首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sandy cropland soils in NW Europe were found to contain unusually high organic‐carbon (OC) levels, and a link with their land‐use history has been suggested. This study's aim was to assess the discriminating power of physical and chemical fractionation procedures to yield information on soil‐organic‐matter (OM) stability for these soils. In relict‐ and cultivated‐heathland soils, much higher proportions of 6% NaOCl treatment–resistant but 10% HF–soluble OC (MOC) and N (32.2% and 29.9%) were measured compared to a set of “permanent"‐cropland soils without a history of heathland land use (11.9% and 8.5%). Also, the proportions of 6% NaOCl– and 10% HF treatment–resistant OC and N in the relict and cultivated heathlands (19.2% and 12.0%) were higher than in the permanent‐cropland soils (17.7% and 5.7%). Stepwise multiple linear‐regression yielded a significant relationship between the annual mineralization (g C [100 g OC]–1), soil OC (g C kg–1) content, and %MOC: Annual mineralization = 4.347 – 0.087 soil OC – 0.032 %MOC (R2 = 0.65). Combinations of incubation experiments for quantification of the labile soil OM pool with chemical fractionation may thus yield meaningful data for development of soil‐organic‐matter models with measurable pools, but their applicability will be limited to specific combinations of former land use with soil, climate, and current management.  相似文献   

2.
An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic‐matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro‐OM (> 0.05 mm) was obtained from bulk soil by wet‐sieving and then separated into light macro‐OM (< 1.8 g cm–3) and heavy macro‐OM (> 1.8 g cm–3) subfractions; bulk soil was also differentiated into light OM (< 1.8 g cm–3) and mineral‐associated OM (> 1.8 g cm–3). Farmyard manure increased concentrations of total macro‐OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro‐OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light‐fraction OM was more sensitive to organic or inorganic fertilization than the total macro‐OM. Mineral‐associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro‐OM fraction, with respect to nil treatment. Further fractionation of the total macro‐OM according to density clarified that across treatments about 3/4 of total macro‐OM was associated with minerals. Thus, by simultaneously applying particle‐size and density separation procedures, we clearly demonstrated that the macro‐OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5–0.25 mm water‐stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water‐stable aggregates as affected by fertilization were greater for 1–0.5 and 0.5–0.25 mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.  相似文献   

3.
EM对连作大蒜根际土壤微生物和酶活性的影响   总被引:6,自引:0,他引:6  
采用盆栽试验,研究了EM (Effective Microorganisms)对连作大蒜不同发育期干物质累积量,土壤微生物数量和酶活性的影响。结果表明,与对照相比,EM对土壤细菌、真菌和过氧化氢酶活性促进率随大蒜发育期均呈现先升后降的趋势,在蒜薹伸长期达到最大值;对硫化细菌和酚分解菌促进率最大值均出现在鳞茎膨大期;对氨化细菌和硝化细菌的促进率最大值分别出现在分化期和幼苗期。EM对放线菌、土壤多酚氧化酶、脲酶和磷酸酶活性促进率随发育期的延长而呈现持续上升的趋势。EM处理有利于改善土壤微生物群落结构,提高土壤微生物数量和土壤酶活性,增加干物质的累积量。  相似文献   

