首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为评价农药助剂壬基酚聚氧乙烯醚(NPnEO)在香蕉上使用的安全性,于2009-2010年在海南采用田间试验和超高效液相色谱-荧光分析方法研究了NPnEO及其降解产物壬基酚(NP)在香蕉及土壤中的消解动态和最终残留。结果表明:NPnEO在香蕉及土壤中的消解规律符合一级动力学模型,其半衰期分别为8.8~12 d和6.9~8.5 d,而其降解产物NP在香蕉和土壤中的半衰期分别为16~18 d和24~26 d。在香蕉收获期,NPnEO及NP在香蕉中的残留量均低于0.01 mg/kg。通过计算得出每人每天从香蕉中所摄入的NP仅为0.09 μg,风险商值(RQ)为0.003,处于安全水平。  相似文献   

2.
通过一年两季(春季和冬季)的田间试验,采用C18固相萃取-高效液相色谱分析方法,研究了苦参碱在小白菜及土壤中的残留和消解动态。方法验证试验表明:在0.02~0.5mg/kg添加水平下,苦参碱在小白菜和土壤中的平均回收率为71%~87%,相对标准偏差为5.7%~14%,在小白菜与土壤中的定量限(LOQ)均为0.02mg/kg。消解动态试验结果表明:苦参碱在小白菜及土壤中的消解过程均符合一级动力学方程,消解半衰期分别为1.0d(春季,小白菜)、1.5d(冬季,小白菜)、1.4d(春季,土壤)和1.6d(冬季,土壤)。最终残留结果显示:距最后一次施药7d后,高浓度(有效成分6.71g/hm2)和低浓度(有效成分4.47g/hm2)苦参碱在春季和冬季小白菜中的最终残留量在0.061~0.074mg/kg之间;在土壤中的最终残留量在未检出~0.075mg/kg之间。可见,苦参碱在小白菜及土壤中易消解,为保障小白菜食用安全,建议可将0.1mg/kg作为其最大残留限量,安全间隔期不小于3d。  相似文献   

3.
采用气相色谱-火焰光度检测器(GC-FPD)测定了噻唑膦在黄瓜和土壤样品中的消解动态及最终残留。黄瓜和土壤样品用乙腈提取、乙酸乙酯定容、GC-FPD检测。当噻唑膦在黄瓜和土壤中的添加浓度为0. 01~0. 5mg/kg时,回收率为82. 0%~107. 8%之间,相对标准偏差(RSD)为5. 6%~12. 3%;噻唑膦的最小检出量为1. 0×10-14g,黄瓜和土壤中的最低检测浓度为0. 01mg/kg。消解动态试验结果显示,噻唑膦在黄瓜和土壤的消解动态规律均符合一级动力学方程,其半衰期分别为2. 17~3. 81 d和5. 37~9. 76 d;最终残留试验结果表明,黄瓜中噻唑膦残留量最大值为0. 066mg/kg,低于我国规定的残留限量值0. 2mg/kg,建议在黄瓜地使用5%噻唑膦可溶液剂时,施药剂量为1 500 g. a. i/ha,施药1次,收获期黄瓜安全。  相似文献   

4.
采用QuEChERS-液相色谱-串联质谱法(LC-Ms/MS)建立了戊唑醇在田水、土壤、水稻植株和糙米、稻壳样品中的残留检测方法。样品前处理均采用乙腈作提取剂、PSA和MgSO_4为分散净化剂的QuEchERs方法,利用LC-MS/MS进行检测。当戊唑醇在田水、土壤、植株、糙米和稻壳中的添加浓度为0.005~0.5mg/kg时,其平均回收率在83.2%~109.7%之间,RSD为1.8%~5.7%;戊唑醇的最小检出量为2.5×10~(-11)g,最低检测浓度为0.005 mg/kg。消解动态试验结果显示,戊唑醇在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期分别为4.29~6.23d,6.30~11.55d和0.92~3.15d;最终残留试验结果表明,药后35d糙米中的戊唑醇最终残留量为0.435mg/kg,低于我国规定的最大残留限量值0.5mg/kg,建议在稻田上使用3%戊唑醇超低容量液剂时,施药剂量为90g.a.i/ha,施药2次,安全间隔期为35d。  相似文献   

