首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2.
Cows with ovarian follicular cysts were treated with progesterone to determine whether a reduction in LH concentrations and initiation of ovulatory follicular waves would occur. Cysts were diagnosed using transrectal ultrasonography when single follicular structures > 20 mm or multiple structures > 15 mm in diameter were present for 7 d in the presence of low progesterone concentrations. Three groups were studied: 1) cows with normal estrous cycles (CYC, n = 8); 2) cows with untreated cysts (CYST, n = 7); and 3) cows with cysts treated with two progesterone-releasing intravaginal devices (PRID, n = 8) for 9 d. Ovaries were examined with transrectal ultrasonography, and blood samples were collected daily for analysis of progesterone and FSH. Serial blood samples for determination of mean LH and LH pulse frequency were collected on d 0 (CYST and PRID cows only), 1, 5, 9, and 10. Progesterone concentrations were higher in PRID cows than in CYST cows throughout the PRID treatment period (P < .002). On d 0, LH pulse frequency was similar (P = .10) in PRID (6.6+/-.6 pulses/8 h) and CYST cows (5.1+/-.6 pulses/8 h), but mean LH tended to be higher (P = .054) on d 0 in PRID cows (2.5+/-.2 ng/mL) than in CYST cows (1.9+/-.2 ng/mL). Mean LH and LH pulse frequency decreased (P < .002) by d 1 in PRID cows (1.1+/-.2 ng/mL, 1.8+/-.6 pulses/8 h) compared with CYST cows (2.1+/-.2 ng/mL, 5.6+/-.6 pulses/8 h) and remained lower throughout most of the experimental period. The FSH concentrations were higher (P < .01) in PRID cows than in CYC and CYST cows on d 3 and 4. The increase in FSH concentrations preceded emergence of the PRID-induced follicular wave. All PRID cows and four of seven CYST cows initiated new follicular waves during the period of PRID treatment. Follicular waves were initiated later (P < .05) in CYST cows (d 5.2+/-1.7) and PRID cows (d 5.5+/-.6) than in CYC cows (d 1.8+/-.3). Cysts were smaller (P < .01) at the end of the treatment period in PRID cows compared with CYST cows. No CYST cows ovulated, but all PRID cows ovulated newly developed follicles 3 or 4 d after PRID removal. Treatment with exogenous progesterone reduced LH in cows with cysts, and this was followed by development of normal ovulatory follicles.  相似文献   

3.
Two trials were conducted in which Angus x Hereford first-calf cows were assigned randomly at calving to one of two treatments: exposure to mature penile-blocked bulls (BE) or isolation from bulls (NE). In Trial 1 (BE, n = 38; NE, n = 37), cow to bull ratio increased from 12:1 to 19:1 over a 14-d period; in Trial 2 (BE, n = 25; NE, n = 24), this ratio was maintained at 13:1. In both trials, blood samples were collected weekly for progesterone and ovaries and uteri of cows were examined rectally. Cows were observed for estrus twice daily (am:pm) beginning 10 d after calving. In Trial 2, intensive blood sampling for LH began 10 d after calving (eight cows per treatment) and continued at weekly intervals until estrus or the end of the trial. Postpartum weight change, condition score change and time to uterine involution did not differ (P greater than .10) between treatments in either trial. Interval to estrus was shorter (P less than .05) for BE cows than for NE cows in both trials. A greater proportion (P less than .05) of BE cows exhibited estrus by 60 and 90 d after calving and showed an increase in progesterone before first estrus. Mean and baseline LH concentrations and amplitude, frequency and duration of LH pulses were not altered (P greater than .10) by bull exposure. In conclusion, exposing first-calf suckled beef cows to bulls after calving hastened resumption of estrous cycles. Bull exposure did not alter patterns of LH concentrations but did increase proportions of cows that showed increased progesterone before first estrus.  相似文献   

