首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

? Context

Soil temperature can limit tree growth and function, but it is often unaddressed in understanding the successional status of trees.

? Aims

We tested how soil temperature affected carbon allocation strategies of two dominant co-occurring boreal conifer species, Pinus contorta and Picea mariana.

? Methods

We measured nonstructural carbon (NSC) concentrations, biomass, and photosynthesis of dormant and actively growing 2-year-old seedlings in response to three soil temperatures (5, 10, and 20 °C) under a common ambient air temperature.

? Results

For both species, variation in carbon reserves with soil temperature was more pronounced following seedling growth than during dormancy. For both species and all organ types (roots, needles, and stems), NSC concentrations were highest when seedlings were grown at 5 than 20 °C. Mass adjusted for NSC content was negatively correlated with NSC concentration for all organ types of both species. Soil temperature had a marginally significant effect on photosynthesis of pine; seedlings grown at 10 or 20 °C acquired more carbon than seedlings grown at 5 °C. Spruce seedlings photosynthesized more when grown at 20 °C than at 5 or 10 °C.

? Conclusion

Interspecific differences in allocation of carbon may underlie the responses of P. mariana and P. contorta to cold soils and consequently their successional status.  相似文献   

2.

?Context

Selective logging followed by natural regeneration is rarely employed for restocking subtropical evergreen broad-leaved forests in East Asia compared with the use of clear-cutting.

?Aims

To clarify the succession of these forests, the effects of selective logging on stand structure, species diversity, and community similarity were studied in a mature and regenerating forest in Okinawa, Japan.

?Methods

Four study plots were established, and trees ≥1.2 m height were identified by species name, tree height, and diameter at breast height.

?Results

The results showed that the species composition of regenerating forest was similar to mature forest; however, the former had a greater species density and Shannon–Wiener index than the latter. Castanopsis sieboldii and Distylium racemosum, the predominant trees in the mature forest, continued to dominate the regenerating forest, with a broad layer distribution. High Sørensen and Jaccard community similarity indices for mature and regenerating forest indicated that the regeneration occurred in a progressive succession.

?Conclusion

The similar species composition and stand structure for both mature and regenerating forest, and the higher species diversity for the latter, provided no evidence of forest degeneration and suggested that the regenerating forest may develop into a stand similar to preselective logging forest.  相似文献   

3.

Context

Black poplar (Populus nigra L.) is an alluvial forest tree species whose genetic pool is decreasing in Europe. Poplar trees produce short-lived seeds that do not store well.

Aim

The feasibility of seed storage in conventional and cryogenic conditions after their desiccation from water content (WC) of 0.15 to 0.07 g H2O g?1 dry mass (g g?1) was investigated.

Methods

Seed germinability was evaluated (seeds with a radicle and green cotyledons were counted) after storage of seeds for a period of 3 to 24 months at different temperatures: 20°, 10°, 3°, ?3°, ?10°, ?20° or ?196°C.

Results

Seeds desiccated to a 0.07 g g?1 WC can be stored successfully at ?10 °C and ?20 °C for at least 2 years. A significant decrease in germination was observed only after 12 months of seed storage (WC 0.15 g g?1) at temperatures above 0 °C. We demonstrated that both fresh (0.15 g g?1 WC) and desiccated (0.07 g g?1 WC) seeds can be preserved at ?196 °C for at least 2 years.

Conclusions

Seed storage temperature and time of storage were statistically significant factors affecting seed storability. The presented data provide a foundation for the successful gene banking of P. nigra seeds.  相似文献   

4.

? Context

While historical increases in forest growth have been largely documented, investigations on historical wood density changes remain anecdotic. They suggest possible density decreases in softwoods and ring-porous hardwoods, but are lacking for diffuse-porous hardwoods.

? Aims

To evaluate the historical change in mean ring density of common beech, in a regional context where a ring-porous hardwood and a softwood have been studied, and assess the additional effect of past historical increases in radial growth (+50 % over 100 years), resulting from the existence of a positive ring size–density relationship in broadleaved species.