5.
气相色谱法测定醚菌酯在黄瓜 和土壤中的残留量   总被引:1,自引:1,他引:1  
建立了杀菌剂醚菌酯在黄瓜和土壤中的残留分析方法,并研究了其在黄瓜和土壤中的消解动态和最终残留。 样品经丙酮超声提取、二氯甲烷液-液分配和弗罗里硅土净化后,通过GC-NPD 检测。该方法最小检出量为9×10-12 g,在黄瓜和土壤中的最低检测浓度分别为0.005和0.010 mg/kg, 添加回收率为89.4%~104.3%, 变异系数为4.6%~7.0%。残留动态试验结果表明,施药浓度为推荐剂量的两倍时(有效成分300 g/ hm2),醚菌酯在黄瓜和土壤中的半衰期分别为6.4和10.3 d。在有效成分为150和300 g/hm2的剂量条件下,施药3~4次,施药后第 5 d黄瓜中醚菌酯残留量低于欧盟规定的MRL值(0.05 mg/kg)。  相似文献   

6.
为评价粉唑醇在小麦田中的安全性,建立气相色谱-质谱(GC-MS)联用方法测定了小麦田中粉唑醇的残留量,对粉唑醇在土壤、植株中的消解动态以及土壤、植株、麦粒和麦壳中粉唑醇的最终残留进行了研究。样品经乙腈提取、PSA净化后,GC-MS检测,添加回收试验结果表明:粉唑醇在土壤、植株、麦粒及麦壳中的平均回收率在77.6%~95.5%之间,相对标准偏差(RSD)为4.4%~12.2%,粉唑醇的最小检出量为1.0×10~(-11)g,最低检测浓度均为0.05 mg/kg;消解动态试验结果表明,粉唑醇在土壤、植株中的消解动态符合一级动力学方程,其半衰期分别为1.8~7.4d和3.2~5.1d;最终残留试验结果表明,距最后1次施药30 d后,粉唑醇在麦粒中的最大残留量为0.28 mg/kg,低于我国制定的小麦中粉唑醇的最大残留限量0.5 mg/kg。建议在小麦田施用250 g/L粉唑醇悬浮剂,施药剂量为360 g.a.i/ha,喷雾施药2~3次,推荐的安全间隔期为45 d。  相似文献   

7.
采用气相色谱-电子捕获检测器(GC-ECD)测定了己唑醇在田水、土壤、水稻植株和糙米、稻壳样品中的消解动态及最终残留。田水样品用二氯甲烷萃取,土壤、水稻植株、糙米和稻壳样品用甲醇提取,提取液经柱层析净化、GC-ECD检测。当己唑醇在田水中的添加浓度为0.005~1.0mg/kg时,其回收率为94.38%~97.28%之间,相对标准偏差(RSD)为1.93%~2.87%,在土壤、植株、糙米和稻壳中的添加浓度为0.02~2.0mg/kg时,其平均回收率在86.20%~96.30%之间,RSD为2.25%~6.39%;己唑醇的最小检出量为2.0×10~(-11)g,在田水中的最低检测浓度为0.005mg/kg,土壤、水稻植株、糙米和稻壳中的最低检测浓度为0.02mg/kg。消解动态试验结果显示,己唑醇在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期分别为4.12~7.33d,11.77~23.18d和2.89~7.17d;最终残留试验结果表明,药后45d糙米中的己唑醇最终残留量为0.085 7mg/kg,低于我国规定的最大残留限量值0.1mg/kg,建议在稻田上使用50%己唑醇可湿性粉剂时,施药剂量为75~112.5g.a.i/ha,施药2~3次,安全间隔期为45 d。  相似文献   

