首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.  相似文献   

2.
3.
4.
Stem cell therapies for musculoskeletal disorders are becoming commonplace in the horse. In order to decipher the many options available for stem cell therapy and interpret results of accumulating experimental and clinical data, practitioners should have a basic understanding of stem cells.  相似文献   

5.
为培育转基因肉牛提供种子细胞以及进一步丰富牛骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)的多向分化潜能,利用细胞免疫荧光染色和分子生物学方法,初步探讨表皮生长因子和胰岛素体外诱导牛BMSC向上皮样细胞分化的可能性。利用含细胞因子的诱导液对纯化稳定的P4代牛BMSC进行体外诱导,并对诱导后的细胞进行细胞角蛋白18的细胞免疫荧光观察和细胞角蛋白19的RT-PCR鉴定。结果表明,诱导后细胞经细胞角蛋白18免疫荧光染色后出现明显的荧光。RT-PCR结果显示诱导分化后细胞角蛋白19基因在细胞中表达。因此,在体外,表皮生长因子和胰岛素可诱导牛BMSC初步分化为上皮样细胞。  相似文献   

6.
Reasons for performing study: Mesenchymal stem cell (MSC) therapy for orthopaedic disease is being used with increasing frequency; there is a need to define a safe, reliable and effective technique for the recovery of MSCs from the sternum of the horse. Objectives: To describe an optimised safe technique for obtaining bone marrow‐derived MSCs from the sternum of the Thoroughbred horse. Methods: The anatomical relationship of the sternum with the heart and internal anatomy was demonstrated in cadavers. Sternal anatomy was evaluated ultrasonographically and after midline sectioning. Sternebrae were examined histologically after aspiration to determine the effect of needle insertion. The quality of the aspirate was evaluated as the number of colony‐forming units from sequential and separately aspirated 5 ml aliquots and assessed for their multipotency using trilineage differentiation. Results: The optimal safe location for the needle was the 5th sternebra because it had a safe dorsoventral thickness and was cranial to the apex of the heart. This sternebra could be reliably identified ultrasonographically. Aspirates could also be obtained from the 4th and 6th sternebrae, although the former is between the front limbs and the latter closer to the heart. Minimal disruption of the internal bony architecture was seen after needle insertion through the thin outer cortex and the first 5 ml aliquot contained the greatest number of colony‐forming units of mesenchymal stem cells with trilineage capabilities. Conclusions: Accurate placement of a Jamshidi needle into the medullary cavity of the 4th–6th individual sternebrae is facilitated by the use of ultrasonography and enables aspiration of bone marrow reliably with minimal damage to the sternum and risk to the horse. Potential clinical relevance: Sternal marrow aspiration as described is a safe and reliable technique to obtain MSCs for orthopaedic cell‐based therapies.  相似文献   

7.
Mesenchymal stem cells (MSCs) are widely used for treatment of musculoskeletal diseases in horses, but there is ongoing debate regarding the relative safety and efficacy of allogeneic MSCs, compared with autologous equine MSCs. This review summarises the currently available published data regarding the therapeutic use of autologous and allogeneic MSCs in horses. Arguments that have been advanced against the use of allogeneic MSCs include higher risk of immunological reactions and shorter cell survival times following injection. Arguments favouring the use of allogeneic MSCs include the ability to bank cells and reduce the time to treatment, to collect MSCs from younger donor animals and the ability to manipulate banked cells prior to administration. In vitro studies and a limited set of experimental in vivo studies have indicated that adverse immunological reactions may occur when allogeneic MSCs are administered to horses. However, newer studies lack evidence of inflammatory reactions or adverse clinical responses when allogeneic MSCs are administered and compared with autologous MSCs. Thus, while the relative merits of allogeneic vs autologous MSCs for treatment of musculoskeletal injuries in horses have not been fully established, accumulating evidence from studies in horses suggests that allogeneic MSCs maybe a safe alternative to autologous MSCs. Large, properly designed, randomised trials in addition to careful immunological evaluation of short-term and long-term, local and systemic immune responses are needed to more fully resolve the issue.  相似文献   

