首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Evergreen broad-leaved forest ecosystems are common in east China, where they are both ecologically and economically important. However, nitrogen (N) addition over many years has had a detrimental effect on these ecosystems. The objective of this research was to evaluate the effect of 4 years of N addition on microbial communities in an evergreen broad-leaved forest in southern Anhui, China.

Materials and methods

Allochthonous N in the form of aqueous NH4NO3 and phosphorus (P) in the form of Ca(H2PO4)2·H2O were applied at three doses with a control (CK, stream water only without fertilizer): low-N (50 kg N ha?1 year?1), high-N (100 kg N ha?1 year?1) and high-N+P (100 kg N ha?1 year?1 + 50 kg P ha?1 year?1). Quantitative PCR analysis of microbial community size and Illumina platform-based sequencing analysis of the V3-V4 16S rRNA gene region were performed to characterize soil bacterial community abundance, structure, and diversity.

Results and discussion

Bacterial diversity was increased in low-N and high-N treatments and decreased in the high-N+P treatment, but α-diversity indices were not significantly affected by N additions. Proteobacteria, Acidobacteria, and Actinobacteria were the predominant phyla in all treatments, and the relative abundance of different genera varied among treatments. Only soil pH (P = 0.051) showed a weak correlation with the bacterial community in CK and low-N treatment.

Conclusions

The composition of the bacterial community and the abundance of different phyla were significantly altered by N addition. The results of the present study indicate that soil bacterial communities in subtropical evergreen broad-leaved forest are, to a certain extent, resilient to changes derived from N additions.
  相似文献   

2.
Abstract

To study the response of inorganic and organic nitrogen (N) sources both alone and in conjunction and their influence on soil quality, a field experiment was conducted during kharif and rabi seasons using sunflower (MSFH‐8) as test crop. The experimental site soil was Typic Haplustalf situated at Hayatnagar Research Farm of Central Research Institute of Dryland Agriculture, Hyderabad, India, at 17° 18′ N latitude, 78° 36′ E longitude. The experiment design was a simple randomized block design with 11 treatments replicated four times. Among all the treatments, vermicompost (VC)+Fert at 25+25 kg N ha?1 recorded the highest grain yields of 1878 and 2160 kg ha?1 during both kharif and rabi seasons, respectively, which were 43.9 and 85.1% higher than their respective control plots. Apparent N recovery varied from as little as 38.30% (FYM at 50 kg N ha?1) to 62.16 (25 kg N ha?1) during kharif and 49.65 (75 kg ha?1) to 83.28% (VC+Fert at 25+25 kg N ha?1) during rabi season. Conjunctive nutrient treatments proved quite superior to other set of treatments in improving the uptake of N, phosphorus (P), potassium (K), sulfur (S), and micronutrients in sunflower and their buildup in the soil. Highest relative soil quality indexes (RSQI) were observed under VC+Fert at 25+25 kg N ha?1 (1.00) followed by VC+Gly at 25+25 kg N ha?1 (0.87). Considering the yield and relative soil quality indices (RSQI), conjunctive applications of VC with either inorganic fertilizer, FYM, or Gly at 25+25 kg N ha?1 could be a successful and sustainable soil nutrient management practice in semi‐arid tropical Alfisols. Besides this, the fertilizer N demand could be reduced up to 50%.  相似文献   

3.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

4.
Because limited information is available about the validated use of a chlorophyll meter for predicting nitrogen requirements for optimum growth and yield of wheat after application of herbicides, field experiments were carried out in the winter seasons of 2011/2012 and 2012/2013 under different weed and N fertilization treatments. Five weeded treatments, application of herbicides 25 days after sowing (DAS), hand pulling once at 55 DAS and a weedy check were combined with four N application rates. Weeds were completely absent in the non-fertilized plots, either with metribuzin or hand pulling as well as in isoproturon-treated plots fertilized with 190 or 285 kg N ha?1. The grain yield was similar in the treatments of isoproturon × 190 kg N ha?1, isoproturon + diflufenican × conditional N treatment (113.9) or 190 kg N ha?1, hand pulling × conditional N treatment (104.8) or 285 kg N ha?1 and metribuzin × 190 kg N ha?1. Under weeded practices, conditional N treatment recorded the maximum nitrogen use efficiency and almost equaled the grain protein content of the 190 kg N ha?1 application rate. N application based on SPAD readings saved about 40.0% and 44.8% N with isoproturon + diflufenican or hand pulling, respectively, compared to the recommended rate (190 kg N ha?1) without noticeable yield loss.  相似文献   