4.
Ovarian follicular dynamics and estrous synchronization after Gonadotropin-releasing hormone (GnRH) treatment at Controlled Internal Drug Releasing device (CIDR) insertion were investigated in Japanese Black cows. CIDR was inserted for eight cows at 7 days after estrus. Cows were allocated to either Group A: 8-day CIDR insertion with GnRH treatment on d 0 (n=4, d 0=CIDR insertion) or Group B: 8-day CIDR insertion (n=4). Both groups were injected with prostaglandin F2alpha (PGF2alpha) on d 7. Ultrasonography and blood sampling were performed twice daily. Intensive sampling was performed every 15 min for 8 hr to determine the pulsatile release of LH on d -1, d 5 and d 10. Three of four cows showed intermediate ovulation within 2 days after GnRH treatment during CIDR insertion in Group A, whereas no ovulation was found in Group B. Three of four cows in Group A and all four cows in Group B ovulated after CIDR removal. Plasma progesterone concentrations from d 3 to d 7 in three intermediate ovulatory cows in Group A (8.4 +/- 1.6 ng/ml) was significantly higher than those in Group B (4.1 +/- 1.2 ng/ml; 4 cows) during CIDR insertion (P<0.01). Interval to estrus and ovulation after CIDR removal was observed at 60.0 +/- 12.0 hr and 76.0 +/- 6.9 hr in three cows in Group A, and 75.0 +/- 15.1 hr and 93.0 +/- 20.5 hr in Group B, respectively. There was a significant increase in LH pulse frequency on d 10 compared on d -1 or d 5 in both groups (P<0.05), in addition those on d 10 in Group A tended to be higher than in Group B. As a result, GnRH treatment at CIDR insertion at 7 days after estrus induced intermediate ovulation with formation of corpus luteum (CL) and rather synchronized emergence of ovulatory follicle during CIDR insertion. These induced CL increased plasma progesterone concentrations and contributed to precise synchronization.  相似文献   

5.
The effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given 100 microg of GnRH im were determined in three experiments. In Experiment 1, heifers were given GnRH 3, 6 or 9 days after ovulation; 8/9, 5/9 and 2/9 ovulated (P<0.02). Mean plasma concentrations of progesterone were lowest (P<0.01) and of LH were highest (P<0.03) in heifers treated 3 days after ovulation. In Experiment 2, heifers received no treatment (Control) or one or two previously used CIDR inserts (Low-P4 and High-P4 groups, respectively) on Day 4 (estrus=Day 0). On Day 5, the Low-P4 group received prostaglandin F(2alpha) (PGF) twice, 12 h apart and on Day 6, all heifers received GnRH. Compared to heifers in the Control and Low-P4 groups, heifers in the High-P4 group had higher (P<0.01) plasma progesterone concentrations on Day 6 (3.0+/-0.3, 3.0+/-0.3 and 5.7+/-0.4 ng/ml, respectively; mean+/-S.E.M.) and a lower (P<0.01) incidence of GnRH-induced ovulation (10/10, 9/10 and 3/10). In Experiment 3, 4-6 days after ovulation, 20 beef heifers and 20 suckled beef cows were given a once-used CIDR, the two largest follicles were ablated, and the cattle were allocated to receive either PGF (repeated 12h later) or no additional treatment (Low-P4 and High-P4, respectively). All cattle received GnRH 6-8 days after follicular ablation. There was no difference between heifers and cows for ovulatory response (77.7 and 78.9%, P<0.9) or the GnRH-induced LH surge (P<0.3). However, the Low-P4 group had a higher (P<0.01) ovulatory response (94.7% versus 61.1%) and a greater LH surge of longer duration (P<0.001). In conclusion, although high plasma progesterone concentrations reduced both GnRH-induced increases in plasma LH concentrations and ovulatory responses in beef cattle, the hypothesis that heifers were more sensitive than cows to the suppressive effects of progesterone was not supported.  相似文献   