? Methods

Seventy-four trees in 28 stands were sampled in Northeastern France to accurately separate developmental stage and historical signals in ring attributes. First, the historical change in mean ring density at 1.30 m (X-ray microdensitometry) was estimated statistically, at constant developmental stage and ring width. The effect of past growth increases was then added to assess the net historical change in wood density.

? Results

A progressive centennial decrease in mean ring density of ?55 kg?m?3 (?7.5 %) was identified (?10 % following the most recent decline). The centennial growth increase induced a maximum +25 kg?m?3 increase in mean ring density, whose net variation thus remained negative (?30 kg?m?3).

? Conclusions

This finding of a moderate but significant decrease in wood density that exceeds the effect of the positive growth change extends earlier reports obtained on other wood patterns in a same regional context and elsewhere. Despite their origin not being understood, such decreases hence form an issue for forest carbon accounting.  相似文献   

5.

?Context

Understanding tree interactions requires an insight into their spatial distribution.

?Aims

We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated).

?Methods

We established twelve 0.64-ha plots in natural bottomland hardwood stands in the southeastern USA.

?Results

Spatial point pattern analyses (Ripley’s K, L, and L 12) indicated that, when species were combined, trees were frequently aggregated and less commonly overdispersed. Plots with larger trees were more likely to exhibit overdispersion, confirming a shift to this pattern as trees grow. The intraspecific pattern of cherrybark oak and water oak was either aggregated or random. Sweetgum was aggregated on all plots and always at smaller distances (less than 5 m) than the two oak species. Intraspecific overdispersion was very rare. Interspecific segregation among the two oak species was more commonly observed (six plots) than aggregation (one plot). Cherrybark oak and sweetgum were segregated at some scale on seven of the 12 plots and aggregated on only two plots.

?Conclusion

The results from the analyses suggest that strong interspecific competition may result in segregation of trees from different species, while weaker intraspecific competition may lead to aggregations of conspecifics.  相似文献   

6.

Context

Since the 2003 drought and heat wave, Douglas-fir dieback has been reported in France in trees older than 30 years. Consequently, it is questioned whether selected Douglas-fir provenances are suited to the frequent and severe drought events which are forecast due to climate change.

Aims

Our objective was to contribute to the screening of variability in productivity and growth response to soil-water deficit of mature trees from provenances not currently used for plantation in France.

Methods

We sampled 22 provenances, including coastal and interior Douglas-fir, covering a wide part of its natural distribution, from Oregon to California for coastal provenances and from British Columbia to New Mexico for interior provenances. These provenances were planted at the mid 1970s in two provenance trials located in the south-west area of France. Variability of productivity, of wood density, and of radial growth in response to drought episodes among provenances was quantified and related to soil-water deficit computed by daily water balance calculations.

Results

Whatever the provenance, annual radial growth is highly dependent on local soil-water deficit (Felines R 2 = 0.57, Le Treps R2 = 0.49). Radial growth and wood properties exhibit large differences between provenances at 30 years old. Variability between provenances for all wood characteristics studied is mainly structured geographically. Coastal provenances perform best for productivity at 30 years old (619 cm2?±?59), and exhibit a small growth reduction in 2004, the second successive year of drought (?10.7 %?±?3.8). Surprisingly, the southern interior provenances from the driest environments in the natural range show a large growth reduction in 2004 (?30.5 %?±?5.2).

Conclusions

The provenances tested exhibited significant differences in growth performance and growth reduction induced by the soil-water deficit. The approach coupling retrospective analysis of radial growth on mature trees and water balance modelling is relevant for evaluating provenance adaptation to more frequent or severe drought episodes.  相似文献   

7.

? Context

The knowledge of how shrub–seedling interactions vary with summer drought, canopy opening, and tree species is crucial for adapting forest management to climate change.

? Aims

The aim of this study was to assess variation in shrub–oak recruitment associations along a south–north drought climate gradient and between two levels of canopy cover in coastal dune forest communities in a climate change-adapted forest management perspective.

