共查询到16条相似文献,搜索用时 64 毫秒
1.
基于光流法与特征统计的鱼群异常行为检测 总被引:1,自引:3,他引:1
鱼类群体行为的异常检测能够为鱼类健康监控与预警提供重要的方法和手段,对研究鱼类行为的机理,提升水产养殖过程中的信息化水平具有非常重要的意义。该文通过计算机视觉和图像处理技术,基于鱼群运动特征统计方法,对鱼群异常行为检测进行研究。利用Lucas-Kanade光流法得到目标鱼群的运动矢量,并对目标运动的行为特征进行统计,得到速度与转角这2个行为特征的联合直方图与联合概率分布。最后,在联合概率分布的基础上,基于标准互信息(normalized mutual information-NMI)和局部距离异常因子(local distance-based outlier factor-LDOF)2种方法对鱼群行为进行异常检测。试验结果表明,2种异常检测方法均达到99.5%以上的准确率。 相似文献
2.
奶牛呼吸行为的智能检测对于奶牛疾病的自动诊断及奶牛精准养殖具有重要意义。该研究基于Lucas-Kanade稀疏光流算法,提出了一种适合于非结构化养殖环境的无接触式单目标奶牛呼吸行为检测方法。通过在HSV颜色空间完成奶牛目标的提取,然后通过Canny算子和掩模操作完成奶牛所有花斑边界的检测,再利用Lucas-Kanade稀疏光流算法计算提取奶牛花斑边界光流,最后根据视频序列帧中花斑边界平均光流的方向变化规律实现奶牛呼吸行为的检测。为了验证本研究算法的有效性,利用不同环境下获取的105段共计25 200帧数据进行了测试,并与基于整体Lucas-Kanade光流法、整体Horn-Schunck光流法和基于花斑边界的Horn-Schunck光流法进行了对比验证。试验结果表明,该研究算法的帧处理耗时在0.10~0.13 s之间,在试验视频上的平均运行时间为14.14 s。奶牛呼吸行为检测的准确率为83.33%~100%之间,平均准确率为98.58%。平均运行时间较基于整体Lucas-Kanade光流法的呼吸行为检测方法慢1.60 s,较Horn-Schunck整体光流的呼吸行为检测方法快7.30 s,较基于花斑边界的Horn-Schunck光流法快9.16 s。呼吸行为检测的平均准确率分别高于3种方法 1.91、2.36、1.26个百分点。研究结果表明,通过Lucas-Kanade光流法检测奶牛花斑边界平均光流方向变化实现奶牛呼吸行为检测是可行的,该研究可为奶牛热应激行为的自动监测及其他与呼吸相关疾病的远程诊断提供参考。 相似文献
3.
奶牛反刍行为的智能监测对于奶牛健康及提升现代养殖业的水平具有重要意义。奶牛嘴部区域的自动检测是奶牛反刍行为智能监测的关键,该文提出一种基于Horn-Schunck光流法的多目标奶牛嘴部区域自动检测方法。利用Horn-Schunck光流法模型求取奶牛反刍视频中各时间序列图像的光流场,将各帧序列图像中运动较大的光流数据进行叠加,获取奶牛反刍时的候选嘴部区域,最后运用奶牛嘴部区域检测模型实现反刍奶牛嘴部区域的检测。为了验证算法的有效性,利用不同环境下获取的12段视频进行验证,选取的12段视频的每段时长10 s,每段视频帧数在250~280帧之间,结果表明,对于多目标奶牛,12段视频中有8段视频可以成功检测到反刍奶牛的嘴部区域;根据所定义的真实充盈率指标与检测充盈率指标,分别统计了8段成功检测反刍奶牛嘴部区域的视频检测结果,试验表明,8段视频中最大真实充盈率为96.76%,最小真实充盈率为25.36%,总体平均真实充盈率为63.91%;最大检测充盈率为98.51%,最小检测充盈率为43.80%,总体平均检测充盈率为70.06%。研究结果表明,将Horn-Schunck光流法应用于多目标奶牛嘴部区域的自动检测是可行的,该研究可为奶牛反刍行为的智能监测提供参考。 相似文献
4.