8.
9.
Reasons for performing study: Mesenchymal stem (progenitor; stromal) cell (MSC) therapy has gained popularity for the treatment of equine tendon injuries but without reports of long‐term follow‐up. Objectives: To evaluate the safety and reinjury rate of racehorses after intralesional MSC injection in a large study of naturally occurring superficial digital flexor tendinopathy and to compare these data with those published for other treatments. Methods: Safety was assessed clinically, ultrasonographically, scintigraphically and histologically in a cohort of treated cases: 141 client‐owned treated racehorses followed‐up for a minimum of 2 years after return to full work. Reinjury percentages were compared to 2 published studies of other treatments with similar selection criteria and follow‐up. The number of race starts, discipline, age, number of MSCs injected and interval between injury and treatment were analysed. Results: There were no adverse effects of the treatment with no aberrant tissue on histological examination. The reinjury percentage of all racehorses with follow‐up (n = 113) undergoing MSC treatment was 27.4%, with the rate for flat (n = 8) and National Hunt (n = 105) racehorses being 50 and 25.7%, respectively. This was significantly less than published for National Hunt racehorses treated in other ways. No relationship between outcome and age, discipline, number of MSCs injected or injury to implantation interval was found. Conclusions: Whilst recognising the limitations of historical controls, this study has shown that MPC implantation is safe and appears to reduce the reinjury rate after superficial digital flexor tendinopathy, especially in National Hunt racehorses. Potential relevance: This study has provided evidence for the long‐term efficacy of MSC treatment for tendinopathy in racehorses and provides support for translation to human tendon injuries.  相似文献   

10.
Mesenchymal stem cells (MSCs) hold great potential in cell therapy and have attractedincreasing interests in a wide range of biomedical sciences. However, the scarcity of MSCsand the prolonged isolation procedure limited the clinical application. To address these 2issues, we developed a method to isolate MSCs from bone biopsy tissues of euthanizedcanine body donors. Compared to the traditional method to isolate MSCs from aspirated bonemarrow (BMSCs), the isolation procedure for MSCs from harvested epiphyseal cancellous bone(EMSCs) was less time-consuming. The isolated EMSCs had similar plastic-adherence,tri-lineage differentiation and consistent surface marker profiles compared to BMSCs. Weharvested BMSCs and EMSCs from 24 euthanized cases from clinics and 42 euthanized donorsfrom a local shelter. The successful rate for EMSC isolation is significantly highercompared to BMSC isolation, while the other properties of the isolated MSCs including theclonogenicity, proliferative potentials and molecular phenotypes were not discerniblydifferent between the MSCs established by the two methods. In conclusion, we demonstrateda new procedure to harvest MSCs by bone biopsy at the epiphyseal region. This method isless time consuming and more reliable, and the resulting MSCs are comparable to thoseharvested by bone marrow aspiration. The combination of the two methods can greatlyimprove the efficiency to harvest MSCs.  相似文献   

11.
采用全骨髓培养法对野猪股骨中骨髓间充质干细胞(Bone mesenchymal stem cells,BMSC)进行分离、培养并传代,建立野猪骨髓间充质干细胞体外培养方法及对其生物学特性进行观察研究。结果显示,细胞形态呈梭形,漩涡状生长,生长曲线为典型S型,在诱导液作用下,可分化为成脂肪样细胞。结果表明,通过本方法能够分离到较纯的BMSC,为野猪资源保存和体细胞核移植提供技术支持。  相似文献   

12.
Mesenchymal stem cells (MSCs) secrete a variety of neuroregulatory molecules, such as nerve growth factor, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor, which upregulate tyrosine hydroxylase (TH) gene expression in PC12 cells. Enhancing TH gene expression is a critical step for treatment of Parkinson''s disease (PD). The objective of this study was to assess the effects of co-culturing PC12 cells with MSCs from feline bone marrow on TH protein expression. We divided the study into three groups: an MSC group, a PC12 cell group, and the combined MSC + PC12 cell group (the co-culture group). All cells were cultured in DMEM-HG medium supplemented with 10% fetal bovine serum for three days. Thereafter, the cells were examined using western blot analysis and immunocytochemistry. In western blots, the co-culture group demonstrated a stronger signal at 60 kDa than the PC12 cell group (p<0.001). TH was not expressed in the MSC group, either in western blot or immunocytochemistry. Thus, the MSCs of feline bone marrow can up-regulate TH expression in PC12 cells. This implies a new role for MSCs in the neurodegenerative disease process.  相似文献   

13.