? Material and methods

Mapped data of associational patterns of seedlings of three oak species with interspecific pooled shrubs were analyzed using a bivariate pair correlation function in 10 (0.315 ha) regeneration plots located in forest and recent gap sites along the climate gradient. An index of association strength was calculated in each plot and plotted against a summer moisture index.

? Results

The association strength increased with increasing summer drought from wet south to dry north and from closed forests to gaps.

? Conclusion

Consistent with facilitation theory, our results suggest that climate change may shift associational patterns in coastal dune forest communities towards more positive associations, in particular in canopy gaps. In a perspective of climate change, foresters may need to conserve understory shrubs in gaps in order to promote oak species regeneration.  相似文献   

8.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

9.

? Context

Biomass prediction is important when dealing for instance with carbon sequestration, wildfire modeling, or bioenergy supply. Although allometric models based on destructive sampling provide accurate estimates, alternative species-specific equations often yield considerably different biomass predictions. An important source of intra-specific variability remains unexplained.

? Aims

The aims of the study were to inspect and assess intra-specific differences in aboveground biomass of Pinus brutia Ten. and to fill the gap in knowledge on biomass prediction for this species.

? Methods

Two hundred one trees between 2.3 and 55.8 cm in diameter at breast height were sampled throughout the eastern- and southernmost natural distribution area of P. brutia, in Middle East, where it forms different stand structures. Allometric equations were fitted separately for two countries. The differences in biomass prediction at tree, stand, and forest level were analyzed. The effect of stand structure and past forest management was discussed.

? Results

Between-country differences in total aboveground biomass were not large. However, differences in biomass stock were large when tree components were analyzed separately. Trees had higher stem biomass and lower crown biomass in dense even-aged stands than in more uneven-aged and sparse stands.

? Conclusion

Biomass and carbon predictions could be improved by taking into account stand structure in biomass models.  相似文献   

10.

? Context

Modification of stand density by thinning may buffer the response of tree growth and vigor to changes in climate by enhancing soil water availability.

? Aims

We tested the impact of thinning intensity on cambial growth of Aleppo pine (Pinus halepensis L.) under semi-arid, Mediterranean conditions.

? Methods

A multiple thinning experiment was established on an Aleppo pine plantation in Spain. We analysed the stem growth dynamics of two different crown classes under four different thinning intensities (15 %, 30 %, and 45 % removal of the basal area) for 2 years, based on biweekly band dendrometer recordings. Local relative extractable soil water was derived from the use of a water balance model Biljou© (available at https://appgeodb.nancy.inra.fr/biljou/) and used as an explanatory variable.

? Results

Radial growth was mainly controlled by soil water availability during the growing season, and differed by crown class. The growth rates of dominant trees were significantly higher than the growth rates of suppressed trees. Removal of 30 % and 45 % of the initial basal area produced a growth release in both dominant and suppressed trees that did not occur under less intense thinning treatments.

? Conclusions

Soil water availability was the main driver of radial growth during the growing season. Forest management confirmed its value for ameliorating the effects of water limitations on individual tree growth. These results may help managers understand how altering stand density will differentially affect diameter growth responses of Aleppo pine to short-term climatic fluctuations, promoting forests that are resilient to future climatic conditions.  相似文献   

11.

? Context

Copaifera species produce an oleoresin of commercial importance that is widely extracted in Amazon communities.

? Aims

This paper addresses two questions. (1) What are the morphological characteristics of Copaifera species that influence oleoresin production? (2) How do different Copaifera species respond to repeated harvests?

? Methods

We performed a large-scale experiment in the Brazilian Amazon. We tapped 110 Copaifera trees belonging to four species, and several morphological tree characteristics were measured to determine their effect on oleoresin production.