4.
The study dealt with the assessment of the impact of deforestation on tropical soil through a comparative analysis of physicochemical and microbiological parameters of natural forest and a deforested barren site. With significant decline in clay, texturally the soil of the deforested barren site was observed to be different from that of natural forest. Bulk density and porosity data revealed structural deterioration of deforested barren soil. The soil hydrological regime was also adversely affected by the deforestation. Levels of soil organic carbon, total nitrogen, microbial biomass C, N and microfungal biomass also exhibited significant decline in deforested site. Analysis of microbial respiratory quotient (q CO2) was also observed to be impaired in the deforested site. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Estimation of spatio‐temporal change of soil is needed for various purposes. Commonly used methods for the estimation have some shortcomings. To estimate spatio‐temporal change of soil organic matter (SOM) in Jiangsu province, China, this study explored benefits of digital soil maps (DSM) by handling mapping uncertainty using stochastic simulation. First, SOM maps on different dates, the 1980s and 2006–2007, were constructed using robust geostatistical methods. Then, sequential Gaussian simulation (SGS) was used to generate 500 realizations of SOM in the area for the two dates. Finally, E‐type (i.e. conditional mean) temporal change of SOM and its associated uncertainty, probability and confidence interval were computed. Results showed that SOM increased in 70% of Jiangsu province and decreased in the remaining 30% during the past decades. As a whole, SOM increased by 0.22% on average. Spatial variance of SOM diminished, but the major spatial pattern was retained. The maps of probability and confidence intervals for SOM change gave more detailed information and credibility about this change. Comparatively, variance of spatio‐temporal change of SOM derived using SGS was much smaller than sum of separate kriging variances for the two dates, because of lower mapping variances derived using SGS. This suggests an advantage of the method based on digital soil maps with uncertainty dealt with using SGS for deriving spatio‐temporal change in soil.  相似文献   

6.
针对NY/T 148-1990测定方法中,加活性炭目的是降低由于浸出土壤有机质所产生的颜色对有效磷测定结果的影响,但是却限制了土壤有效磷的批量测定,为此进行了不加活性炭条件下测定土壤有效磷的改进试验。试验结果表明,不加活性炭条件下,浸出土壤有机质所产生的颜色对土壤有效磷测定结果在测定误差范围内可以忽略不计;两种有效磷测定方法的平均值均在误差范围之内,但改进方法所测结果更接近于NY/T 148-1990标准值,测值间离散度低,稳定性强,且测定速度快、结果准确度及精密度高、成本低。  相似文献   

7.
In many regions worldwide, silvopastoral systems are implemented to enable sustainable land use allowing short, medium, and long‐term economic returns. However, the short‐term production in silvopastoral systems is often limited due to nonappropriate soil‐fertility management. This study evaluated the effects of two doses of lime (0 and 2.5 t CaCO3 ha–1) and three sewage‐sludge treatments (0, 200, and 400 kg total N ha–1 y–1 applied in 2 consecutive years) on soil characteristics (soil pH, soil organic matter [SOM], soil nitrogen, cation‐exchange capacity [CEC]), pasture production, and tree growth in a silvopastoral system of Populus × canadensis Moench in Galicia, northern Spain during 6 years after establishment. Soil pH increased during the experimental period for all treatments, although this effect was more pronounced after lime application. Changes in SOM and soil nitrogen content were not consistent over time, but sewage‐sludge application seemed to result in higher values. Higher CEC was found for treatments with lime and sewage‐sludge application. Following incorporation of lime and sewage sludge, pasture production was significantly enhanced (cumulative pasture production 51.9 t DM ha–1 for Lime/N400 compared to 39.0 t DM ha–1 for No lime/N0). This higher pasture production also affected tree growth due to more severe competition between pasture and tree resulting in slower tree growth. Liming and application of sewage sludge are relevant measures to improve soil fertility and thereby optimizing the overall production of silvopastoral systems. However, it is important not to overintensify pasture production to ensure adequate tree growth.  相似文献   

8.
Grassland extensification is followed by a change of soil organic‐matter (SOM) contents. In order to give a better assessment of these developments on grassland sites in SW Germany, the CENTURY Soil Organic Matter Model was used on five long‐term experimental sites under three different management practices (“Mowing”, “Mulching” (mowing without removal of the phytomass), and “Natural succession”). On these sites, soil‐organic‐carbon (SOC) monitoring was continuously done for soil depths of 0–4 and 4–8 cm from 1975 to 2002. The contents of organic carbon (OC) were at steady state or showed a slight decrease for the mulched and succession plots. Carbon contents of the mowed plots were decreasing. Measured C contents were transferred into stocks and compared with the simulated OC stocks. Linear regressions between observed and simulated C stocks were calculated separately for mulched and succession plots. The regressions for OC yielded significant relationships (R2 = 0.8) for both kinds of plots. However, the model did not reproduce the short‐term dynamics of C stocks. Whereas SOC stocks on mulched and succession plots are expected to stay stable for the next decades according to the simulation, they are expected to decrease for a couple of years before stabilization on mowed plots.  相似文献   