5.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

6.
Abstract

After cultivating 24 crops of vegetables for three consecutive years in a greenhouse, the effects of different application rates of compost (Rate 1, 270 kg N ha?1 y?1; Rate 2, 540 kg N ha?1 y?1; Rate 3, 810 kg N ha?1 y?1; Rate 4, 1,080 kg N ha?1 y?1) were compared with the effects of chemical fertilizer (CF) and no application of fertilizer treatments (CK) for some selected soil chemical properties, microbial populations and soil enzyme activities (dehydrogenase, cellulase, β-glucosidase, protease, urease, arysulphatase, and acid and alkaline phosphatases). The results show that the pH, electrical conductivity, concentrations of total nitrogen (N) and the organic matter received from compost treatment were generally higher than those received through CF treatment. The soil microbial biomass, populations of bacteria, fungi and actinomycetes, as well as soil enzyme activities increased significantly in the compost-treated soils compared with the CF-treated soil. In most instances, no significant increase was observed in the enzymatic activities studied for compost applications higher than a Rate 2 treatment. However, all enzymatic activities examined showed significant linear correlations with the organic matter contents of the soils. The vegetable yield reached its highest level at the Rate 2 treatment and declined or leveled off in the higher treatments, implying that a high application rate of compost cannot further increase the crop yield after the soil fertility has been established. High organic matter content in the soil was found to alleviate the adverse effect of soluble salts on vegetable growth. In conclusion, an application rate of compost at Rate 2, 540 kg N ha?1 y?1, is adequate on the basis of vegetable yields and soil chemical, biochemical and enzymatic properties in greenhouse cultivation under subtropical climatic conditions.  相似文献   

7.
This study investigated the long-term effects of different composts (urban organic waste compost (OWC), green waste compost (GWC), cattle manure compost (MC) and sewage sludge compost (SSC)) compared to mineral fertilisation on a loamy silt Cambisol, after a 7-year start-up period. The compost application rate was 175 kg N ha?1, with 80 kg mineral N ha?1 and without. Soil characteristics (soil organic carbon (SOC), carbon-to-nitrogen (C/N) ratio and soil pH), nutrients (nitrogen (N), phosphorous (P) and potassium (K)) and crop yields were investigated between 1998 and 2012. SOC concentrations were increased by compost applications, being highest in the SSC treatments, as for soil pH. N contents were significantly higher with compost amendments compared to mineral fertilisation. The highest calcium-acetate-lactate (CAL)-extractable P concentrations were measured in the SSC treatments, and the highest CAL-extractable K concentrations in the MC treatments. Yields after compost amendment for winter barley and spring wheat were similar to 40 kg mineral N ha?1 alone, whereas maize had comparable yields to 80 kg mineral N ha?1 alone. We conclude that compost amendment improves soil quality, but that the overall carbon (C) and N cycling merits more detailed investigation.  相似文献   

8.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

9.
This study evaluated the petiole uptake of nitrogen, phosphorus, potassium, and sulfur (N, P, K, and S) by the potato from two seed meals, mint compost, and five commercially available organic fertilizers under an irrigated certified organic production system. Available soil nitrate (NO3-N) and ammonium (NH4-N) from each amendment averaged 115 kg N ha?1 at application and 25 kg N ha?1 30 d after planting through harvest, with minor differences between fertilizers. Petiole N declined from an average of 25,000 mg N kg?1, 4 wk after emergence to 3,000 mg N kg?1 prior to harvest. Petiole P and K concentrations were maintained above 4,000 mg P kg?1, 10,000 mg K kg?1, and 2,000 mg S kg?1 tissue, respectively, throughout the growing season in all treatments. Tuber yields were not different between fertilized treatments averaging 53 Mg ha?1. This study provides organic potato growers baseline information on the performance of a diverse array of organic fertilizers and amendments.  相似文献   

10.

Purpose

Biogas slurry (BS) was known to influence soil–plant ecosystems when applied as a fertilizer, especially in combination with a chemical fertilizer (CF). Limited information was available regarding how this combination of BS–CF actually affected the soil–plant ecosystems. The purpose of this study was to evaluate the effects of BS–CF combinations on peanut yield, soil properties, and carbon (C) storage in a red soil (Ultisol) in southern China.

Materials and methods

The soil was fertilized with five treatments, including a control (T1), CF-only (T2) treatment, and three treatments with different BS–CF combinations (T3–T5). The final quantities of N/P2O5/K2O applied in T2–T5 were 120:90:135 kg ha?1. In T3–T5, 15 % (18 kg ha?1), 30 % (36 kg ha?1), and 45 % (54 kg ha?1) of total N (TN), respectively, were applied with BS and the remaining TN was applied with CF. Crop yield, soil nutrients, C storage, and microbial activity were determined through field and laboratory experiments.

