首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat (Triticum aestivum L.) line, Saline Agriculture Research Center line 1 (SARC), was selected in a salinity tolerance improvement program at the University of Agriculture, Faisalabad, Pakistan. In this study we compared SARC with Pothowar which is a common wheat cultivar grown in the same region, in order to study the mechanism of salinity tolerance in the SARC line. Two wheat lines were planted in pots and were subjected to salt stress by daily application of a 200 mM NaCI solution for 30 d during the vegetative growth stage. Dry weight of plant parts, leaf area, leaf water status, and solute concentrations in the cell sap of the leaf tissues were determined at 13 and 30 d after initiation of the stress treatment. Decrease in the plant dry weight and leaf area due to salt stress was more pronounced in Pothowar than in SARC, indicating that SARC was more tolerant to salinity. SARC maintained a higher turgor at low leaf water potentials and showed a higher capacity of osmotic adjustment compared to Pothowar. Major osmotic a that increased by salinity in order to maintain a lower osmotic potential in the two lines were Na+, Cl-, K+, and glycinebetaine. Increase in the concentrations of Na+, Cl-, and glycinebetaine was much higher in SARC than in Pothower. These results suggested that the SARC line had a physiological mechanism that conferred a higher salinity tolerance.  相似文献   

2.
Suaeda aegyptiaca is an important native annual halophyte in salt-affected soils around coastal areas of the Persian Gulf. In order to study the effects of different levels of saturation paste soil salinity (10, 20, 40, 60, and 80 dS m?1) and nitrogen supply (25, 50, and 75 mg kg?1 N as urea) on growth and physiological characteristic of S. aegyptiaca, a greenhouse factorial experiment in completely randomized design was conducted with three replications. Salinity treatments were established after early growth of plants and nitrogen was applied in two steps. Results showed that increasing salinity up to 20 dS m?1 led to increase in dry weight (DW) of plants and this decreased by increasing salinity. Also, DW of plants was significantly increased by application of 75 mg kg?1 nitrogen. Increasing salinity significantly decreased plant height, chlorophyll index, and total nitrogen content; while proline content and total soluble solids (TSS) were significantly increased. The electrolyte leakage (EL) and sodium concentration were increased under salinity stress. However, further increase in salinity decreased these two parameters. By increasing the nitrogen levels, relative water content (RWC), chlorophyll index, proline, and total nitrogen contents were increased, whereas EL was decreased.  相似文献   

3.
以浓度分别为0、0.01、0.1、1.0 mmol/L的硝普钠(Sodium nitroprusside, SNP; NO供体)处理玉米、小麦、花生、小白菜、萝卜、黄瓜的种子和幼苗,研究了以上几种浓度的SNP对作物种子萌发和幼苗生长及抗氧化酶活性的影响。结果表明:SNP对多数种子萌发影响表现为低浓度(0.01 mmol/L和0.1 mmol/L)促进,高浓度(1.0 mmol/L)抑制,其中对萝卜发芽率的促进作用最显著;低浓度SNP可有效促进植物幼苗地上部的生长,其中对小麦、黄瓜的促进效果最显著,同时可显著促进根系的伸长,其中对萝卜的促进效果最显著,且对植物幼苗生长的影响与作物种类有关;SNP对多数植物的根系活力有明显的促进作用,其中对萝卜的促进效果最显著;适宜浓度的SNP可以提高作物CAT、POD和SOD活性以及可溶性蛋白含量,并降低MDA含量,不同作物SNP的适宜浓度不同,其中0.1 mmol/L SNP对多数作物处理效果最好。  相似文献   

4.
采用溶液培养方法,研究了外源NO供体硝普钠(sodium nitroprusside,SNP)对NaHCO3胁迫下黄瓜幼苗的缓解效应。结果表明,100μmol/L SNP能有效减轻30 mmol/L NaHCO3对黄瓜植株地上部和地下部生长的抑制,提高了NaHCO3胁迫下黄瓜叶片叶绿素和类胡萝卜素含量、净光合速率(Pn)以及荧光参数Fv/Fm和ΦPSⅡ。HaHCO3胁迫显著抑制了氮代谢相关酶硝酸还原酶(NR)、谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)的活性;外加SNP处理明显缓解了NaHCO3对它们活性的抑制。  相似文献   