8.
吡唑醚菌酯在杨梅和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
为明确吡唑醚菌酯在杨梅和土壤中的残留消解规律和最终残留量,于2017年在浙江、重庆、湖南和云南4地进行了吡唑醚菌酯在杨梅及土壤中的田间残留及消解动态试验。建立了超高效液相色谱-串联质谱检测吡唑醚菌酯在杨梅和土壤中残留的分析方法。样品经乙腈水溶液提取,N-丙基乙二胺 (PSA) 和C18净化,利用超高效液相色谱-串联质谱仪 (UPLC-MS/MS) 进行检测。结果表明:在0.0005~0.5 mg/L范围内,吡唑醚菌酯的质量浓度与其峰面积间呈良好的线性关系,相关系数均大于0.99。在0.01、0.5和5.0 mg/kg添加水平下,吡唑醚菌酯在杨梅中的回收率为92%~97%,相对标准偏差 (RSD) 为1.0%~2.7%;在土壤中的回收率为86%~96%,RSD为1.5%~4.1%。吡唑醚菌酯在杨梅和土壤中的定量限 (LOQ) 均为0.01 mg/kg。田间试验结果表明:吡唑醚菌酯在杨梅和土壤中的消解动态均符合一级反应动力学方程,在杨梅中的半衰期为6.6~11.8 d,在土壤中的半衰期为5.0~11.1 d。采用60%唑醚 ? 代森联水分散粒剂分别按有效成分800 mg/kg和1200 mg/kg施药3、4 次,分别于距离最后一次施药21、25和28 d采样检测发现,吡唑醚菌酯在杨梅中的最高残留量为1.4 mg/kg,均低于中国规定的其在杨梅上的最大残留限量(3.0 mg/kg)。建议采用60%唑醚 ? 代森联水分散粒剂有效成分最高使用剂量为800 mg/kg,施药间隔期7 d,最多施药3 次,采收安全间隔期为21 d。  相似文献   

9.
壬菌铜和吡唑醚菌酯在苹果和土壤中的残留及消解动态   总被引:2,自引:2,他引:0  
建立了同时测定苹果及其土壤中壬菌铜和吡唑醚菌酯残留的分散固相萃取-高效液相色谱-串联质谱(DSPE-HPLC-MS/MS)方法,并采用该方法研究了24%吡唑醚菌酯·壬菌铜微乳剂在苹果和土壤中的残留及消解动态。其中壬菌铜以硫化钠为破络剂,将其转化为壬基酚磺酸后进行检测。样品用乙腈提取,同时加入硫化钠,经N-丙基乙二胺(PSA)净化后,采用C18色谱柱,以甲醇-水为流动相梯度洗脱分离,于多反应监测模式下经正负离子同时扫描进行定性,基质匹配标准曲线外标法定量。结果表明:在0.1~10 mg/kg添加水平下,壬菌铜在苹果及土壤中的回收率范围为92%~103%,相对标准偏差(RSD)为1.3%~5.1%;在0.01~1 mg/kg添加水平下,吡唑醚菌酯在苹果及土壤中的回收率范围为96%~105%,RSD为2.4%~4.6%。苹果及土壤中壬菌铜和吡唑醚菌酯的最低检测浓度(LOQ)分别为0.1和0.01 mg/kg。2014-2015年,中国宁夏、北京和山东两年三地的田间残留试验表明:壬菌铜在苹果和土壤中的消解半衰期分别为2.7~5.4和2.0~5.8 d,吡唑醚菌酯在苹果和土壤中的消解半衰期分别为4.3~8.3和3.6~10.2 d;采用24%吡唑醚菌酯·壬菌铜微乳剂,分别按推荐剂量(有效成分300 mg/kg)和推荐剂量的1.5倍(有效成分450 mg/kg)于苹果幼果期施药,最多施药4次,距末次施药14 d时,壬菌铜在苹果中的最大残留量为0.31 mg/kg,远低于日本规定的最大允许残留限量(MRL)值(5 mg/kg),吡唑醚菌酯在苹果中的最大残留量为0.27 mg/kg,低于中国规定的MRL值(0.5 mg/kg)。  相似文献   

10.
建立了马铃薯和土壤中氟啶胺残留的分析方法,研究氟啶胺在马铃薯和土壤中的残留量及残留降解规律。进行2年2地田间试验。消解动态试验剂量1 125g/ha;最终残留试验剂量1 125和750g/ha,喷雾施药3~4次,施药间隔7d,距末次施药后间隔7、10、14、21d采样。高效液相色谱串联质谱法对氟啶胺进行定量分析。田间消解动态试验表明:氟啶胺在马铃薯植株和土壤中消解较快,半衰期分别为3.0~7.4d、6.7~10.0d。马铃薯最终样品中氟啶胺残留量在0.005~0.026 5mg/kg之间,土壤中氟啶胺的残留量在0.030 1~1.02mg/kg。该方法快速简便,准确可靠。马铃薯最终样品中氟啶胺残留低于欧盟(0.05mg/kg)和日本(0.1mg/kg)残留限量标准。  相似文献   