Background

Recent studies have assessed the therapeutic potential and drawbacks of mesenchymal stem cells (MSCs). The adverse reactions of intravenous transplantation of bone marrow (BM)-derived MSCs were examined at varying doses and frequencies of administration.Nine healthy beagle dogs were purchased from a commercial laboratory. The dogs were distributed equally (n = 3 per group) and randomly into three groups. All dogs received allogeneic BM-derived MSCs: 2 × 106 once (group A), 2 × 107 once (group B), and 2 × 106 for three consecutive days (group C). Various laboratory examinations, multi-detector computed tomography features and histopathology were evaluated to clarify the clinical and diagnostic features of adverse reactions of MSCs administration, prior to receiving MSCs (pre procedure) and on days 1, 3, and 7 post transplantation.

Results

Only one dog had clinical signs during and after MSCs transplantation. Dogs receiving 2 × 106 MSCs showed increased numbers of lymphocytes but the total white blood cell counts were not elevated (P < 0.01). Multi-detector computed tomography (MDCT) revealed pulmonary parenchymal changes in one dog and histopathologic examination revealed pulmonary parenchymal edema and hemorrhage in four dogs. The presence of pulmonary thromboembolism was not detected in either examination.

Conclusions

We considered the presence of pulmonary edema and hemorrhage as possible adverse reactions after intravenous MSCs transplantation; however these results should be cautiously interpreted.  相似文献   

14.
15.
16.
17.
本研究旨在观察不同代次骨髓间充质干细胞(BMSCs)和脂肪间充质干细胞(ADSCs)体外培养的生长特点和体外诱导成骨能力。通过密度梯度离心和贴壁培养法分离培养大鼠骨髓间充质干细胞和脂肪间充质干细胞,用含地塞米松、抗坏血酸、β-甘油磷酸钠的培养液定向诱导传代细胞向成骨细胞分化,并利用茜素红染色、碱性磷酸酶染色及PCR方法检测成骨细胞。结果表明骨髓及脂肪间充质干细胞呈成纤维细胞样生长,增殖能力强,生长迅速。第5、10、15、20代BMSCs及ADSCs经诱导培养后茜素红染色呈阳性并且出现"矿化"、碱性磷酸酶活性强,随着细胞代次的递增,诱导后细胞碱性磷酸酶活性呈递减趋势;诱导后的两类细胞传代后细胞仍能继续分化,并形成正常的"矿化"结节,且碱性磷酸酶染色均弱于初次诱导。结果提示,BMSCs及ADSCs易于分离培养及体外扩增,诱导条件下成骨能力强且成骨细胞传代培养仍具有成骨能力,适合作为再生医学骨组织工程的种子细胞。  相似文献   

18.
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano‐ and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no ‘one‐size‐fits‐all’ regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.  相似文献   

19.
Bone marrow lesions (BMLs) (also known as ‘bone bruises’, ‘bone oedema’, ‘bone contusions’ and ‘occult fractures’) within the middle phalanx were diagnosed by standing low field magnetic resonance imaging (MRI) in 7 horses. The lesions were characterised by low signal intensity on T1‐ and T2*‐weighted gradient echo sequences, mildly increased signal intensity on T2 fast spin echo sequences, and high signal intensity on short tau inversion recovery (STIR) sequences. Four distinct patterns of abnormal signal were identified: BML associated with osteoarthritis of either the proximal or distal interphalangeal joints; BML associated with soft tissue injury; BML associated with acute trauma; and BML unassociated with any other injury or lameness (assumed to represent bone response to biomechanical stress). Repeat MRI was undertaken in 4 cases. In most cases the BML resolved with rest and time, although lameness was persistent in 2 horses (one of which had an associated osteoarthritis of the proximal interphalangeal joint).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号