6.
Three different treatments were compared to improve pregnancy per artificial insemination (P/AI) in repeat-breeder (RB) dairy cows. All cows (n = 103) were assigned to one of four groups: (1) gonadotropin-releasing hormone (GnRH); (2) human chorionic gonadotropin (hCG); (3) once-used controlled internal drug release (CIDR) device; and (4) control. All treatments performed 5-6 days after artificial insemination (AI) and milk samples were collected just before treatment for progesterone assays. There were no significant differences in milk fat progesterone concentration among trial groups. Cows were observed for estrus signs thrice daily. Pregnancy per AI on day 45 in hCG and CIDR groups were significantly higher than GnRH and control groups (60.0% and 56.0% vs. 26.9% and 29.6%, respectively), but there were no differences in P/AI between GnRH and control groups. There were also no significant differences between hCG and CIDR groups. Milk fat progesterone concentrations were compared between pregnant and non-pregnant cows in each group and only in the hCG group it was significantly lower in pregnant cows. In conclusion, treating repeat-breeder cows with hCG or once-used CIDR 5-6 days after AI improved P/AI.  相似文献   

7.
The aim of this study was to examine whether increased frequency of luteinizing hormone (LH) pulses influences luteal progesterone (P4) secretion by measuring progesterone concentrations at the secreted (caudal vena cava) and circulating levels (jugular vein) in lactating dairy cows. Cows received six intravenous administrations of 2.5 μg of GnRH (gonadorelin acetate, n=4) or 2 ml saline (n=3) at 1-h intervals on 12.4 ± 0.4 (mean ± SE) days after ovulation. Blood samples were collected from the caudal vena cava and jugular vein every 12 min for 12 h (6 h before and after treatment). During the 6 h after treatment, frequency of LH pulses (5.3 ± 0.3 and 3.0 ± 0.0 pulses/6 h) and mean LH concentration (0.50 ± 0.06 and 0.38 ± 0.05 ng/ml) were greater (P<0.05) in GnRH-treated cows than in saline-treated cows. Mean P4 concentration and amplitude of P4 pulses in the caudal vena cava during the 6 h after treatment were greater (P<0.05) in GnRH-treated cows than in saline-treated cows, but the frequency of P4 pulses was not different between the groups. Mean P4 concentration in the jugular vein during the 6 h after treatment was also higher (P<0.05) in GnRH-treated cows than in saline-treated cows (7.0 ± 1.3 and 5.4 ± 0.9 ng/ml). These results indicate that the increased frequency of LH pulses stimulates progesterone secretion from the functional corpus luteum and brings about higher P4 concentrations in the circulating blood in lactating dairy cows.  相似文献   

8.
In vitro responsiveness of the horse anterior pituitary (AP) gonadotropes to single and multiple GnRH challenges was examined. The pituitaries were collected from reproductively sound mares in estrus (n = 5) and diestrus (n = 5). Uniform 0.5 mm AP slices were subdivided using a 3 mm biopsy punch and then bisected for use in the perifusion chamber. Four bisected sections per chamber were perifused at 0.5 ml/min at 37 C for 560 min in Medium 199 saturated with 95% 0(2)/5% CO2. Ten minute fractions were collected after an initial 2 hr equilibration period. Four different treatment regimes of GnRH (10(-10) M) were evaluated: (A) three consecutive 10 min GnRH pulses separated by 80 and 100 min, respectively; (B) a single 120 min GnRH infusion; (C) a 10 min GnRH pulse followed 80 min later by a 120 min GnRH infusion and (D) two 10 min GnRH pulses separated by 60 min followed 80 min later by a 120 min GnRH infusion. Estimated total pituitary LH content was higher in estrous than diestrus mares (p less than 0.05). The total amount of LH released in response to GnRH tended to be greater in estrus than diestrus (p less than 0.1), whereas the percentage of LH released in estrus and diestrus was similar. An increase in the area under the LH response curve was noted with each successive 10 min pulse of GnRH during both estrus and diestrus (p less than 0.05), demonstrating a self-priming effect of GnRH. In addition, a significant increase in the peak LH amplitude (p less than 0.05) and the slope to peak amplitude (p less than 0.05) were observed for the 120 min GnRH pulse in regime C and D indicating that prior exposure to short-term pulses of GnRH increased the acute LH secretory response. These results suggest that in the cycling mare (1) the responsiveness of the pituitary (amount of LH released as percent of total LH) is similar in both estrus and diestrus, however, the magnitude of the LH response (total microgram amount of LH released) differs with the stage of the estrous cycle, being highest in estrus, and appears to be related, in part, to pituitary LH content and (2) GnRH self-priming occurs independently of the stage of the estrous cycle. Furthermore, we have demonstrated that the pulsatile mode of GnRH can act directly on the anterior pituitary to dictate the pulsatile release pattern of LH in the cycling mare.  相似文献   