5.
The aim of this work was to study the influence of salinity of the fertigation solution on the vegetative growth, as well as on the osmolytes and chloride concentration of four halophytic species. Results show that the increase of salinity caused the reduction of plant fresh and dry matter in Asteriscus maritimus, while plant dry weight was unaffected by the salinity in Crithmum maritimum, Halimione. portulacoides and Limonium cossonianum. Salinity enhanced root growth of H. portulacoides. Salt-induced succulence was detected in A. maritimus. The translocation of Cl to the leaves is an important factor responsible for salt tolerance of A. maritimus and H. portulacoides. However, C. maritimum and L. cossonianum restricted the uptake of Cl and excrete salts through the leaves. Crithmum maritimum and H. portulacoides accumulated proline and soluble sugars in leaves which acts as osmoprotectant. Among the species studied, H. portulacoides has the greatest Cl phytoextraction efficiency.  相似文献   

6.
Background : The research on plant salt tolerance has mainly focused on Na+, but Cl? has been relatively neglected. Previous studies have found that the xerophyte Pugionium cornutum, an important forage grass in the arid and semi‐arid regions of northwestern China, could synergistically accumulate high quintiles of Na+ and Cl? in its shoots under NaCl treatments. However, the separate effects of these ions on the adaptation of P. cornutum to saline conditions have not been investigated. Aims : In this study, the response of P. cornutum to Na+ and Cl? was analyzed. Methods : Four‐week‐old seedlings were treated with additional 50 mM NaCl, Na+‐specific solution containing 50 mM Na+ with a mix of NO 3 - , H2 PO 4 - , and SO 4 2 - as counter anions, and Cl?‐specific solution containing 50 mM Cl? with a mix of K+, Ca2+, and Mg2+ as counter cations. Results : Compared with the normal growth condition irrigated with Hoagland solution, the Na+‐specific solution severely impaired the growth and photosynthesis of P. cornutum due to the high accumulation of Na+ in shoots and the deterioration of tissue K+ homeostasis; while the Cl?‐specific solution significantly increased shoot fresh and dry biomass. The Cl?‐specific solution could also increase the turgor pressure in leaves for enhancing osmotic adjustment, which should be mainly attributed to the large accumulation of Cl?, since the concentrations of other ions, including K+, Mg2+, Ca2+, H2 PO 4 - , and SO 4 2 - , in tissues under Cl?‐specific treatment were maintained at the same levels as those observed under the normal condition. Conclusions : P. cornutum displays an excellent tolerance to moderate Cl? but not to Na+, and the large accumulation of Cl? should play a positive role in stimulating the growth of P. cornutum under salt stress.  相似文献   

7.
The effiects of NaCl salinity and NO3- on growth, root morphology, and nitrogen uptake of a halophyte Suaeda physophora were evaluated in a factorial experiment with four concentrations of NaCl (1, 150, 300, and 450 mmol L-1) and three NO3- levels (0.05, 5, and 10 mmol L-1) in solution culture for 30 d. Addition of NO3- at 10 mmol L-1 significantly improved the shoot (P < 0.001) and root (P < 0.001) growth and the promotive effect of NO3- was more pronounced on root dry weight despite the high NaCl concentration in the culture solution, leading to a significant increase in the root:shoot ratio (P < 0.01). Lateral root length, but not primary root length, considerably increased with increasing NaCl salinity and NO3- levels (P < 0.001), implying that Na+ and NO3- in the culture solution simultaneously stimulated lateral root growth. Concentrations of Na+ in plant tissues were also significantly increased by higher NaCl treatments (P < 0.001). At 10 mmol L-1 NO3- , the concentrations of NO3- and total nitrogen and nitrate reductase activities in the roots were remarkably reduced by increasing salinity (P < 0.001), but were unaffected in the shoots. The results indicated that the fine lateral root development and effective nitrogen uptake of the shoots might contribute to high salt tolerance of S. physophora under adequate NO3- supply.  相似文献   

8.
Objectives of our studies were to quantify effects of salinity on growth and nitrogen metabolism of wheat and to measure variation in response of different cultivars, hybrids, and classes. Methods and criteria for identifying resistance to salinity in wheat, particularly effects on nitrogen metabolism also were tested. Variation in response to salinity was measured by subjecting seedlings of six wheats to one control treatment (‐0.1 bars) and two stress treatments (‐3.5 and ‐10.4 bars) from NaCl, MgSO4, and MgCl2 in hydroponic solutions. Both stress treatments retarded growth; wheats significantly varied at ‐3.5 bars but not at ‐10.4 bars. Stress decreased root and shoot nitrate N and total N contents. Studies with one wheat cultivar showed that salinity decreased activity of nitrate reductase enzyme and stimulated accumulation of proline. Salinity more adversely affected vegetative stages than reproductive stages of plants grown to maturity. We concluded that salinity affected wheat by both osmotic effects and antagonism of nitrate metabolism from chloride. Absolute growth and relative growth at different stress levels were superior to differences in nitrogen metabolism as selection criteria for salinity tolerance.  相似文献   