花卉生长过程原始视频数据量大,冗余信息多。为了获得便于研究人员使用的压缩比高、数据量小、包含丰富生长细节信息、流畅自然、花卉生长过程视频,引入了关键帧提取方法对原始视频进行处理。根据花卉生长过程的特点,选择运动检测相关算法进行测试。对传统的帧间差分法进行了仿真分析,并提出了一种新的基于光流法及运动方向信息熵统计的关键帧提取方法。试验证明,该方法明显优于帧间差分法,在提取相同数量关键帧的情况下,能够更完整的表现花卉运动细节。该研究可为花卉生长过程的动态监测提供参考。 相似文献
5.
基于图像纹理特征的养殖鱼群摄食活动强度评估 总被引:3,自引:6,他引:3
为了解决循环水养殖中的投喂难题,该文以镜鲤为试验对象,基于计算机视觉技术,提出了一种通过分析鱼群的纹理来评估鱼群摄食活动强度的方法。首先利用均值背景建模重建出没有鱼群的背景图片,提取出目标鱼群,使用灰度共生矩阵对逆差矩、相关性、能量和对比度这4个纹理特征进行分析,得到鱼群的摄食活动强度。试验结果表明通过鱼群纹理的对比度与传统方法面积法得到的鱼群摄食活动强度,其线性决定系数可达0.894 2,说明该方法可以用来表征鱼群的摄食活动强度,研究结果为鱼群的摄食活性强度测量提供了一种参考方法。 相似文献
6.
在集约化水产养殖过程中,饲料投喂是控制养殖成本,提高养殖效率的关键。室外环境复杂多变且难以控制,适用于此环境的移动设备计算能力较弱,通过识别鱼类摄食状态实现智能投喂仍存在困难。针对此种现象,该研究选取了轻量级神经网络MobileNetV3-Small对鲈鱼摄食状态进行分类。通过水上摄像机采集水面鲈鱼进食图像,根据鲈鱼进食规律选取每轮投喂后第80~110秒的图片建立数据集,经训练后的MobileNetV3-Small网络模型在测试集的准确率达到99.60%,召回率为99.40%,精准率为99.80%,F1分数为99.60%。通过与ResNet-18, ShuffleNetV2和MobileNetV3-Large深度学习模型相比,MobileNetV3-Small模型的计算量最小为582 M,平均分类速率最大为39.21帧/s。与传统机器学习模型KNN(K-Nearest Neighbors)、SVM(Support Vector Machine)、GBDT(Gradient Boosting Decision Tree)和Stacking相比,MobileNetV3-Small模型的综合准确率高出12.74、23.85、3.60和2.78个百分点。为进一步验证该模型有效性,在室外真实养殖环境进行投喂试验。结果显示,与人工投喂相比,基于该分类模型决策的鲈鱼投喂方式的饵料系数为1.42,质量增加率为5.56%。在室外真实养殖环境下,MobileNetV3-Small模型对鲈鱼摄食状态有较好的分类效果,基于该分类模型决策的鲈鱼投喂方式在一定程度上能够代替养殖人员进行决策,为室外集约化养殖环境下的高效智能投喂提供了参考。 相似文献
7.
为了实现葡萄硬枝嫁接苗木切削面粗糙度的检测,该文基于光切法测量原理,搭建了切削面粗糙度图像检测系统,研究了特征提取的图像检测算法。为获取较长的取样长度,采用了图像拼接技术,并提出了一种自动制取匹配模板的方法,拼接算法测试结果表明:每多拼接一幅粗糙度特征图像,运行时间平均增加1.104 s,取样长度平均增加1 131.77μm;采用了模糊集合理论对拼接后的粗糙度特征图像进行灰度变换,可以有效保证图像分割后单侧边缘的完整;采用了人机交互的方式对粗糙度特征二值图像像素进行区域操作,可以滤除因切削面自身含有的导管腔、管胞腔而导致的缺陷轮廓,从而提高粗糙度计算的准确度;提出了一种逐列遍历图像提取单侧边缘的方法,通过对单侧边缘进行计算,可以得到粗糙度高度参数Ra与Rz的值。将该粗糙度图像检测算法与基恩士VK-X200形状测量激光显微系统进行了粗糙度检测对比试验,结果表明,该文提出的粗糙度图像检测算法测得Ra的相对误差为6.73%,在测量误差允许范围内,该文基于光切法测量原理的图像检测算法,用于检测葡萄硬枝嫁接苗木切削面粗糙度,具有较高的精度和良好的可行性,为进一步研究切削参数对切削面粗糙度以及对苗木嫁接成活率的影响提供了技术支撑。 相似文献
8.