9.
We have previously demonstrated that a constant intravenous infusion of kisspeptin (Kp) for 48 h in anestrous ewes induces a preovulatory luteinizing hormone (LH) surge followed by ovulation in approximately 75% of animals. The mechanisms underlying this effect are unknown. In this study, we investigated whether Kp-induced preovulatory LH surges in anestrous ewes were the result of the general activation of the whole gonadotropic axis or of the direct activation of central GnRH neurons required for the GnRH/LH surge. In the first experiment, a constant iv infusion of ovine kisspeptin 10 (Kp; 15.2 nmol/h) was given to 11 seasonally acyclic ewes over 43 h. Blood samples were taken every 10 min for 15 h, starting 5 h before the infusion, and then hourly until the end of the infusion. We found that the infusion of Kp induced a well-synchronized LH surge (around 22 h after the start of the Kp infusion) in 82% of the animals. In all ewes with an LH surge, there was an immediate but transient increase in the plasma concentrations of LH, follicle-stimulating hormone (FSH), and growth hormone (GH) at the start of the Kp infusion. Mean (± SEM) concentrations for the 5-h periods preceding and following the start of the Kp infusion were, respectively, 0.33 ± 0.09 vs 2.83 ± 0.49 ng/mL (P = 0.004) for LH, 0.43 ± 0.05 vs 0.55 ± 0.03 ng/mL (P = 0.015) for FSH, and 9.34 ± 1.01 vs 11.51 ± 0.92 ng/mL (P = 0.004) for GH. In the first experiment, surges of LH were observed only in ewes that also had a sustained rise in plasma concentrations of estradiol (E2) in response to Kp. Therefore, a second experiment was undertaken to determine the minimum duration of Kp infusion necessary to induce such a pronounced and prolonged increase in plasma E2 concentration. Kisspeptin (15.2 nmol/h) was infused for 6, 12, or 24 h in seasonally acyclic ewes (N = 8), and blood samples were collected hourly for 28 h (beginning 5 h before the start of infusion), then every 2 h for the following 22 h. Kisspeptin infused for 24 h induced LH surges in 75% of animals, and this percentage decreased with the duration of the infusion (12 h = 50%; 6 h = 12.5%). The plasma concentration of E2 was greater in ewes with an LH surge compared to those without LH surges; mean (± SEM) concentrations for the 5-h period following the Kp infusion were, respectively, 2.23 ± 0.16 vs 1.27 ± 0.13 pg/mL (P < 0.001). Collectively, our results strongly suggest that the systemic delivery of Kp induced LH surges by activating E2-positive feedback on gonadotropin secretion in acyclic ewes.  相似文献   