Results and discussion

In the field experiment, peanut grain yields of T3–T5 were higher than those of T1 (44.5–55.7 %) and T2 (10.8–19.4 %), with the highest yield from T4 (3588 kg ha?1). The relationship between BS–TN inputs and peanut grain yield conformed to the linear-quadratic equation: y?=??1.14x 2?+?59.1x?+?2988 (R 2?=?0.98). The biomasses of peanut plants, at the flowering, pod production, and harvesting stages, were higher in T4 compared with those in T1 and T2. Moreover, T4 produced higher soil N and P (total and available) concentrations at the pod production and harvesting stages relative to other treatments, with increased soil microbial biomass C and N, and enhanced dehydrogenase and urease activities, at the flowering, pod production, and harvesting stages. Data from the incubation experiment were fitted to a first-order kinetic model, which showed that although the application of BS increased potentially mineralizable C, the additional C seemed to slowly degrade, and so would be retained in the soil for a longer period.

Conclusions

A BS–CF combination increased peanut grain yield and biomass, due to increases in soil N and P availability, microbial biomass C and N concentrations, and urease and dehydrogenase activities. Moreover, the organic C retention time in the red soil was extended. Combined application of BS–CF at a suitable ratio (36 kg BS–TN ha?1), together with proper management practices, could be effective to improve the quality and nutrient balance of amended soils.
  相似文献   

11.
Increased use of nitrogenous fertilizers in agriculture has led to the increased pollution of ground water and atmosphere. Certain plant products can be used as coating materials onto urea to reduce the N losses. We evaluated the effectiveness of citronella and palmarosa grass oils as nitrification inhibitors in a soil incubation study. The treatments (14) were combinations of 4 N sources (neem, citronella and palmarosa oil coated prilled ureas, and uncoated prilled urea), 2 coating thicknesses of oils (500 and 1000 mg kg?1) and 2 N levels (75 and 150 kg N ha?1), replicated thrice in a randomized block design. N levels at 75 and 150 kg ha?1 were equivalent to 34 and 68 mg N kg?1 soil, respectively. Results showed that N sources citronella (CCPU1000) and neem oil (NCPU1000) coated prilled ureas at 1000 mg kg?1 coating thickness with 75 kg ha?1 released similar amount of ammonical-N to uncoated prilled urea at 150 kg N ha?1, suggesting the beneficial effect of coated ureas. The highest nitrification inhibition (%) was recorded with NCPU1000, the reference nitrification inhibitor, which was significantly greater to all the other N sources at 7 days after incubation (DAI), and at par to CCPU1000 at 14 and 21 DAI.  相似文献   

12.
Abstract

A soil test for mineralizable soil N had been calibrated for winter wheat in the Willamette Valley of western Oregon. Seventy‐eight percent of the variation in spring N uptake by unfertilized wheat was explained by N mineralized from mid‐winter soil samples incubated anaerobically for 7 days at 40°C. Mineralizable N (Nmin) ranged from 10 to 30 mg N kg?1 and was used to predict N fertilizer needs. Recommended rates of N were correlated (R2=0.87) with maximum economic rates of N fertilizer. Subsequent farmer adoption of no‐till sowing and a high frequency of soil tests>30 mg N kg?1 prompted reevaluation of the soil test. Four N fertilizer rates [0, 56, G, and G+56 kg N ha?1] were compared in 12 m×150 m farmer‐managed plots. Grower's N rates (G) ranged from 90 to 180 kg N ha?1 and were based on Nmin and NH4‐N plus NO3‐N soil tests. Averaged across ten no‐till and five conventionally tilled sites, grain yield and crop N uptake were maximized at the recommended rate of N. Results demonstrate that N fertilizer needs for winter wheat can be predicted over a wide range of mineralizable soil N (10 to 75 mg N kg?1) and that the same soil test calibration can be used for conventionally sown and direct‐seeded winter wheat.  相似文献   

13.
No-tillage and manure application effect on soil organic carbon (SOC) and total nitrogen (N) concentrations were studied under a 27-year-old 4-year rotation consisting corn (Zea mays L.)-soybean (Glycine max L.)-wheat (Triticum aestivum L.)-field pea (Pisum sativum L.). Under each crop, four applied N treatments were control, annual urea-N applications at the rate of 45 and 89 kg N ha?1, and composted beef cattle feedlot manure-N at the rate 179 kg N ha?1 applied once every four year. For each fertilizer treatment, no-till (NT) and conventional till (CT) were compared for basic soil properties, SOC, and total N within 0–15 cm soil. Manure application significantly reduced soil bulk density and increased SOC and total N over urea-N. Particulate organic matter, mineralizable N, and permanganate-oxidizable C fractions significantly related with SOC. Long-term manure additions and no-tillage had potential to improve soil compaction and maintain SOC over chemical fertilizer N and CT.  相似文献   

14.