9.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

10.
Soil organic nitrogen mineralization rates and possible predictors thereof were investigated for vegetable‐growing soils in Belgium. Soil organic matter (SOM) was fractionated into sand (> 53 μm) and silt+clay (< 53 μm) fractions. The latter fraction was further separated into 6%NaOCl‐oxidation labile (6%NaOCl‐ox) and resistant N and C and subsequently into 10%HF‐extractable (mineral bound) and resistant (recalcitrant) N and C. The N mineralization turnover rate (% of soil N/year) correlated with several of the investigated N or C fractions and stepwise linear regression confirmed that the 6%NaOCl‐ox N was the best predictor. However, the small (0.42) of the regression model suggests that soil parameters other than the soil fractions isolated here would be required to explain the significant residual variation in N mineralization rate. A next step could be to look for alternative SOM fractionations capable of isolating bioavailable N. However, it would appear that the observed relationships between N fractions and N mineralization may not be causal but indirect. The number of vegetable crops per rotation did not influence N mineralization, but it did influence 6%NaOCl‐ox N, probably as an effect of differences in crop residues returned and organic manure supply. However, the nature of this relation between management, SOM quality and N mineralization is not clear. Explanation of correlations between N mineralization and presumed bioavailable N fractions, like the 6%NaOCl‐ox N, requires further mechanistic elucidation of the N mineralization process.  相似文献   

11.
It has been suggested that short‐term field experiments are not suitable for the quantitative assessment of cropping‐systems impact on soil organic matter (SOM) levels in arable soils, as expectable temporal changes are very small compared to a large spatial variation of SOM background levels. However, applying an optimized sampling design based on repeated sampling in small plots, we were able to detect soil total carbon (STC) and nitrogen (STN) changes in the magnitude of ≈ 1% (STC) and ≈ 2% (STN) of background levels with only four replications, respectively. Gradually enlarging the sample size up to n = 24 did not considerably improve change detectability with STC, but with STN (n = 15 allowing for the dection of ≈ 1% change of background levels). The common calculation of minimum detectable differences (MDD) based on a state analysis of SOM levels instead of repeated measurements considerably underestimated change detectability.  相似文献   

12.
Long‐term effects of improved pasture establishment (with high proportion of legumes) on soil organic‐C status and N availability in Mediterranean cork oak (Quercus suber L.) woodlands were assessed. Soils were sampled beneath scattered crowns and in open areas, considering two systems: unmanaged and managed woodlands where improved pastures were installed 26 and 32 years ago. Total and labile C and N pools were measured and C and N mineralization were determined over 24 weeks laboratory incubation. Soils under improved pastures showed higher organic‐C, total‐N and net N mineralization than those under unmanaged pasture, mainly when established beneath trees. Potentially mineralizable C, C mineralization rate and microbial C were not statistically different between the unmanaged and improved pasture sites, but were higher closer to the tree than in the open area (1.8, 1.2 and 1.2 times, respectively). The qCO2 was higher in improved pastures (1.7 times). Labile pool of C and N extracted with hot water increased under improved pasture (3.4 and 1.7 times, respectively). Results indicate that soil quality amelioration by improved pastures is stronger in the presence of oak trees. Management systems that favour oak tree maintenance and regeneration should be taken into account to reverse soil degradation.  相似文献   