10.
The objective of this experiment was to determine the effect of sequential treatment with buserelin (a GnRH agonist) and cloprostenol (a prostaglandin F2 alpha analog) on estrous response and fertility in beef cattle with different ovarian conditions. On d 0 (1st d of treatment), the control group (n = 52, 10 heifers and 42 cows) and the GnRH group (n = 48, 10 heifers and 38 cows) received 2 mL of saline or 2 mL of Receptal (8 micrograms of buserelin), respectively. On d 6, all cows that had not exhibited spontaneous estrus were given i.m. 500 micrograms of cloprostenol (PGF). Ultrasonography on d 0 and assays of progesterone in blood on d -11, 0, and 6 were used to identify follicular and luteal status of animals. Cattle were observed for estrus from d 0 to 10. Cows showing estrus were bred artificially 12 h after onset of estrus. Over the 10-d period, the number of cows detected in estrus and pregnancy and conception rates were identical for the two groups. However, between d 0 and 6, the proportion of cows exhibiting estrus was lower (P less than .01) in the GnRH group than in the control group. Between d 6 and 10, the synchronization rate and precision of estrus were greater (P less than .01) in the buserelin-treated group than in the control group. Conception rate and interval from PGF injection to onset of estrus were not different between the two treatment groups. Presence of a large (greater than 10 mm) follicle on d 0 enhanced synchronization rate and precision of estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study was conducted to evaluate the effect of estrus induction with gonadotropins on endometrial and conceptus expression of HoxA10, transforming growth factor (TGF) β1, leukemia inhibitory factor (LIF), and prostaglandin H synthase-2 (PGHS-2) during early pregnancy in pigs. Twenty-four prepubertal gilts received 750 IU of pregnant mare serum gonadotropin (PMSG) and 500 IU of human chorionic gonadotropin (hCG) 72 h later. Gilts in the control group (n = 23) were observed daily for estrus behavior. Endometrial tissue samples, conceptuses, blood serum, and uterine luminal flushings (ULFs) were collected on days 10, 11, 12, and 15 after insemination. There was no effect of estrus induction on estradiol content in ULFs, or on ovulation and fertilization rates in studied gilts. However, the content of progesterone in the blood serum was greater in naturally ovulated gilts in comparison to gonadotropin-treated animals on day 12 of pregnancy (P < 0.05). HoxA10 expression was up-regulated in the endometrium of pregnant gilts, with natural ovulation on days 12 (P < 0.05) and 15 (P < 0.001) in comparison to days 10 and 11. When compared to control gilts, administration of PMSG/hCG resulted in decreased expression of endometrial HoxA10, TGFβ, LIF, and PGHS-2 on day 12 of pregnancy (P < 0.05). Conceptus expression of studied factors was not affected by gonadotropin treatment. Overall, these results suggest improper endometrial preparation for implantation in prepubertal gilts induced to ovulate with PMSG/hCG.  相似文献   

12.
This study investigated whether injections of ACTH for 48 h, from the onset of the second standing estrus after weaning, had any impact on time of ovulation and patterns of progesterone, estradiol, luteinizing hormone (LH), and inhibin alpha. The studied sows (n=15) were fitted with jugular vein catheters and randomly divided into a control (C group) and an ACTH group. From the onset of standing estrus, the sows were injected (NaCl or synthetic ACTH, 5 microg/kg) every 4h; blood samples were collected immediately before and 45 min after each injection. Ovulation was monitored using ultrasonography. The ACTH-group sows stopped displaying signs of standing estrus sooner after ovulation in their second estrus, but no impact was found on time of ovulation. There were no significant differences in the intervals between LH peak, estradiol peak, and the onset of standing estrus between the C and ACTH groups. The cortisol and progesterone concentrations were significantly elevated (p<0.001) in samples taken 45 min after ACTH injection. There were minor differences in estradiol and LH concentrations between the groups. Overall inhibin alpha concentrations were significantly higher during the treatment period in the ACTH than in the C group, but there were no significant differences between samples taken either 45 min or 4h after injection. In conclusion, injections of synthetic ACTH during estrus in the sow apparently disturb the duration of signs of standing estrus and the hormonal pattern of progesterone, and possibly of inhibin alpha, estradiol and LH.  相似文献   

13.
The present study was designed to assess progesterone profiles at the secreted (caudal vena cava) and circulating levels (jugular vein) and luteinizing hormone (LH) secretion pattern in lactating and non-lactating cows with reference to feeding. Four lactating and four non-lactating cycling Holstein cows were examined. Blood samples were collected simultaneously from the caudal vena cava (via a catheter inserted from the coccygeal vein) and the jugular vein every 15 min for 12 h (0500–1700 h) during the functional luteal phase. Cows were fed 50% of the daily diet 6 h after the start of blood sampling. During the 12-h sampling period, mean progesterone concentrations in the caudal vena cava did not differ between lactating and non-lactating cows (49.0 ± 2.9 and 53.3 ± 3.7 ng/ml; mean ± SE), whereas mean progesterone concentrations in the jugular vein in lactating cows were higher than those in non-lactating cows (6.4 ± 0.1 and 5.6 ± 0.1 ng/ml, P < 0.001). Lactating cows had a higher frequency of LH pulses than non-lactating cows (7.0 ± 0.7 and 4.3 ± 0.9 pulses/12 h, P<0.05). The influence of feeding was not observed on LH profiles but was observed on progesterone profiles in both veins. Progesterone concentrations in the caudal vena cava increased after feeding in both groups. Progesterone concentrations in the jugular vein decreased after feeding in lactating cows but not in non-lactating cows. These results indicate the difference in feeding-related changes in progesterone dynamics between lactating and non-lactating cows.  相似文献   

