首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
稻壳深施改良苏打碱土理化性质长期效应   总被引:2,自引:2,他引:2  
盐渍土是中国重要耕地土壤,由于土壤中盐基离子含量高,影响植物生育,为此改良盐渍土意义重大。该研究以黑龙江省苏打碱土为供试土壤,采用土层置换犁将稻壳埋于20~30cm土层中,以单独的机械耕作不埋稻壳为对照,田间作业8 a后再次调查土壤理化性质,研究结果:土壤有机碳、速效氮、磷、钾含量与对照比有增加趋势,各层土壤pH值降低0.37~0.41,Na~+降低40.68~212.35 mg/kg;土壤固相率约40%,与对照比下降了3.68%~8.86%,土壤总孔隙度增加到57.38%~60.58%之间,有效孔隙比例大,占总孔隙的22.7%~26.8%,对照有效孔隙占总孔隙的19.0%~23.7%;土壤通气、透水性分别是对照的10~121 5倍和118~173 5倍,0~30 cm土层水库容量高于对照18.58 mm;速效水库容高于对照10.71 mm;稻壳深施持续后效长,改善苏打碱土比单一机械耕作有效,是适合盐渍土改良的一项技术,而且可以通过机械手段得以实现。  相似文献   

2.
Chemical stabilization is a soil remediation technique based on the incorporation of organic and/or inorganic amendments to metal contaminated soil in order to decrease metal bioavailability and improve soil quality. Consequently, the establishment of follow-up monitoring programmes is essential to ensure the long-term effectiveness of chemical stabilization in terms of both metal bioavailability reduction and soil quality improvement. In this study, three doses (20, 40 and 80 t ha−1) of a lime-treated sewage sludge, that meets legal standards regarding metal contents, were added to a metalliferous mine soil and a variety of physicochemical and microbial indicators of soil quality were measured over time (immediately before treatment application and one and six months after such application). Soil CaCl2-extractable and plant metal concentrations were also measured. We carried out a complementary interpretation of soil microbial properties through their grouping within a set of ecosystem attributes of ecological relevance: vigour, organization, stability, suppressiveness and redundancy. Sewage sludge addition led to an increase in soil pH, but this beneficial effect was transient. The addition of sewage sludge had a more pronounced effect on parameters used here to estimate soil vigour (dehydrogenase activity, basal and substrate-induced respiration). On the contrary, the addition of sewage sludge did not significantly alter the composition of soil microbial communities, as reflected by PCR-DGGE data. Chemical stabilization was only partly successful: it did improve soil quality but the expected reduction in soil metal bioavailability (as reflected by the values of CaCl2-extractable metal concentration) was clearly observed only for Cd (not for Pb or Zn); however, SL addition led to a significant reduction in shoot metal concentration for the three metals under study. The assessment of soil quality at the attribute level has proven useful for the interpretation of the effect of chemical stabilization on soil functioning.  相似文献   

3.
We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha–1 year–1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg–1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.  相似文献   

4.
麦秆还田对作物产量影响以及秸秆还田如何施肥是农业生产者极为关注的问题,为了明确豆麦轮作麦秆长期还田对作物产量及对土壤化学性质的影响,该文依托黑河市长期定位实验站,采用裂区试验方法,主处理为秸秆还田与不还田处理,副处理为低、中、高不同施肥水平,试验于1980年开始,轮作模式先后为麦-豆-麦和麦-豆轮作模式,通过连续38 a(1980—2018年)调查,探明麦豆轮作条件下麦秸还田及不同施肥水平对作物产量影响。结果得出:麦秸还田后种植大豆、小麦,多年产量与不还田比差异不显著(P0.05);连续施肥效果,大豆中肥区比低肥区增产7.42%~10.81%,达到差异显著水平,小麦高肥区比低肥区增产14.52%~19.33%,差异极显著(P 0.01);麦秸还田大豆增产效果,还田前期(1~6季)大豆平均产量比不还田增产5.91%,后期(7~16季)平均增产7.52%,麦秸还田小麦增产效果,还田前期(1~5季)和后期(6~16季)平均增产0.31%、0.22%,后期增产频率高;麦秆隔年还田显著增加速效钾含量,施肥可以有效增加土壤碳、氮、磷含量,但长期高肥易导致土壤酸化。  相似文献   