? Results

The proportion of Copaifera reticulata and Copaifera paupera trees that yielded more than 1 ml oleoresin was higher than the other species. The oleoresin volumes from yielding Copaifera pubiflora trees were significantly higher than those from C. reticulata and C. paupera, with Copaifera multijuga yielding intermediate values. Interestingly, none of the studied morphological tree characteristics had a significant effect on the proportion of yielding trees. Hollowed trees yielded significantly smaller volumes than non-hollowed trees. Both the proportion of yielding trees and oleoresin volumes decreased from the first to the second harvests for C. reticulata and C. paupera; however, the opposite pattern was observed for C. pubiflora.

? Conclusions

Oleoresin production capacity varies by species, and management protocols should account for these differences.  相似文献   

12.

? Context

Prescribed burning is increasingly recommended to control encroaching shrublands in the Mediterranean area.

? Aims

The aims of this paper are to analyze the fuel structural characteristics of Spartium junceum and how they influence fire behaviour during prescribed burning.

? Methods

Two winter–spring prescribed burns were conducted in 2009 and 2011. Fuel load and structure of S. junceum shrubs were assessed using the Cube Method, and shrub 3-D models were built using the FIRE PARADOX FUEL MANAGER software. Allometric equations to estimate S. junceum fuel load were developed. During burning, thermocouples measured temperature variations, which were then analyzed relative to fuel characteristics.

? Results

Fuel load components and distribution were strictly related to shrub height; in tall shrubs, most of the fine fuel was more than 1.5 m aboveground. Due to fuel vertical discontinuity, not all shrubs were burned in the fires, but wind increased fire sustainment and fuel consumption. Maximum temperatures (over 800 °C) and residence times were positively related to fuel load.

? Conclusion

S. junceum tall shrublands represent high hazard formations due to their elevated fuel load, mostly in fine fuel fractions. Vertical discontinuity among fuel strata limits fire propagation in mild weather conditions. Winter–spring prescribed burning cannot eliminate S. junceum shrublands, but do create shrub cover discontinuity. As S. junceum has fire-adapted morphological traits, a single burn is insufficient to control it.  相似文献   

13.

? Context

Coarse woody debris (CWD, ≥10 cm in diameter) is an important structural and functional component of forests. There are few studies that have estimated the mass and carbon (C) and nitrogen (N) stocks of CWD in subtropical forests. Evergreen broad-leaved forests are distributed widely in subtropical zones in China.

? Aims

This study aimed to evaluate the pools of mass, C and N in CWD in five natural forests of Altingia gracilipes Hemsl., Tsoongiodendron odorum Chun, Castanopsis carlesii (Hemsl.) Hayata, Cinnamomum chekiangense Nakai and Castanopsis fabri Hance in southern China.

? Methods

The mass of CWD was determined using the fixed-area plot method. All types of CWD (logs, snags, stumps and large branches) within the plot were measured. The species, length, diameter and decay class of each piece of CWD were recorded. The C and N pools of CWD were calculated by multiplying the concentrations of C and N by the estimated mass in each forest and decay category.

? Results

Total mass of CWD varied from 16.75 Mg ha?1 in the C. fabri forest to 40.60 Mg ha?1 in the A. gracilipes forest; of this CWD, the log contribution ranged from 54.75 to 94.86 %. The largest CWD (≥60 cm diameter) was found only in the A. gracilipes forest. CWD in the 40–60 cm size class represented above 65 % of total mass, while most of CWD accumulations in the C. carlesii, C. chekiangense and C. fabri forests were composed of pieces with diameter less than 40 cm. The A. gracilipes, T. odorum, C. carlesii and C. chekiangense forests contained the full decay classes (from 1 to 5 classes) of CWD. In the C. fabri forest, the CWD in decay classes 2–3 accounted for about 90 % of the total CWD mass. Increasing N concentrations and decreasing densities, C concentrations, and C:N ratios were found with stage of decay. Linear regression showed a strong correlation between the density and C:N ratio (R 2?=?0.821). CWD C-stock ranged from 7.62 to 17.74 Mg ha?1, while the N stock varied from 85.05 to 204.49 kg ha?1. The highest overall pools of C and N in CWD were noted in the A. gracilipes forest.