根据鱼群摄食行为状态进行水产养殖精准投喂控制,是有效提高饵料利用率降低水体污染的关键技术。目前,大多数基于机器视觉的鱼类摄食行为研究都是在实验室对真实养殖环境进行模拟并采用水上摄像机获取数据,由于光照条件和养殖环境的影响,该数据无法反映大西洋鲑在实际生产状况下的摄食行为,因此应用范围有限。为解决此问题,该研究提出一种基于真实工厂化养殖环境的鱼类摄食行为分类算法。该算法使用水下观测方式并采用视频序列作为样本,首先利用变分自动编码器对视频序列样本进行逐帧编码以产生所有帧对应的高斯均值和方差向量,分别联立所有均值和方差向量得到均值特征矩阵和方差特征矩阵。然后将特征矩阵输入到卷积神经网络中,实现对鱼群的摄食行为分类。试验结果表明,在真实的工厂化养殖环境下,该研究所提出的方法综合准确率达到了89%,与已有的基于单张图像的鱼类摄食行为分类方法相比,综合准确率提高了14个百分点,召回率提高了15个百分点。研究结果可为基于鱼类摄食行为的鱼饵精准投喂控制提供参考。 相似文献
9.
基于混沌免疫算法和遥感影像的土地利用分类 总被引:1,自引:2,他引:1
为提高利用遥感影像进行土地利用分类的精度,采用了基于混沌免疫算法(Chaos Immune Algorithm)的多光谱遥感影像分类方法。首先应用混沌免疫算法对样本进行自学习得到全局最优的聚类中心,然后通过得到的聚类中心对整幅影像进行分类。该方法利用混沌变量的遍历性,进行粗粒搜索,优化免疫算法的初始抗体群;通过克隆选择算子、变异算子、抗体的循环补充操作,避免陷入局部最优解,得到全局最优的聚类中心。在对淮南矿区采用TM影像进行的土地利用分类中,试验结果表明该方法分类总精度为89.9%,Kappa系数为0.8 相似文献
10.
为解决由于现有深度迁移学习无法有效匹配实际农业场景部署应用,而导致大规模、多类别、细粒度的病虫害辨识准确低、泛化鲁棒差等问题,该研究利用农业物联网中多种设备终端获取12.2万张181类病虫害图像,并提出了基于多流概率融合网络MPFN(Multi-stream Gaussian Probability Fusion Network)的病虫害细粒度识别模型。该模型设计多流深度网络并行的细粒度特征提取层,挖掘可区分细微差异的不同级别局部特征表达,经过局部描述特征聚合层和高斯概率融合层的整合优化,发挥多模型融合信息互补及置信耦合的优势,既可以有效区分不同类病虫害的种间微小差异,又可容忍同类病虫害种内明显差异干扰。对比试验表明,该研究MPFN模型对各类病虫害的平均识别准确率达到 93.18%,性能优于其他粗粒度及细粒度深度学习方法;而平均单张处理时间为61ms,能够满足农业生产实践中物联网各终端病虫害细粒度图像识别需求,可为智能化病虫害预警防控提供技术应用参考,进而为保障农作物产量和品质安全提供基础。 相似文献
11.
为满足工厂化循环水养殖的需要,该文通过触摸屏后端控制单片机升降套筒调整体积定量设计了一套自动投饵机,克服了常用称重法的精度易受振动影响、行走式投饵设备称质量和行走不能同时进行的缺点,在保证性能的同时简化了结构、提高了效率。对系统投饵精度性能测试结果表明:该系统能够定时完成启停和控制过程,在设定投饵量在5~7 g/次时,误差控制在8%以内;设定投饵量在9~13 g时,误差不超过4%,可以满足工厂化海产养殖的需求。该研究可为今后海蟹类单筐养殖科学化、智能化提供参考价值。 相似文献
12.