Purpose

In view that soils are bodies and that processes such as storage and release of water, carbon, nutrients and pollutants, and aeration and rooting happen in these bodies, it is of interest to know the density of elements and compounds in soils. On the basis of soil bulk and element density of organic carbon (OC), N, and heavy metals in soils and of horizon thickness, stocks of these elements for garden soils were calculated.

Materials and methods

Fourteen gardens in four allotments of the northwestern part of the Ruhr area, Germany were investigated. The research included 14 vegetable patches, 13 lawns, 2 compost heaps, and 1 meadow. Volume samples were taken. The soil analysis included pH, soil bulk density, and OC, N, Pb, Cd, Zn, Cu, and Ni contents.

Results and discussion

The soils were from sandy loam to loamy sand. The pH was slightly acid and C/N ratio about 20. Soil bulk density was between 0.8 and 1.4 g cm?3 and mean bulk density was 1.1 g cm?3. Mean OC content was for compost 7.4 %, vegetable patches 5.2 % (0–30 cm depth), and lawns and meadow 5.8 and 5.2 % (0–5 cm depth). OC density for compost was 76 mg cm?3, vegetable patches 56 mg cm?3, and lawns 67 mg cm?3 (0–5 cm). Mean OC stock in 0–30 cm soil depth in vegetable patches was 16.4 kg m?2, lawns 15.5 kg m?2, and meadow 11.1 kg m?2. N contents were between 0.06 and 0.46 %. For compost, the mean was 0.39 %, vegetable patches 0.27 % (0–30 cm), lawn 0.28 %, and meadow 0.26 % (0–5 cm). Mean stock of N in 0–30 cm depth for vegetable patches was 0.84 kg m?2, lawn 0.76 kg m?2, and meadow 0.55 kg m?2. For heavy metals in compost, vegetable patches, lawn and meadow, Cd contents were in the range of 1.7 to 3.0 mg kg?1, Pb 49 to 152 mg kg?1, and Zn 52 to 1830 mg kg?1. The amounts stored per square meters in 30 cm depth were for Cd 0.6–1.1 g, Pb 15–52 g, Zn 41–440 g, Cu 4–39 g, and Ni 1–8 g.

Conclusions

Allotment gardens have a high capacity to store CO2 as OC. Roughly, there will be 7–8 million tons of OC stored in the 1.3 million allotment gardens of Germany. The high amount of 8000 kg N ha?1 could damage the groundwater when released by wrong soil management. Cd, Zn, Pb, Cu, and Ni amounts of 7.8, 1000, 300, 135, and 30 kg ha?1, respectively, are a lasting burden.
  相似文献   

15.
Wheat (Triticum aestivum L.) residues and nitrogen (N) management are the major problems in the southern part of Iran where irrigated wheat–cotton (Gossypium hirsutum L.)–wheat rotation is a common practice. A 2-year (2009–2011) field experiment was conducted as a split plot design with four replications at a cotton field (Darab), Fars Province, Iran, to determine the influence of different rates of wheat residue (0%, 25%, 50%, and 75%) incorporation and N rates (150, 200, 300, and 400 kg ha?1) on weed suppression, yield, and yield components of cotton. Results showed that a higher residue incorporation and a lower N rate improved weed suppression in both years. For treatments receiving 150 kg N ha?1 and 75% of wheat residues (2250 kg ha?1), weed biomass and density were significantly lower compared to treatments receiving 400 kg N ha?1. The highest cotton lint yield (about 2400–2700 kg ha?1) was obtained by 300 kg N ha?1 in the absence of residue application, in both years. Incorporation of 25% of wheat residue (750 kg ha?1) and application of 300 kg N ha?1 are recommended to guarantee an optimum level of cotton lint yield and weed suppression in a wheat–cotton–wheat rotation in this region.  相似文献   

16.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

17.

Purpose

Superabsorbent polymers, new water-saving materials and soil conditioners, are used widely in dry-farming agriculture. However, little is known about their effects on the soil physical properties under dry-farming conditions. To elucidate the effects of two SAPs (Wote and microbe) at different doses on the soil bulk density, water status, potato growth, yield, and economic benefit in a dry-farming region, we conducted a 2-year fixed field position experiment in the semiarid drought-prone area of Ningxia, China.