? Conclusion

Differences among five forests can be attributed mainly to characteristics of the tree species. It is very important to preserve the current natural evergreen broad-leaved forest and maintain the structural and functional integrity of CWD.  相似文献   

14.

Context

Fine scale regeneration patterns of coexistent species are influenced by regeneration mechanisms and microsite requirements. Spatial patterns may be either disjunct or overlapping, which will determine competitive effects and microsite dominance, and future forest composition.

Aims

Using American beech (Fagus grandifolia Ehrh.) and sugar maple (Acer saccharum Marshall) as an example, three hypotheses were tested: (1) random beech spatial patterns, (2) clumped spatial patterns of small sugar maple seedlings, and (3) disjunct beech and sugar maple patterns.

Methods

Individual stems were sampled in a contiguous grid of 1-m2 quadrats across a 576-m2 area at three sites. Densities were separated into three height classes (≤30 cm, 30–90 cm, and?>?90 cm, ≤4 cm diameter at breast height). Spatial statistics and regression were used to analyze spatial patterns and correlations.

Results

Beech and seedling sugar maple patterns were patchy, rejecting the first and not rejecting the second hypotheses. Hypothesis three was rejected because patches of the two species overlapped with advance regeneration beech overtopping sugar maple.

Conclusion

Patchy patterns of advance regeneration beech and post-harvest sugar maple establishment suggest spatiotemporal niche partitioning. Beech had a competitive height advantage following harvest, but sugar maple still occurred in beech-free patches and beneath overtopping beech at a fine scale. Self-replacing beech patterns will ensure the species will continue dominance unless a selective chemical or manual treatment is applied that removes beech and releases sugar maple.  相似文献   

15.

Context

Avoidance or control of epicormic shoots is among the major silvicultural challenges for the production of high-quality oak timber. In northern Europe, contemporary oak silviculture aims to produce valuable timber on a relatively short rotation, applying early, heavy thinning combined with artificial pruning.

Aims

The aim of this study was to analyse the effects of pruning and stand density on the production of new epicormic shoots on young trees of pedunculate oak (Quercus robur L.).

Methods

The study was based on two field experiments in even-aged stands of pedunculate oak subjected to different thinning practices and early selection of potential future crop trees. From ages 13 to 15 years, stem density was reduced to 300 trees ha?1, 1,000 ha?1 or stands remained unthinned. Pruning was conducted on selected trees at ages 22–24 years. At that age, the stem density in unthinned control plots ranged from 2,500 to 3,100 ha?1. All treatments were replicated twice within each experiment.

Results

Pruning led to an overall increase in the total production of new epicormic shoots. More epicormic shoots were produced in the lower part of the stem (0–3 m in height) than in the upper part (3–6 m). The number of new epicormic shoots increased with increasing stand density.

Conclusion

Early, heavy thinning combined with high pruning at regular intervals may help shorten the rotation length for pedunculate oak without further reduction in wood quality than that which is caused by wider annual growth rings.  相似文献   

16.

? Context

Over the past few decades, the impact of large herbivorous ungulates on forest vegetation has been clearly highlighted. Among those impacts, bark stripping of coniferous trees is one of the most damaging. Bark stripping leads to rot development, inducing serious loss of timber value.

? Aims

The present study aimed firstly at evidencing the factors explaining the variations observed in fresh bark peeling rate for spruce and Douglas-fir in southern Belgium and secondly at identifying the key factors to consider when setting up a deer management plan.

? Method

Fresh bark peeling rate was recorded with a systematic sampling survey from 2004 to 2007. The covered territory was then divided into 63 distinct hunting zones of area ranging from 1,000 to 25,000 ha. About 5,000 plots were monitored annually. Each zone was characterized with a large number of explanatory variables. The explanatory variables were integrated firstly into fixed linear models using a stepwise procedure, and then into a mixed model.

? Results

The significant variables included in the model (R 2?=?44 %) are (by decreasing order of importance) red deer densities, proportion of coniferous stands and agricultural areas, snow cover, distance to urban habitats, and species diversity in the understory.