13.
北京市平谷区农用地土壤有机质空间变异特征   总被引:10,自引:3,他引:10  
采用传统统计、地统计及地理信息系统(GIS)相结合的方法,初步研究了北京市平谷区农田土壤有机质(SOM)含量的空间分布规律及其影响因素.传统统计分析结果表明,研究区土壤样本呈对数正态分布,平均值为15.36 g·kg-1,变异系数为0.32,属中等变异程度.方差分析表明,高程和土地利用类型均对研究区SOM含量的分布有显著影响.地统计分析表明,研究区SOM含量空间变异具有一阶趋势和各向异性特征;由空间自相关部分和随机部分引起的空间变异性程度大体相当,具有中等的空间相关性.结合普通Kriging插值方法,获得了研究区SOM含量的空间分布图,比较分析表明研究区农用地SOM含量的空间分布是自然和人为利用因素共同作用的结果.  相似文献   

14.
The presence of aggregates of various sizes in the soil is an important condition for soil carbon sequestration. In this system, microbial biomass is a key link. This work was devoted to the study of the influence of land use systems on the distribution of SOС, MB-SIR, microbial activity and eco-physiological indices (qCO2, QR, MB-SIR/SOС and qCO2/SOС) in relation to the size of soil aggregates. The distribution of SOС, MB-SIR and mineralization activity among the aggregates was heterogeneous. In the soil of crop rotation, high mineralization activity and MB-SIR were found in the aggregates 0.5–0.1 mm, in the monoculture soil in aggregates <0.1 mm and in the control soil in the aggregates 1–0.25 mm. There was a general trend towards a decrease in microbial activity, MB-SIR and SOС availability with an increase in aggregate size. In agricultural soils, microbial activity was determined by large aggregates (>5 mm), while in the control soil, by the aggregates 5–1 mm. Depending on the type of site and the size of aggregates, the differences in microbial metabolism were revealed. The qCO2 and QR values decreased, and the MB-SIR/SOС and qCO2/SOС increased in the series: control soil > crop rotation > monoculture. In the control soil, the values of the eco-physiological indices decreased with decreasing aggregate size. And vice versa, in agricultural soils, these parameters were the highest in the microaggregates (<0.25 mm). The monoculture soil, in contrast to the control soil and crop rotation soil, turned out to be more energy efficient.  相似文献   

15.
Nutrients losses through leaching are the main problem facing coastal saline soil. Effective microorganisms (EM) and Gypsum (G) at the application rate of 5%G and 10%G by weight were used as soil amendments. The pot experiment aimed to improve the leaching of nitrate (NO3), ammonium (NH4) and total nitrogen (TN) on the coastal saline soil. The EM+ 5%G treatment effectively reduced the content of NO3 and NH4 in the leachate by 86.59% and 68.18%, respectively. EM treatment reduced the leaching of NO3 and NH4 by 70.86% and 62.12% and EM+ 10%G reduced NO3 and NH4 by 11.80% and 50.76%, respectively. Moreover, the content of TN in leachate was reduced up to 13.23%, 5.80%, and 2.67% in response to EM, EM+ 5%G, and EM+ 10%G, respectively, compared to the control. These results indicate that EM combined with G as soil amendments can reduce leaching of nutrients and further support the regulation of a coastal saline soil pH and EC.  相似文献   

16.
采用尼龙网袋法研究栗钙土有机质分解及土壤速效养分的变化结果表明,不同有机物(肥)料在前3个月分解较快,最初30d坡梁栗钙土和旱滩草甸栗钙土分解率分别为32.68%和30.32%。新施入有机物(肥)料可明显提高土壤有机质活性系数,平均提高16%左右,腐殖质活性顺序依次为牛粪>莜麦秸>豌豆秸。有机物(肥)料腐解周年后土壤有机碳及速效氮、速效磷、速效钾明显增加。2类土壤有机碳分别为106.67%~135.00%和53.33%~58.18%,速效氮、速效磷、速效钾分别提高34.62%~52.31%和21.10%~50.37%、18.20%~207.60%和34.20%~210.05%、64.92%~143.12%和28.75%~102.49%。  相似文献   