9.
ABSTRACT

To assess seed germination parameters and identifying tolerant varieties, seeds of nine tall fescue varieties (Festuca arundinacea Schreb.) were germinated under various salinity levels for 14 days. Tall fescue is considered ‘moderately tolerant’ to salinity stress, but our study revealed a remarkable diversity among the tested varieties. Armani, Essential, Fatcat, and Starlett were found to reach the same final germination (>90%), irrespective of NaCl concentration up to 15 ds m?1 NaCl; Asterix and Meandre expressed lower germination under the highest salinity level (>75%); and final germination decreased in Eyecandy, Rhizing star, and Thomahawk gradually with increasing salinity (>55%). The main effect of increasing salinity was a delay in germination, and our study suggests that the recording of final germination, which is performed on day-14 in a standard germination test, should be postponed in order to understand the full effect of salinity on germination potential. Nonetheless, a delay in germination will affect turf quality negatively and hence there is good reason to test for salinity tolerance when choosing a variety for sowing on saline soil. Further, our findings indicate a future perspective for breeding for improved salinity tolerance in tall fescue by the identification of salinity-tolerant breeding lines or varieties.  相似文献   

10.
Abstract

A laboratory experiment was carried out to evaluate the impact of the nanoparticles of water treatment residuals (nWTRs) and salt stress on germination and growth parameters of cucumber seedling. The interaction between three nWTRs treatments (0, 500, and 1000 mgL?1) nWTRs and five saline solution (fresh water: sea water) treatments had 0.70, 2, 3, 6, and 11?dSm?1 were studied. The results revealed that increasing salinity levels significantly reduced the percentage of germination (GP) for the primed seeds treated in fresh water and nWTRs. The GP reduction was higher in seeds primed in fresh water compared to which primed in nWTRs. Salt stress negatively affected radicle length of cucumber seedling for both priming treatments. However, this impact was more pronounced for the primed seeds treated in fresh water than which treated in nWTRs at high salinity stress. Priming in nWTRs significantly decreased the root radius of cucumber seedlings, and the1000 mgL?1 priming treatment obtained a lowest value of radicle radius. Increasing salt concentration in culture medium reduced total biomass of cucumber seedling, however for the primed seeds treated in nWTRs, the total biomass was increased in comparison with which treated in fresh water. Salt tolerance and vigor indices were significantly (p?<?0.01) affected by salinity levels, nWTRs treatments and their interaction. It can be concluded that nWTRs are ameliorating materials for plant growth under salt stress conditions.  相似文献   

11.
利用盆栽试验研究了NaCl胁迫条件下AM真菌对紫花苜蓿(Medicago sativa L.)植株生长及生理特征的影响。结果显示:随土中加入NaCl浓度增高(0%,0.5%,1.0%),与未接菌紫花苜蓿相比,接种AM真菌显著(P<0.05)促进紫花苜蓿生长,并使其可溶性糖、可溶性蛋白及根系脯氨酸累积量增加。1.0%NaCl接种AM真菌处理下根系鲜重(28.1 mg)为0%NaCl未接种下的1.27倍;不同盐处理接种AM真菌植株丙二醛含量均低于对照株;1.0%NaCl浓度下接种AM菌植株叶片及根系脯氨酸含量分别为对照株的0.82,1.41倍。表明AM真菌在胁迫环境下不仅可促进植株生长发育及渗透调节物质的积累,还可维持植物体丙二醛含量较低水平,降低植株遭受盐胁迫,推测叶片与根系脯氨酸对ABA依赖程度不同而导致其脯氨酸含量不同。  相似文献   

12.
The response of two leguminous plants Alhagi pseudoalhagi and Vigna radiata to seawater salinity was studied over a period of 30 d. The growth of Vigna radiata was markedly and gradually reduced by increasing salinity levels, whereas that of Alhagi pseudoalhagi was promoted at 9.1 and 16.2 dS m-1 salinity but then was slightly reduced at 28.2 dS m-1 salinity. These results indicate that Alhagi pseudoalhagi belongs to the group of halophytic plants. Seawater salinity caused changes in the membrane permeability measured as electrolyte leakage in both plants. Alhagi pseudoalhagi maintained a lower membrane permeability than Vigna radiata. With increasing salinity levels, the membrane permeability decreased in Alhagi pseudoalhagi, whereas, in Vigna radiata it slightly increased at 9.1 dS m-1. The leaf water potential and the osmotic potential decreased in both plants along with the seawater salinity levels. However, the turgor potential and osmotic adjustment in Alhagi pseudoalhagi were maintained at a higher level than in Vigna radiata. The contributions of organic and inorganic solutes to the osmotic adjustment differed: Alhagi pseudoalhagi achieved osmotic adjustment through Cl- and Na+ uptake from the substrate, while the contribution of K+, Ca2+, and organic solutes to the osmotic adjustment was limited. These results suggest that the differences in salt tolerance between Alhagi pseudoalhagi and Vigna radiata can not be due to differences in specific-ion effects, but may be related to some factors involved in membrane permeability and osmotic adjustment.  相似文献   

