa when grown on acidic and P-deficient soils.  相似文献   

16.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

17.
Abstract

Survival rate of seedlings planted in arid and semi-arid land parts of Turkey is low. New methods and techniques are needed to increase survival rate and growth performance of seedlings used in afforestation practices in the region. The aim of this study is to evaluate the growth performance of Taurus cedar (Cedrus libani A. Rich) seedlings receiving different mycorrhizae inoculation treatments. The experiment was conducted in the western part of Central Anatolia. Two commercial mycorrhizal cocktails were used for treatments in a completely randomized design experiment. Both ecto- and arbuscular mycorrhizal fungi were observed in the same root system of the seedlings after the mycorrhizal inoculation. But the relationship between ecto- and arbuscular mycorrhiza was antagonistic. Analysis of the data indicated that mycorrhizal colonization was effective on seedlings' morphological characteristics. The significant differences were detected for root collar diameter, shoot height, root length, specific needle area, shoot dry weight, root dry weight, shoot fresh weight, root fresh weight, shoot to root dry weight ratio, and Dickson quality index of seedling received different treatments. Mycorrhizae positively affected plant nutrition by increasing uptake of nutrients.  相似文献   

18.
Beneficial interactions of arbuscular mycorrhizal fungi (AM Fungi) and plant growth promoting rhizobacteria (PGPR) have an important role in keeping agriculture sustainable. The present study reports the positive effects of AM fungi (Rhizophagus intraradices, Rhizophagus fasciculatum), Burkholderia seminalis and dual inoculation of these two strains on growth of Lycopersicon esculatum and Capsicum annuum plant under drought stress conditions. Each treatment was replicated six times and was arranged in a complete randomized block design. A significant increase in terms of biomass, root length, shoot length, and chlorophyll content was observed with the plants inoculated with these beneficial microorganisms. Accumulation of proline was found to be less in AM fungi inoculated plants suggesting the role of it in mitigating the water stress. A positive correlation between % colonization and chlorophyll content, root length, catalase activity, and guaiacol peroxidase has been observed depicting the importance of the AM fungi in drought tolerance.  相似文献   

19.
[目的]研究接菌紫穗槐对矿区退化植被的恢复生态效应,以期为丛枝菌根真菌应用于西部干旱半干旱煤矿区生态重建提供理论基础和野外试验基础数据。[方法]以紫穗槐为宿主植物,在野外大田条件下研究接种丛枝菌根真菌和紫穗槐的共生状况,以及对煤矿开采沉陷区植物根际土壤的改良作用。[结果]4a的连续监测结果表明,接菌促进了紫穗槐的生长,接菌紫穗槐成活率比对照高30%以上;接菌紫穗槐菌根侵染率和菌丝密度显著高于对照;接种菌根提高了紫穗槐根际土壤有效磷含量且降低了pH值,取得较好的生态修复效应。[结论]在野外大田条件下,接种菌根真菌能够促进植物—菌根共生关系的形成,改善植物—菌根共生体的营养环境。  相似文献   

20.
Pot experiments were conducted in the greenhouse to determine the combined effects of lime, nitrogen and phosphorus and the relative importance of each of these nutrients in establishing nodulated and mycorrhizal Leucaena leucocephala (Lam.) de Wit Var. K8 in an oxisol subjected to simulated erosion. Leucaena was grown in the soil inoculated or not with the vesicular‐arbuscular mycorrhizal fungus Glomus aggregatum Schenck and Smith emend Koske, with or without a basal nutrient (basal) consisting of K, Mg, S, Zn, Cu, and B plus lime, N, and P (complete) or one of the latter three supplements.

The extent of mycorrhizal colonization of roots as well as mycorrhizal effectiveness, as measured by pinnule P content increased when the eroded soil was amended with combinations of all the nutrients and inoculated with G. aggregatum. Similar trends were observed when symbiotic effectiveness was measured in terms of shoot P, Cu, and Zn status and dry matter yield. Nodule dry matter was also responsive to amendment of the soil with the complete nutrients and to vesicular‐arbuscular mycorrhizal inoculation. Phosphorus was found to be the most important nutrient limiting mycorrhizal effectiveness in the eroded soil, followed by N and lime. It is concluded that lost nutrients, particularly P, need to be replaced before legumes can be established successfully on highly weathered eroded soils inoculated with vesicular‐arbuscular mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号