5.
研究大型露天煤矿典型植被恢复模式下土壤碳、氮组分特征,为深入理解露天煤矿高压实复垦土壤碳、氮固持过程及复垦土壤成土过程提供依据。以黄土区典型露天煤矿-平朔露天煤矿的复垦24a的刺槐-油松混交林(RP)、刺槐纯林(RM)、白杆-青杆-沙棘混交林(PPH)、沙棘纯林(HM)4种典型植被恢复模式样地及未复垦样地(UR)、原地貌样地(UD)为研究对象,采集0~20 cm表层土壤样品,分析土壤碳、氮组分特征。结果表明:1)经过24a演替,复垦土壤理化性质得到明显提高,但各样地间土壤理化性质明显显著。2)同UR样地相比,RP、RM和PPH样地的土壤有机碳含量分别提高594.03%、158.66%、99.25%;RP和PPH样地的微生物生物量碳则分别提高174.68%、209.34%;RP和HM样地的水溶性碳分别提高110.13%、82.99%;RP、RM样地的易氧化碳含量则分别为UR样地的35.55倍和7倍。3) 与UR样地相比,RP、RM、PPH、HM样地的土壤全氮含量分别提高413.24%、250.00%、100%和82.35%;RP、PPH、HM样地的水溶性氮含量分别提高206.33%、153.02%、99.95%;PPH样地的微生物生物量氮含量提高368.07%。4)复垦土壤碳、氮组分之间呈现正相关关系,但与全钾呈现显著负相关(P<0.05)。上述结果表明,土地复垦显著提高了土壤碳、氮组分含量,尤以刺槐-油松混交林效果较好,但复垦24a后,矿区土壤可能存在钾限制的现象。  相似文献   

6.
长期施用化肥对农田黑土有机碳和氮消长规律的影响   总被引:5,自引:1,他引:5  
利用中国科学院海伦农业生态实验站黑土区的农田长期定位试验土壤(1990~2004年)为研究对象,研究了长期施用化肥对土壤有机碳和氮的消长规律的影响。结果表明,长期施用化肥,氮用量的增加对土壤有机碳含量的影响较大,使土壤有机碳含量降低,而对土壤氮素的含量影响较小;磷用量的增加对土壤有机碳含量的影响不大,但使土壤全氮含量下降较多,因而C/N比呈上升趋势;而钾用量的增加对土壤中的有机碳含量基本上没有影响,但使土壤全氮量下降明显,有效氮含量略有降低,C/N比呈现增加趋势。因此,通过调控化肥的用量可以维持土壤中的有机碳、全氮及有效氮含量,保持土壤的持续生产力,提高作物产量。  相似文献   

7.
Abstract. Two case studies on Danish sandy loams investigated the long-term effects of fertilization and crop rotation. Case Study 1 compared a diversely cropped organically farmed soil (DFG(1)) with a conventionally farmed soil predominantly growing annual crops (DFA), both receiving animal manure. In Case Study 2, a diversely cropped organically managed soil (DFG(2)) receiving animal manure was compared with an almost exclusively cereal cropped conventionally farmed soil receiving no animal manure (CCC). A multi-level experimental strategy was followed to compare integrating field methods with specialized laboratory methods. Ease of tillage was described in the field and characterized using a drop shatter field test and by measuring aggregate tensile strength. Fitness as a seedbed was characterised visually in the field and from the drop shatter test. Impedance to seedling emergence and root penetration was evaluated by measuring bulk soil shear strength. For Case Study 1, soil tilth was better for the DFA soil than for the DFG(1) soil (i.e. lower soil strength and higher ease of fragmentation and friability index for DFA). However, a crumbly structure and a moderate bulk density suggested that the DFG(1) soil was also a favourable medium for plant growth. For Case Study 2, the CCC soil had a lower organic matter content, higher bulk density, higher soil strength, and lower ease of fragmentation in comparison with the DFG(2) soil.  相似文献   