13.
盐胁迫下蒸腾对冬小麦地上部钠积累的影响   总被引:3,自引:0,他引:3  
在溶液培养条件下,利用膜不透性荧光染料PTS示踪技术研究了不同冬小麦基因型蒸腾与地上部钠(Na+)积累间的关系。结果表明,蒸腾耗水量与地上部Na+积累的关系因盐胁迫浓度的不同而异。低盐(NaCl,150 mmol/L)胁迫下,蒸腾耗水量对地上部Na+的积累影响不大;高盐(NaCl,250 mmol/L)胁迫下蒸腾耗水量与Na+的积累量呈显著正相关。盐胁迫下,地上部PTS含量与地上部Na+的积累有着极显著的正相关,并随盐浓度的提高和胁迫时间的延长相关性增加。随盐胁迫浓度的提高,所有供试小麦品种的蒸腾耗水量和蒸腾速率下降,Na+积累量、Na+积累速率、胞内Na+浓度和共质体流Na+浓度等上升;随胁迫时间的延长,供试小麦品种的蒸腾耗水量、Na+积累量、胞内Na+浓度上升,共质体流中Na+浓度、Na+的积累速率明显下降。无论盐胁迫与否,NR9405(暖型)和小偃6号(中间偏冷型)的蒸腾耗水量和蒸腾速率均小于陕229(冷型)和RB6(冷型);蒸腾耗水量大,带走的热量多,是冷型小麦冠层温度低于暖型小麦的主要原因。在高盐环境中,质外体流对Na+的吸收积累具有重要影响,质外体流越大,地上部的Na+吸收积累越多。盐胁迫下高的蒸腾速率导致地上部盐分的快速积累对小麦耐盐是不利的。  相似文献   

14.
Drought is a major factor limiting crop production worldwide. Barley is a well‐adapted cereal that is largely grown on dry marginal land where water and salinity are the most prevalent environmental stresses. This study was carried out to investigate the effects of drought stress and subsequent recovery on growth, photosynthetic activity, water relations, osmotic adjustment (OA), and solute accumulation of wild (Hordeum maritimum) and cultivated barley (H. vulgare L.). In a pot experiment, 60 d old seedlings were subjected to drought stress for 0, 7, 14, 21, or 28 d, and then re‐watered to recover for up to 21 d. Plants were harvested at the end of each of these drought/recovery treatments. Drought significantly reduced fresh and dry weights at the whole‐plant level, photosynthetic activities, and solute and water potentials, while increasing leaf Na+ and K+ concentrations. The adverse effects of drought on growth were more marked in cultivated barley than in wild barley and the reverse was true for photosynthetic activities. During recovery, all wild barley seedlings completely recovered. For cultivated barley seedlings, rehydration had a beneficial effect on growth and photosynthesis, independent of treatment duration, but complete recovery did not occur. The reduction in leaf solute potential at full turgor in drought‐stressed barley, relative to the control, suggests active OA which was more significant in wild barley than in cultivated barley. OA was mainly due to the accumulation of inorganic (K+ in cultivated barley and Na+ in wild barley) and organic (soluble sugars and proline) solutes. The results suggest that OA is an important component of the drought‐stress adaptation mechanism in wild barley, but is not sufficient to contribute to drought tolerance in cultivated barley. In the latter species, the results show that even short periods (as little as 7 d) of water deficit stress had considerable long‐term effects on plant growth.  相似文献   

15.
旱盐互作对盐地碱蓬生长及其渗透调节物质的影响   总被引:1,自引:0,他引:1  
采用盆栽土培的方法,研究了不同干旱条件下盐胁迫对盐地碱蓬生长及其渗透调节物质的影响.结果表明:适量NaCl可提高干旱条件下盐地碱蓬的生物量和植株含水量,缓解其干旱胁迫.盐分改变了干旱条件下盐地碱蓬的渗透调节物质,随着盐浓度的增加,叶片中Na 、Cl-的积累增加,而叶片中的K 积累减少;干旱条件下,叶片Na 、Cl-以及K 的积累增加,增强了盐地碱蓬在干旱条件下的渗透调节能力.叶片中脯氨酸的积累随着土壤含盐量和土壤干旱程度的增加而增加.  相似文献   