17.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

18.
In a field experiment, the effect of combination of different organic manures on the productivity of crops and soil quality were evaluated in deep vertisols of central India. Combinations of cattle dung manure (CDM), poultry manure (PM), and vermicompost (VC) vis‐à‐vis mineral fertilizers were tested in four cropping systems involving soybean (Glycine max L.), durum wheat (Triticum durum Desf.), mustard (Brassica juncea L.), chickpea (Cicer arietinum L.), and isabgol (Plantago ovata Forsk). The organic manures were applied based on the N‐equivalent basis and nutrient requirement of individual crop. The grain yields of durum wheat and isabgol were higher in the treatment that received a combination of CDM + VC + PM whereas in mustard, CDM + PM and in chickpea, CDM + VC recorded the higher yields. The yield levels in these organic‐manure combinations were similar to the yields obtained with mineral fertilizers. Among the cropping systems, soybean–durum wheat and among the nutrient sources, the combination of CDM + VC + PM recorded the highest total productivity. At the end of the 3‐year cropping cycle, application of organic manures improved the soil‐quality parameters viz., soil organic carbon (SOC), soil available nutrients (N, P, and K), soil enzymes (dehydrogenase and alkaline phosphatase), and microbial biomass C in the top 0–15 cm soil. Bulk density and mean weight diameter of the soil were not affected by the treatments. Among the cropping systems, soybean–durum wheat recorded the highest SOC and accumulated higher soil available N, P, and K. In conclusion, the study clearly demonstrated that the manures applied in different combinations improved the soil quality and produced the grain yields which are at par with mineral fertilizers.  相似文献   

19.
Land degradation causes great changes in the soil biological properties.The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity.The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation(NV),moderately degraded land(LDL),highly degraded land(HDL) and land under restoration for four years(RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil.Soil samples were collected at 0-10 cm depth.Soil organic carbon(SOC),soil microbial biomass C(MBC) and N(MBN),soil respiration(SR),and hydrolysis of fluorescein diacetate(FDA) and dehydrogenase(DHA) activities were analyzed.After two years of evaluation,soil MBC,MBN,FDA and DHA had higher values in the NV,followed by the RL.The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV.However,after land restoration,the MBC and MBN increased approximately 5-fold and 2-fold,respectively,compared with the HDL.The results showed that land degradation produced a strong decrease in soil microbial biomass.However,land restoration may promote short-and long-term increases in soil microbial biomass.  相似文献   

20.
Mild extractions were used as indicators of easily decomposable organic matter (OM). However, the chemical composition of extracted OM often remained unclear. Therefore, the composition of cold and hot water–extractable OM was investigated in the O horizons (Oi, Oe, Oa) of a 170 y old beech stand (Fagus sylvatica) in the Ore Mtns., SE Germany. To simulate litter decomposition, the O horizon samples were incubated for 1 week under defined conditions. Cold‐ and hot‐water extracts were analyzed and chemically characterized by pyrolysis–field ionization mass spectrometry (Py‐FIMS). The C and N concentrations were always lower in the cold‐(C: 2.69 to 3.95 g kg–1; N: 0.14 to 0.29 g kg–1) than in the hot‐water extracts (C: 13.77 to 15.51 g kg–1; N: 0.34 to 0.83 g kg–1). The C : N ratios of both extracts increased with increasing depth. Incubation increased the concentrations of C and N in all water extracts, while C : N ratios of extracts decreased. The molecular‐chemical composition of cold and hot water–extracted OM revealed distinct differences. Generally, cold water–extracted OM was thermally more stable than hot water–extracted OM. The mass spectra of the hot water–extracted organic matter revealed more intensive signals of carbohydrates, phenols, and lignin monomers. Additionally, the n‐C28 fatty acid and the n‐C38–to–n‐C52 alkyl monoesters clearly distinguished the hot‐ from the cold‐water extract. A principle‐component analysis visualized (1) alterations in the molecular‐chemical composition of cold‐ and hot‐water extracts due to previous incubation of the solid O horizon samples and (2) a decomposition from the Oi to the Oh horizon. This provides evidence that the macromorphological litter decomposition was reflected by the chemical composition of water extracts, and that Py‐FIMS is well‐suited to explain at the molecular level why OM decomposability is correlated with water‐extracted C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号