8.
Olive mill waste water (OMW), a by-product of the olive mill industry, is produced in large amounts in Mediterranean countries. Olive mill waste water contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. Thus, the use of OMW for soil fertigation is a valuable option for its disposal, provided that its impact on soil chemical and biochemical properties is established. Investigations were performed on the short-term influence of OMW on several chemical and biochemical properties of a soil from a continental semi-arid Mediterranean region (Morocco). The soil was amended with 0, 18 and 36 ml 100 g−1 soil of OMW (corresponding to a field rate of 0, 40 and 80 m3 ha−1, respectively) and changes in various functionally related properties such as microbial biomass, basal respiration, extractable C and N, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties as well as the residual phytotoxicity of OMW amended and non-amended soils as assessed by tomato seed germination tests were also monitored. Temporary and permanent changes in several chemical and biochemical soil properties occurred following OMW application, thus being these properties varied in sensitivity to the applied disturbance. A sudden increase of total organic C, extractable N and C, available P and extractable Mn and Fe contents were measured. Simultaneously, a rapid increase of soil respiration, dehydrogenase and urease activities and microbial biomass (at 14 day incubation) of OMW amended soils occurred. In contrast, the activities of phosphatase, β-glucosidase, nitrate reductase and diphenol oxidase decreased markedly. The soil became highly phytotoxic after OMW addition (large decline of soil germination capability), mainly at 80 m3 ha−1 OMW. After 42 days' incubation, however, a complete recovery of the soil germination capability and a residual phytotoxicity of about 30% were observed with 40 and 80 m3 ha−1 OMW, respectively. These findings indicate that the impact of OMW on soil properties was the result of opposite effects, depending on the relative amounts of beneficial and toxic organic and inorganic compounds present. The toxic compounds contained in OMW most likely counteracted the beneficial effect of organic substrates provided, which promoted the growth and activity of indigenous microorganisms.  相似文献   

9.
In industrial areas, heavy metals may accumulate in forest soil organic horizons, affecting soil microorganisms and causing changes in the chemical composition of the accumulated organic matter. The objectives of this study were to test the ability of near-infrared spectroscopy (NIRS) to detect heavy metal effects on the chemical composition of forest soil O horizons and to test whether NIRS may be used to quantitatively determine total and exchangeable concentrations of Zn and Pb (Znt, Pbt, Znex, Pbex) and other chemical and microbial properties in forest soil O horizons polluted with heavy metals. The samples of O horizons (n = 79) were analyzed for organic C (Corg), total N and S (Nt, St), Znt, Pbt, Znex, Pbex, basal respiration (BR), microbial biomass (Cmic) and Cmic-to-Corg ratio. Spectra of the samples were recorded in the Vis-NIR range (400–2,500 nm). To detect heavy-metal-induced changes in the chemical composition of O horizons principal components (PC1–PC7) based on the spectral data were regressed against Znt + Pbt values. A modified partial least squares method was used to develop calibration models for prediction of various chemical and microbial properties of the samples from their spectra. Regression analysis revealed a significant relationship between PC3 and PC5 (r = −0.27 and −0.34, respectively) and Znt + Pbt values, indicating an effect of heavy metal pollution on the spectral properties of the O horizons and thus on their chemical composition. For quantitative estimations, the best calibration model was obtained for Corg-to-Nt ratio (r = 0.98). The models for Corg, Nt, and microbial properties were satisfactory but less accurate. NIRS failed to accurately predict St, Corg-to-St, Znt, Pbt, Znex, and Pbex.  相似文献   

10.
Data from a 16-year field experiment conducted in Shanxi, on the Chinese Loess Plateau, were used to compare the long-term effects of no-tillage with straw cover (NTSC) and traditional tillage with straw removal (TTSR) in a winter wheat (Triticum aestivum L.) monoculture. Long-term no-tillage with straw cover increased SOM by 21.7% and TN by 51.0% at 0–10 cm depth and available P by 97.3% at 0–5 cm depth compared to traditional tillage. Soil microbial biomass C and N increased by 135.3% and 104.4% with NTSC compared to TTSR for 0–10 cm depth, respectively. Under NTSC, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 45.1% on average in the top 10 cm soil layer, which suggests that TTSR produced a microbial pool that was more metabolically active than under NTSC. Consequently, winter wheat yield was about 15.5% higher under NTSC than under TTSR. The data collected from our 16-year experiment show that NTSC is a more sustainable farming system which can improve soil chemical properties, microbial biomass and activity, and thus increase crop yield in the rainfed dryland farming areas of northern China. The soil processes responsible for the improved yields and soil quality, in particular soil organic matter, require further research.  相似文献   

11.
土壤呼吸排放是陆地生态系统土气交换快速而活跃的途径之一,对大气CO2浓度的变化有显著的影响。本文对太湖地区一个代表性水稻土水稻收割后土壤基底呼吸CO2排放进行了昼夜观测和采样分析。结果表明,不同小区平均土壤呼吸与CO2排放速率在CO2-C.12.2~25.2.mg/(m2h)之间,日排放量在CO2-C.327.2~604.1mg/(m2d)之间,低于文献报道的森林和草地及旱作农田的土壤呼吸;与长期有机-无机配施处理相比,长期单施化肥CO2日排放量提高了55%~85%,并且显著提高了土壤呼吸对土壤(5.cm)温度的响应敏感性。相关分析表明,土壤呼吸CO2排放强度与土壤微生物N(Nmic)、微生物C∶N(Cmic/Nmic)和P的有效性有密切的关系;生物有效N和P的有效性显著地影响着土壤呼吸与CO2的生成和排放。本试验结果进一步支持了水稻土的固碳效应。但是,供试不同小区土壤呼吸排放强度的变异隐含着长期不同施肥处理可能使与高呼吸活性有关的微生物群落发生改变,有待于进一步研究。  相似文献   