基于数据挖掘分类法的农用地分等 总被引:5,自引:1,他引:5
应用决策树模型、BP神经网络和Logistic回归模型等分类法,对龙川县农用地分等进行了实证研究,并对各方法的分等结果有效性进行了评价,同时利用混淆矩阵探讨了样本数量对3种模型分类精度的影响。结果表明,样本数量对模型影响有差异,其中对BP神经网络和决策树模型影响较大,在较多训练样本时,模型的精度较高。在较多样本支持下,BP神经网络精度最高,但训练模型的时间较长,可解释性差;决策树模型既具有较高的精度又具有良好的可解释性;Logistic回归模型表现较差。决策树模型最适合龙川县农用地分等工作。研究结果表明,数据挖掘分类法是有效而准确的土地评价方法,有助于提高土地评价的精度和准确性,对农用地分等方法的优化具有一定的借鉴意义。 相似文献
13.
高速摄影技术分析射流式鱼泵流量对鱼运动规律影响 总被引:1,自引:0,他引:1
采用高速摄影技术初步研究了草鱼、团头鲂和鲫鱼等3种鱼类在射流式鱼泵内的运动规律,分析了鱼类逆流游动率、逆流游动过泵时间、姿态变化率及鱼类与泵壁面碰撞所受力与工作流体流量之间的关系。试验研究表明:在5种工作流体流量工况下,随着工作流体流量的增加,鱼类逆流游动率逐渐降低,过泵时间逐渐减少,姿态变化率逐渐升高,所受碰撞力逐渐升高;在工作流体流量较低时,鱼类逆流游动率超过85%,过泵时间均超过300 ms,姿态变化率均小于6%,所受碰撞力在1~3 N的范围内;在工作流体流量较高时,鱼类逆流游动率在50%~85%之间,过泵时间在125~175 ms之间,大多数情况下姿态变化率9%~18%之间,所受碰撞力在5~7N的范围内;在试验所用3种试验鱼中,草鱼的过泵时间最长,姿态变化率最高,并在大部分工况中所受碰撞力最大。 相似文献
14.
及时准确地识别出养殖区域内的粘连鱼体是实现水产养殖中鱼群计数、养殖密度估算等多种基本养殖操作自动化的关键技术。针对目前粘连鱼体识别方法存在准确率低、普适性差等问题,该研究提出了一种基于深度可分离卷积网络的粘连鱼体识别方法。首先采集鱼群图像数据,采用图像处理技术分割出鱼体连通区域图像,构建粘连鱼体识别数据集;其次构建基于深度可分离卷积网络的粘连鱼体识别模型,采用迁移学习方法训练模型;最后基于训练好的模型实现粘连鱼体的识别。在真实的鱼体图像数据集上进行测试,识别准确率达到99.32%。与基于支持向量机(Support Vector Machine, SVM)和基于反向传递神经网络(Back Propagation Neural Network, BPNN)的机器学习方法相比,准确率分别提高了5.46个百分点和32.29个百分点,具有更好的识别性能,可为实现水产养殖自动化、智能化提供支持。 相似文献
15.
基于多源遥感数据融合和LSTM算法的作物分类研究 总被引:1,自引:6,他引:1
准确、及时地获取农作物的空间分布信息,对于指导农业生产、制定农业政策具有重要意义。为了检验长短时记忆网络(long short-term memory,LSTM)算法在基于时序遥感数据进行作物分类中的优势,该文以临汾盆地为研究区域,利用Savitzky-Golay滤波对MODIS NDVI进行平滑处理,并采用ESTARFM(enhanced spatial and temporal adaptive reflectance fusion model)算法对滤波后的MODIS NDVI和Landsat NDVI进行融合,生成空间分辨率为30 m、时间分辨率为8天的时序NDVI。基于Landsat NDVI利用LSTM算法进行作物分类,同时,基于融合NDVI分别利用LSTM算法和神经网络(neuralnetwork,NN)算法进行作物分类,并对比3种方法的分类精度。结果表明,Savitzky-Golay滤波后的时序MODISNDVI能够反映不同作物的物候特征;基于融合NDVI的分类精度明显高于基于LandsatNDVI的分类精度,表明融合后的时序NDVI由于具有更高的时间分辨率,能够更加突出不同作物的物候特征,显著提高作物分类精度;基于融合NDVI和LSTM算法的分类精度高于基于融合NDVI和NN算法的分类精度,前者的冬小麦面积估测精度高于后者的估测精度,表明LSTM算法的分类精度高于NN算法。该文可为基于遥感影像进行不同作物种植区域提取的研究提供重要的方法参考。 相似文献