? Conclusion

The models revealed the impacts of several factors on bark peeling: deer density, deer-carrying capacity of the territory, landscape structure, and severity of winter conditions. The adjusted model allowed subtracting the impact of winter conditions in order to produce a relevant indicator for hunting management. In addition, the model was used to assess the sensitivity of a forested area to bark peeling based on its environmental characteristics.  相似文献   

17.

? Context

A 20-year-old Nelder wheel planted with hoop pine (Araucaria cunninghamii Aiton ex D.Don) and Queensland maple (Flindersia brayleyana F.Muell.) in 18 spokes and 8 rings represents nominal point densities of 3,580, 2,150, 1,140, 595, 305, 158, 82, and 42 stems/ha and offers an opportunity to examine competition and spatial interaction between these two species.

? Aims

This study aimed to evaluate the intraspecific and interspecific competition between two contrasting tree species and to determine the distance over which competition can be observed.

? Methods

Competition was estimated using Hegyi’s index, implemented using the Simile visual modeling environment, and calibrated using nonlinear least squares with PEST.

? Results

Interactions were detected between pairs of stems closer than D ij ?<?40(d i ?+?d j ) where D is distance (in centimeters) and d is stem diameter (in centimeters diameter at breast height). F. brayleyana trees surrounded by A. cunninghamii trees experience negligible competition, whereas A. cunninghamii surrounded by F. brayleyana trees suffer strong competition.

? Conclusion

Forty times diameter offers a useful guide to the extent of competition in even-aged stands planted with these species. Competition can be observed empirically when pairs of trees are closer than 40 times the sum of their diameters, but the intensity of the competition may vary considerably with species.  相似文献   

18.
19.

Context

To sustainably manage loblolly pine plantations for bioenergy and carbon sequestration, accurate information is required on the relationships between management regimes and energy, carbon, and nutrient export.

Aims

The effects of cultural intensity and planting density were investigated with respect to energy, carbon, and essential nutrients in aboveground biomass of mid-rotation loblolly pine plantations, and the effects of harvesting scenarios on export of nutrients were tested.

Methods

Destructive biomass sampling of a 12 years-old loblolly pine culture/density experiment, and analysis of variance were used to assess the effects of cultural intensity (operational vs. intensive) and six planting densities ranging from 741 to 4,448 trees ha?1. Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of energy, carbon, and nutrient export.

Results

The concentrations of energy, carbon, and nutrients varied significantly among stem wood, bark, branch, and foliage components. Cultural intensity and planting density did not significantly affect these concentrations. Differences in energy, carbon and nutrient contents among treatments were mainly mediated by changes in total biomass. Nutrient contents were affected by either cultural intensity or planting density, or both. Stem-only harvesting removed 71–79 % of aboveground energy and carbon, 29–45 % of N, 28–44 % of P, 44–57 % of K, 51–65 % of Ca, and 50–61 % of Mg.

Conclusions

Stem-only harvesting would be preferred to whole-tree harvesting, from a site nutrient conservation perspective.  相似文献   

20.

? Context

One eighth of Europe’s forests are still managed as coppice. In some European countries, more than half of the forest exhibits coppice structures from the past or present coppice management. Many of these forests grow in the broadleaf zone of mountainous regions, often on steep slopes. Here, they play an important role in rockfall protection. However, it remains unclear how coppice forests should be structured for optimal rockfall protection or how the protection effect changes during the aging of the coppice.

? Aim

A few studies have applied rock trajectory analyses, but so far, no process-based model has been used to quantify the protective effect of differently structured coppice forests. The present study compared 40 coppice patches from two chronosequences in South Tyrol, North Italy, regarding their protective effect against rocks of two sizes using the rockfall simulation model Rockyfor3D.

? Results

The results indicate that coppice stands older than 30 years better protect against rockfall than medium-aged and young stands, although the old ones have lower stem densities. Surprisingly, a random stem distribution had a better protective effect than the clumped stem distribution typical for coppice stands.

? Conclusion

Implications for future management are discussed in detail, including the relevance of standards in coppice forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号