12.
Tailing ponds pose environmental hazards,such as toxic metals which can contaminate the surroundings through wind and water erosions and leaching.Various chemical and biochemical properties,together with extractable and soluble metals were measured five years after reclamation of a polluted soil affected by former mining activities.This abandoned mine site contains large amounts of Fe-oxyhydroxides,sulphates,and heavy metals.As a consequence,soils remain bare and the soil organic matter content is low(< 3 g kg 1).Marble waste,pig manure and sewage sludge were applied in 2004.Plant cover and richness,and soil chemical,biochemical and biological parameters were analysed five years later.Results showed that all soil biochemical properties as well as vegetation cover and richness were higher in treated soils than in the untreated contaminated plots(control),although organic matter,pH values and extractable metals concentrations were similar among treatments.Soluble cadmium and zinc were lower in the amended plots than in control.As a general pattern,soil amended with pig manure showed higher values of most biochemical properties compared to sewage sludge application,while the doses did not have a great effect,being only significant for β-glucosidase,phosphodiesterase and arylsulfatase.Significant correlations were found between vegetation cover,richness and soil biochemical properties,suggesting a high interdependence between plant colonization and reactivation of biogeochemical cycles during five years.This study confirms the high effectiveness of an initial application of the amendments tested to initialize the recovery of ecosystems in bare mine soils under Mediterranean semiarid conditions.This research also shows the high sensitivity of certain biochemical properties in order to evaluate soil quality and reactivation of nutrients cycles in reclaimed mine soils.  相似文献   

13.
Caragana microphylla Lam., a leguminous shrub, is a dominant native plant species widely planted to stabilize the moving and semi-moving sand dunes in the semi-arid Horqin sandy land of Northeast China. The objective of this study was to determine how C. microphylla plantations affected the physical, chemical and microbiological properties of a sandy soil. Soil samples at the depths of 0–10, 10–20, 20–30, 30–40, and 40–50 cm were collected from the C. microphylla plantations with an age sequence of 0, 5, 10, and 23 years. The results showed that shrub growth altered microclimate, increased litter input, and hence, improved soil water holding capacity, contents of total carbon, total N and microbial biomass C and N, electrical conductivity, and activities of urease, phosphomonoesterase, protease, dehydrogenase and polyphenol oxidase, and decreased soil bulk density. These trends increased with increasing plantation age but decreased with increasing soil depth. C. microphylla establishment could be an effective and applicable measure to restore vegetation and control desertification in the Horqin sandy land, and recommended for adoption in semi-arid sandy areas on a large scale.  相似文献   

14.
The reclamation potential of applying combined brackish ice and flue-gas desulfurization (FGD) gypsum to a coastal saline soil was evaluated in a raised bed agroecosystem. Experimental plots in the raised bed were exposed to the following six treatments: 0, 4,000, and 8,000 m3ha?1 brackish ice mulch with and without FGD-gypsum. Although FGD-gypsum incorporation still increased the electrical conductivity of a saturated soil paste extract (ECe) in the 0–20 cm soil layer after brackish ice melted in the second year (April 2013), they had not increased soil ECe at harvest especially in the second year. FGD-gypsum incorporation reduced soil pH not only after brackish ice melted in the second year but also at harvest in the first and second years. At harvest in the second year, FGD-gypsum incorporation significantly decreased soil Na adsorption ration (SAR) of the 0–20 cm layer with different volumes of brackish ice compared with the treatments without FGD-gypsum. The incorporation of FGD-gypsum increased the root dry weight per plant compared with the treatment without FGD-gypsum after harvest in the first year. The incorporation of FGD-gypsum increased organic matter in the 0–20 cm soil layer in the raised bed after harvest only in the first year. The application of brackish ice increased the emergence rate of maize in spring. Soil pH in all treatments tended to increase as time increased in the 0–20 and 20–40 cm soil layers in the raised bed. The results of the present study suggest that brackish ice and FGD-gypsum application further improve soil properties and crop growth, which might accelerate the reclamation process of the coastal saline land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号