11.
建立了改进的分散固相萃取(DSPE)提取净化、测定水果和蔬菜中四聚乙醛残留量的液相色谱串联质谱方法。前处理过程:样品经乙腈提取后,取2mL上清液与PSA(100mg),和MgSO4(300mg)吸附净化剂涡旋振荡1min;再离心5min(3 000r/min);取全部上清液过0.22μm有机膜,由LC-MSMS检测。分析采用Agilent ZORBAX Eclipse Plus C18色谱柱分离,乙腈-0.1%甲酸溶液作为流动相洗脱,电喷雾正离子(ESI+)模式电离,多反应监测(MRM)模式检测,外标法定量。四聚乙醛在0.002~1.00mg/L浓度范围内呈良好的线性,线性相关系数0.99;方法检出限为0.002 5mg/kg;定量限为0.01mg/kg。添加浓度为0.01、0.10、1.0 mg/kg时,平均回收率在83.7%~116.4%之间;相对标准偏差为0.81%~6.21%。  相似文献   

12.
应用高效液相色谱法-紫外检测器(HPLC-UVD)对水稻植株、糙米、田水样品及土壤中的三环唑进行检测,三环唑在3种添加水平下:1田水样品添加水平为0.008 8~0.88mg/kg时,回收率为83.53%~108.0%,相对标准偏差(RSD)为0.832%~7.24%;2土壤样品添加水平为0.017 6~1.76mg/kg时,回收率为78.63%~94.17%,相对标准偏差(RSD)为2.60%~4.43%;3植株和糙米添加水平为0.035 2~3.52mg/kg时,回收率分别为72.01%~97.42%,81.78%~97.06%,相对标准偏差(RSD)分别为3.52%~5.91%,1.69%~10.1%。该方法的浓度范围为0.352~35.2μg/mL时,最低检出限为4.2×10-10g,最低检出浓度为0.008 8mg/kg。本方法操作简单、快速、定量准确,可有效适用于三环唑在水稻上的残留检测。  相似文献   

13.
通过高效液相色谱-荧光法对阿维菌素类农药中壬基酚聚氧乙烯醚 (NPEOs) 及4-n-壬基酚 (以下简称NP) 进行检测,分析乳油 (EC)、水乳剂 (EW)、悬浮剂 (SC) 和微乳剂 (ME) 4种剂型中NPEOs和NP含量的分布特征。以甲醇为油基模拟物浸泡样品外包装材料 (塑料),对其中NPEOs和NP的溶出迁移进行检测,并对制剂中NPEOs和NP进行源解析。结果表明:在4种类型制剂中,NPEOs检出率为60.47%,NP检出率为62.79%,两者均检出的占51.16%。复配制剂中NPEOs及NP检出率高于单剂。4种剂型中NPEOs和NP的检出量均值及中位数从高到低依次为:EC > EW > ME > SC。NPEOs和NP最高含量均出现在EC中,分别为6.83%和8.41%。EC制剂中NPEOs多于NP,而EW制剂中两者使用相当。2 h NPEOs和NP的迁移量分别为0.16~49.34和0.19~18.05 μg/cm2,30 d的迁移量分别为0.76~66.48和2.84~137.79 μg/cm2。试验初期,NPEOs溶出迁移相对NP更易趋于稳定,而至15 d时NPEOs和NP的迁移量接近,分别占30 d迁移量的46.64%~100.82%和46.89%~102.03%。外包装塑料中NP贡献率高达2.568%,而NPEOs贡献率最大为0.241%,30d NP贡献率是NPEOs的1.66~107.51倍,并且塑料袋中NP贡献率比塑料瓶中的大。农药外包装塑料中NP的使用量相对于NPEOs更多,生产过程中的添加仍是制剂中NPEOs和NP主要来源。  相似文献   