Materials and methods

The two SAPs were diluted 1:10 (product:soil) and applied at different rates before planting, i.e., Wote SAP 30 kg ha?1, Wote SAP 60 kg ha?1, Wote SAP 90 kg ha?1, microbe SAP 30 kg ha?1, microbe SAP 60 kg ha?1, and microbe SAP 90 kg ha?1. The treatment without SAP was used as the control.

Results and discussion

The tilth soil bulk density decreased under different SAP doses compared with the control, and the soil total porosity improved greatly, where the Wote SAP treatments had the greatest effects. The soil bulk density (0–60 cm) under Wote SAP 90 kg ha?1 was significantly decreased by 6.4% compared with the control. The Wote SAP treatments had the greatest effects on water conservation during the critical potato growth stage, where the soil water storage (0–100 cm) was significantly higher than the control. The Wote SAP treatments promoted potato growth in the later period, where the plant height and stem diameter were higher than the control. Higher yield and commodity rate improvements were achieved by the application of Wote and microbe SAP compared with the control, where the optimum dose was 60–90 kg ha?1 for Wote SAP. The application of Wote SAP 90 kg ha?1 significantly increased crop water use efficiency compared with no SAP, and the commodity rate was highest with Wote SAP 60 kg ha?1. The mean potato yield, commodity rate, and net income increased significantly using Wote SAP at 60 and 90 kg ha?1, i.e., by 38.2 and 50.5%, 18.5 and 14.1%, and 28.5 and 35.0%, respectively, compared with no SAP.

Conclusions

The application of SAPs can decrease soil bulk density and significantly improve soil porosity and soil water conservation capacity, thereby promoting potato growth. The application of Wote SAP 60–90 kg ha?1 significantly increased potato yield and net income in a dry-farming region of Ningxia, China.
  相似文献   

18.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

19.
Abstract

Nitrous oxide (N2O) emissions were measured monthly over 1 year in three ecosystems on tropical peatland of Sarawak, Malaysia, using a closed-chamber technique. The three ecosystems investigated were mixed peat swamp forest, sago (Metroxylon sagu) and oil palm (Elaeis guineensis) plantations. The highest annual N2O emissions were observed in the sago ecosystem with a production rate of 3.3 kg N ha?1 year?1, followed by the oil palm ecosystem at 1.2 kg N ha?1 year?1 and the forest ecosystem at 0.7 kg N ha?1 year?1. The N2O emissions ranged from –3.4 to 19.7 µg N m?2 h?1 for the forest ecosystem, from 1.0 to 176.3 µg N m?2 h?1 for the sago ecosystem and from 0.9 to 58.4 µg N m?2 h?1 for the oil palm ecosystem. Multiple regression analysis showed that N2O production in each ecosystem was regulated by different variables. The key factors influencing N2O emissions in the forest ecosystem were the water table and the NH+ 4 concentration at 25–50 cm, soil temperature at 5 cm and nitrate concentration at 0–25 cm in the sago ecosystem, and water-filled pore space, soil temperature at 5 cm and NH+ 4 concentrations at 0–25 cm in the oil palm ecosystem. R2 values for the above regression equations were 0.57, 0.63 and 0.48 for forest, sago and oil palm, respectively. The results suggest that the conversion of tropical peat swamp forest to agricultural crops, which causes substantial changes to the environment and soil properties, will significantly affect the exchange of N2O between the tropical peatland and the atmosphere. Thus, the estimation of net N2O production from tropical peatland for the global N2O budget should take into consideration ecosystem type.  相似文献   

20.
Specialization within agriculture has been a key factor in increasing farm income. The production systems have become increasingly simple, since farmers only grow a small number of crops which have a favourable market price. However, monocultural systems require increasing use of agrochemicals leading to unsustainable environmental costs. In this work, the soil fertility of two plots in a crop rotation previously grown for 5 years as pasture or maize monoculture was evaluated. In the pasture, the upper 0–20 cm soil layer sequestered 17.4 Mg organic C ha?1 and accumulated 403 kg N ha?1 more than under maize monoculture. Analytical data from pot experiments showed that soil samples from the pasture plot released significantly more mineral N than soil samples from the maize monoculture. Maize dry matter (DM) yields in 2012 and 2013 were 15.3 and 10.0 Mg ha?1 in the pasture plot and 8.8 and 8.4 Mg ha?1 in the maize monoculture plot. Nitrogen recoveries by maize were 175.4 and 68.0 kg ha?1 in the pasture and 78.3 and 50.3 kg ha?1 in the maize monoculture plot. The pool of organic matter accumulated during the pasture phase immobilized important nutrients which benefited the succeeding crop as the organic substrate was mineralized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号