16.
Application of plant growth regulator (PGR) may alleviate some negative effects of environmental stresses such as salinity. A controlled environment experiment was conducted to study barley (Hordeum vulgare L. cv. Reyhane) growth, yield, antioxidant enzymes and ions accumulation affected by PGRs under salinity stress conditions at Shiraz University during 2012. The treatments were PGRs at four levels—water (as control), cycocel (CCC, 19 mM), salicylic acid (SA, 1 mM), and jasmonic acid (JA, 0.5 mM)—and four salinity levels—no stress (0.67 dS m?1, as control), 5, 10, and 15 dS m?1, which were arranged in a factorial experiment based on completely randomized design with four replicates. The results showed that salinity stress significantly decreased plant height, peduncle length, leaf area, ear length, grain number, dry weight, grain yield, harvest index, potassium (K+) accumulation, and potassium/sodium (K+/Na+) concentration ratio, which were closely associated with stress severity. However, PGRs compensated some of these negative effects, so that SA foliar application had the most ameliorative effect. Salt stress also increased Na+ accumulation as well as the activity of peroxidase, catalase, and superoxide dismutase (SOD). Since ion discrimination and enhanced antioxidant enzymes are associated with salt tolerance, in this experiment PGRs application might have enhanced K+ accumulation and antioxidant enzyme activity. The activity of SOD and K+/Na+ ratio were found to be useful in salt tolerance manipulation in barley plants.  相似文献   

17.
18.
Iron(Fe) is a crucial transition metal for all living organisms including plants; however, Fe deficiency frequently occurs in plant because only a small portion of Fe is bioavailable in soil in recent years. To cope with Fe deficiency, plants have evolved a wide range of adaptive responses from changes in morphology to altered physiology. To understand the role of nitric oxide(NO) and 24-epibrassinolide(EBR) in alleviating chlorosis induced by Fe deficiency in peanut(Arachis hypogaea L.) plants, we determined the concentration of chlorophylls, the activation, uptake, and translocation of Fe, the activities of key enzymes, such as ferric-chelate reductase(FCR),proton-translocating adenosine triphosphatase(H~+-ATPase), and antioxidant enzymes, and the accumulation of reactive oxygen species(ROS) and malondialdehyde(MDA) of peanut plants under Fe sufficiency(100 μmol L~(-1)ethylenediaminetetraacetic acid(EDTA)-Fe) and Fe deficiency(0 μmol L~(-1)EDTA-Fe). We also investigated the production of NO in peanut plants subjected to Fe deficiency with foliar application of sodium nitroprusside(SNP), a donor of NO, and/or EBR. The results showed that Fe deficiency resulted in severe chlorosis and oxidative stress, significantly decreased the concentration of chlorophylls and active Fe, and significantly increased NO production. Foliar application of NO and/or EBR increased the activity of antioxidant enzymes, superoxide dismutase,peroxidase, and catalase, and decreased the ROS and MDA concentrations, thus enhancing the resistance of plants to oxidative stress.Application of NO also significantly increased Fe translocation from the roots to the shoots and enhanced the transfer of Fe from the cell wall fraction to the cell organelle and soluble fractions. Consequently, the concentrations of available Fe and chlorophylls in the leaves were elevated. Furthermore, the activities of H~+-ATPase and FCR were enhanced in the Fe-deficient plants. Simultaneously,there was a significant increase in NO production, especially in the plants that received NO, regardless of Fe supply. These suggest that NO or EBR, and, especially, their combination are effective in alleviating plant chlorosis induced by Fe deficiency.  相似文献   

19.
20.
We investigated the mechanism of growth reduction of dicotyledonous halophyte Salicornia bigelovii under salinity stress by growing it at 0.005 to 500?mol?m?3 sodium chloride (NaCl). The optimal range for growth of S. bigelovii was between 50 and 200?mol?m?3 NaCl. A significant correlation was found between growth and water content, which indicated that water deficit was an important factor in growth reduction at both suboptimal and supraoptimal salinities. Abscisic acid (ABA) concentration of the shoot was negatively related to growth and water content, which suggested that ABA induced by water deficit may inhibit growth at both the suboptimal and supraoptimal salinities. The cause of water deficit at supraoptimal salinity might be caused by nutritional imbalance and osmotic stress due to the low osmotic potential of the external solution. However, limited salt uptake may be one of the causes of water deficit under suboptimal salinity. We discuss a sodium ion (Na+) specific deficit rather than salt deficit as another possible cause of water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号