14.
建立了高效液相色谱-串联四级杆质谱测定黄瓜和土壤中的乙嘧酚磺酸酯的农药残留方法,样品经乙腈提取,氨基柱净化,应用高效液相色谱-串联四极杆质谱仪进行测定,外标法定量。采用该法对黄瓜和土壤中的乙嘧酚磺酸酯农药进行测定,平均回收率为93.69~104.93%之间,相对标准偏差为3.42~7.47%,检出限为0.001 6mg/kg,线性范围为5~320ng/mL,相关系数为0.999 5.结果表明:该法可用于黄瓜和土壤中乙嘧酚磺酸酯的测定。  相似文献   

15.
试验结果表明,微生物杀菌剂噬菌核霉2亿活孢子/克可湿性粉剂对油菜菌核病有较好的防治效果,在油菜移栽前2~4周,喷施于油菜田地表并用机械方法 (旋耕)把表面土壤翻入5~10cm的土壤中,基本能控制油菜菌核病的为害,其每hm2使用2 250g防效为82.70%,并可以与其它杀菌剂如菌核净40%可湿性粉剂混用,在保证防效的同时,可大幅度减少化学农药的用量。同时解决了油莱花期田间封闭施药不便和因下雨错过防治时机的难题。  相似文献   

16.
建立了固相萃取-液相色谱串联质谱法测定生姜基质中涕灭威及其代谢产物涕灭威亚砜、涕灭威砜的分析方法。试样经乙腈提取,氨基SPE小柱净化后,采用多反应监测(MRM)正离子模式检测,外标法定量。实验结果表明:3种目标物在10ng/mL到50ng/mL质量浓度范围内呈现良好的线性,方法的检出限均为2μg/kg,3个加标水平下平均回收率在72~94%之间。该方法准确、灵敏、重现性好,可用于生姜样品中涕灭威及其代谢产物涕灭威亚砜、涕灭威砜的实际检测。  相似文献   

17.
作者进行了矿物油97%乳油防治茶橙瘿螨药效试验,药后3d,矿物油97%乳油各处理对茶橙瘿螨防效在70.5%~74.6%;药后14d,防效在91.6%~92.7%.  相似文献   

18.
为了研究壬基酚聚氧乙烯醚在食品中的残留量及安全性,通过乙腈提取、固相萃取法净化,建立了香蕉中壬基酚聚氧乙烯醚(NPnEO)及其降解产物壬基酚(NP)的超高效液相色谱-串联质谱(UPLC-MS/MS)测定方法,并对流动相、监测离子和校正曲线等进行了优化和探讨。结果表明:在5~40 μ g/kg添加水平范围内,NPnEO及NP的添加回收率在75%~117%之间,相对标准偏差(RSD)在3.2%~9.6%之间;NPnEO的检出限在0.005~0.04 μ g/kg之间,NP的检出限(LOD)为0.5 μ g/kg;该方法快速、灵敏,准确度高,符合残留检测的要求。  相似文献   

19.
建立了同时测定蔬菜(青菜、菜豆、卷心菜、番茄)中咯菌腈、虱螨脲和溴虫腈等农药残留的高效液相色谱法。蔬菜以乙腈高速匀浆提取,过NH2小柱净化,再用甲醇定容。而土壤样品较干净,经乙腈振荡提取1h,浓缩后定容过膜即可。采用甲醇-水为流动相,利用C18柱和紫外检测器(检测波长:260nm)对待测组分进行了分离和测定。实验证明,添加浓度在0.1、0.5、1mg/kg时,蔬菜中咯菌腈、虱螨脲和溴虫腈平均添加回收率在78.2~117.3%之间,相对标准偏差(RSD)〈10%,咯菌腈、虱螨脲和溴虫腈在样品中的最低检出浓度为0.1mg/kg,最小检出量为:1ng。  相似文献   

20.
本文通过采用模拟农田退水,对水芹菜、空心菜、紫背浮萍、水浮莲、三叶浮萍和满江红这6种水生植物及其二元复合水生植物系统进行了净化模拟农田退水中残留苯醚甲环唑和对二元复合水生植物系统中2种可食用水生植物——水芹菜和空心菜体内苯醚甲环唑的含量的研究。结果表明,6种供试水生植物对模拟农田退水中苯醚甲环唑均有较显著的去除作用,去除率可达96.61~98.40%;而在二元复合水生植物系统中苯醚甲环唑的降解半衰期比在单种水生植物组中加快了0.97~1.36d;且14d后空心菜和水芹菜体内苯醚甲环唑的残留量在0.13~0.11mg/kg之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号