14.
Two experiments were conducted to evaluate the effects of naloxone, an endogenous opioid receptor antagonist, on LH and FSH secretion in postpartum beef cows. In Experiment 1, 24 cows were divided into three equal groups. On day 15 postpartum, all cows were bled for 8 hr at 10 min intervals to evaluate LH secretory parameters. On day 18 postpartum, three treatments were administered: (a) saline at 0730 and 1130 hr; (b) 275 mg naloxone at 0730 and 1130 hr; (c) naloxone as in (b) above, plus this group was also treated with 50 mg progesterone (P4) twice daily from day 16 to day 19. In each treatment, jugular vein samples were collected at 10 min intervals from 0800 to 1600 hr. On day 19 the same treatments were administered at the same times, however, all cows were given 25 micrograms GnRH at 1200 hr to evaluate the LH secretory response. Naloxone increased mean LH concentration (P less than .05) and tended to increase pulse amplitude and frequency compared to controls. However, the most dramatic difference was due to P4 treatment which suppressed mean LH, pulse amplitude and frequency. Treatments had no effect on LH secretion in response to a 25 micrograms dose of GnRH. In Experiment 2, the effects of suckling on the naloxone response were examined in 16 postpartum cows. On day 21 postpartum, blood was collected at 10 min intervals for 8 hr and then calves were removed from half the cows. After 3 days of calf removal, all cows were sampled at 10 min intervals for 4 hr; then naloxone was injected after each 10 min sample at a dose rate of 200 mg/hr (33 mg per injection). Naloxone treatment and sampling continued for an additional 8 hr. Calf removal alone had very little effect on LH pulsatility. However, naloxone resulted in increased pulse frequency and mean LH compared to the control period. We conclude that LH release in the early postpartum cow is partially regulated by endogenous opioid peptides. We were unable to detect any effects on FSH secretion nor on pituitary sensitivity to exogenous GnRH.  相似文献   

15.
GnRH对人工孪生处理母牛下丘脑-垂体-性腺轴的调控   总被引:1,自引:0,他引:1  
从农区黄牛群中选择21头产后正常母牛,分比三组。组Ⅰ在产后发情周期第17天注射孕马血清促性腺激素(PMSG),发情当天注射抗PMSG血清,配种时注射生理盐水。组Ⅱ和组Ⅲ的PMSG及其抗血清处理方法与组Ⅰ相同,但在配种时分别注射促性腺激素释放激素(GnRH)或其抗体。各组母牛在PMSG处理前安装颈静脉血管导管,每日间隔15分钟收集血样,连续3小时。发情当天,间隔30分钟收集血样,直至发情征兆消失。应用双重酶标免疫测定方法和酶联免疫吸咐测定方法,分别检测血清中GnRH、LH和P_4(孕酮)水平。结果表明,(1)在结合应用PMSG及其抗体处理的母牛发情期间,外源GnRH可使外周血中GnRH和LH水平升高。用GnRH抗体中和内源GnRH,可使血中GnRH和LH的水平降低,并阻抑排卵。(2)在母牛排卵前,通过某种途径调控GnRH和LH的脉冲释放水平,可以提高母牛的超排效果,并有可能控制母牛的排卵数。(3)用PMSG及其抗体和GnRH超排处理的母牛,发情期间的GnRH在排卵前有多个脉冲释放峰,但LH只有一个脉冲释放峰,而且GnRH脉冲释放高峰出现的时间较LH峰早。(4)在配种后第8天检出的血清孕酮水平与排卵数呈强正相关?  相似文献   

16.
The objectives of the study were to evaluate the oestrus behaviour and to determine the timing of ovulation in relation to onset of oestrus and the pre-ovulatory LH surge in mithun (Bos frontalis). For this purpose, the blood samples collected at 15-min intervals for 9 h period following onset of oestrus and thereafter, at an interval of 2 h till 4 h post-ovulation for three consecutive cycles from 12 mithun cows were assayed for plasma LH and progesterone. Ovulation was confirmed by palpation of ovaries per rectum at hourly intervals. Various signs of behavioural oestrus were also recorded. The common signs of oestrus and their frequency of occurrence in mithuns were following and mounting by male mithuns (100%), standing to be mounted (100%), frequent urination (62.33%), raising of tail (65.23%), swelling of vulva (54.26%) and congestion of vulvar mucous membrane (69.87%). The pre-ovulatory LH surges consisted of several pulses (2.92 +/- 0.26 pulses/animal; range, 1-4). The mean (+/-SEM) peak level of LH for individual mithun varied from 6.99 +/- 0.44 to 12.69 +/- 2.10 ng/ml and the mean pooled LH peak concentration was 9.10 +/- 0.60 ng/ml. The highest peak (highest amplitude of LH during LH surge) was 10.83 +/- 0.76 ng/ml (range, 8.07-16.49 ng/ml). The duration of LH surge was 6.98 +/- 0.22 h (6-8 h). Onset of LH surge was at 1.23 +/- 0.17 h post-oestrus onset (range, 0.25-2.25 h). Mean plasma progesterone stayed low (<0.24 ng/ml) during the entire duration of sampling. Ovulation occurred at 26.92 +/- 0.31 (range, 26-29 h) after the onset of oestrus and 18.63 +/- 0.35 h (range, 17-20.75 h) after the end of LH surge. The occurrence of the highest LH peaks within a narrow time frame of 2- to 5-h post-oestrus onset in mithuns could have contributed to the animals ovulating within a narrow time interval. These results are very promising from a practical standpoint of potential success when AI program in this species is implemented in a big way. Furthermore, the results of the occurrence of LH pulses during pre-ovulatory LH surges, which are required for ovulation in this species of animals, is unique and species specific.  相似文献   

17.
Three experiments were conducted to induce estrus and(or) ovulation in 1,590 suckled beef cows at the beginning of a spring breeding season. In Exp. 1, 890 cows at three locations were allotted to three treatments: 1) GnRH on d -7 + prostaglandin F2alpha (PGF2alpha) on d 0 (Select Synch); 2) GnRH on d -7 + PGF2alpha on d 0 (first day of the breeding season) plus a norgestomet implant (NORG) between d -7 and 0 (Select Synch + NORG); or 3) two injections of PGF2alpha given 14 d apart (2xPGF2alpha). More (P < 0.05) cycling cows were detected to have been in estrus after both treatments that included GnRH, whereas, among noncycling cows, the addition of norgestomet further increased (P < 0.05) the proportion in estrus. Pregnancy rates were greater (P < 0.01) among noncycling cows after treatments that included GnRH. For cows that calved >60 d before the onset of the breeding season, conception rates were greater (P < 0.01) than those that calved < or =60 d regardless of treatment, whereas days postpartum had no effect on rates of detected estrus. When body condition scores were < or =4 compared with >4, rates of detected estrus (P < 0.05) and conception (P = 0.07) were increased. In Exp. 2, 164 cows were treated with the Select Synch + NORG treatment and were inseminated either after estrus or at 16 h after a second GnRH injection (given 48 h after PGF2alpha). Conception and pregnancy rates tended (P = 0.08) to be or were less (P < 0.05), respectively, for noncycling cows inseminated by appointment, but pregnancy rates exceeded 53% in both protocols. In Exp. 3, 536 cows at three locations were treated with the Select Synch protocol as in Exp. 1 and inseminated either: 1) after detected estrus (Select Synch); 2) at 54 h after PGF2alpha when a second GnRH injection also was administered (Cosynch); or 3) after detected estrus until 54 h, or in the absence of estrus, at 54 h plus a second GnRH injection (Select Synch + Cosynch). Conception rates were reduced (P < 0.01) in cows that were inseminated by appointment. An interaction of AI protocol and cycling status occurred (P = 0.05) for pregnancy rates with differing results for cycling and noncycling cows. Across experiments, variable proportions of cows at various locations (21 to 78%) were cycling before the breeding season. With the GnRH or GnRH + NORG treatments, ovulation was induced in some noncycling cows. Conception rates were normal and pregnancy rates were greater than those after a PGF2alpha program, particularly when inseminations occurred after detected estrus.  相似文献   

18.
Prostaglandin F (PGF) and GnRH treatments given 24 h apart have been shown to result in short oestrous cycles (8–12 days) in some cows and heifers. The differences in responses may depend on the dose of GnRH. Therefore, the effect of the dose of GnRH on occurrence of short cycles and LH response was studied here. Oestrus was induced with dexcloprostenol (0.15 mg) in two groups of Ayrshire heifers. A second luteolysis was induced similarly on day 7 after ovulation; 24 h after PGF treatment, the heifers were administered either a high (0.5 mg, n = 15, group T500) or low (0.1 mg, n = 10, group T100) dose of gonadorelin. Blood samples for progesterone analyses were collected daily from the second PGF administration to the second ovulation after the PGF injection. Beginning 24 h after the GnRH treatment, ovaries were examined by transrectal ultrasonography every 6 h until ovulation, and daily between day 4 and the next ovulation. Five heifers from both groups were sampled for LH analyses via a jugular catheter every 30 min from 1 h before to 6 h after the GnRH administration. Short oestrous cycles were detected in 7 of 10 cases in group T100 and in 12 of 15 cases in group T500. No significant differences in LH responses were detected between the groups. In group T500, the rise in LH concentration tended to be somewhat slower than in group T100. The dose of GnRH (0.1 vs 0.5 mg) did not affect the occurrence of short oestrous cycles and LH response.  相似文献   

19.
A total of 412 multiparous German Holstein cows were screened for postpartum pyometra, follicular cysts and ovarian inactivity to assess economic and productivity losses in relation to pharmaceutical expenditures. Our results show that cows treated for pyometra with prostaglandin f2 alpha (PGF2α) and oxytetracycline had significantly (P < 0.05) greater total and net returns than untreated cows or those treated with PGF2α + cephapirin or PGF2α alone. Milk yields from untreated cows affected by follicular cysts were significantly (P < 0.05) lower than the yields from cows treated with gonadotrophin-releasing hormone (GnRH)− and GnRH + PGF2α. In addition, the use of GnRH to treat cows with ovarian inactivity resulted in significantly (P < 0.05) lower costs and greater total and net return values compared to untreated controls.  相似文献   

20.
This study evaluated the influence of exogenous estradiol-17 beta (E2) administration on LH concentrations and the number of animals returning to estrus after the termination of pregnancy or pseudopregnancy in gilts. Gilts were mated (pregnant; n = 11) on the 1st d of estrus or received 5 mg of estradiol valerate i.m. at d 11 to 15 after the onset of estrus (pseudopregnant; n = 9). Gilts were treated with prostaglandin F2 alpha (PGF2 alpha, 15 and 10 mg) at 12-h intervals on d 44 of pregnancy or pseudopregnancy. The day of abortion or luteolysis (progesterone less than .2 ng/mL) was considered d 0. Six pregnant and four pseudopregnant gilts received s.c. an E2 capsule (24 mg of E2) on d -20 and additional E2 capsules on d -13 and -6. The E2 capsules were removed on the day after PGF2 alpha administration. Blood samples were collected at 12-h intervals from d -21 to -3, at 6-h intervals from d -2 to 21 or the onset of estrus, and at 15-min intervals for 8 h on d -2, 1, 4, 7, 10, 14, and 18. After each 8-h sampling period, gilts were treated i.v. with GnRH at .5 micrograms/kg of BW and blood samples collected at 10-min intervals for 3 h. A greater (P less than .05) proportion of sham-treated gilts than of E2-treated gilts exhibited a preovulatory-like LH surge after abortion/luteolysis. It was evident that E2 supplementation before luteolysis reduced the ability of pregnant and pseudopregnant gilts to return to estrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号