首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristic daily increases in the plasma levels of luteinizing hormone (LH) are present every afternoon during lactation in golden hamsters. The objective of this study was to investigate the effect of the diurnal rhythm of increases in LH on expression of nerve growth factor (NGF), its receptors trkA and p75 and inhibin alpha-subunit in the ovarian interstitial cells of lactating golden hamsters. Both lactating and non-lactating groups of postpartum golden hamsters were used in this study. The expression of NGF, its receptors trkA and p75 and inhibin alpha-subunit were determined by immunohistochemistry. Positive staining of NGF, trkA and p75 was found in the interstitial cells of the lactating group, and no immunoreactivity for NGF, trkA or p75 was observed in the ovarian interstitial cells of the non-lactating group. In addition, immunostaining of inhibin alpha-subunit was also observed in the interstitial cells of the lactating group but not in those of the non-lactating group. Immunostaining of the inhibin/activin beta(A)- and beta(B)-subunits was observed in the granulosa cells of antral follicles, but not in the interstitial cells of the lactating and non-lactating animals. These results suggest that the diurnal rhythm increases in LH can induce expression of NGF, trkA, p75 and inhibin alpha-subunit in the ovarian interstitial cells of lactating golden hamsters and that NGF, its receptors trkA and p75 and inhibin alpha-subunit may have the capacity for autocrine or paracrine modulation of interstitial cell differentiation in golden hamsters.  相似文献   

2.
The cellular localization of nerve growth factor (NGF) and its receptors (TrkA, p75) was investigated during the estrous cycle in gilts. Also, the levels of expression of these factors in walls of tertiary follicles and corpora lutea (CLs) were determined using Western blot. The ovaries from days 3, 7, 16 and 20 of the cycle revealed the presence of NGF and its receptors in oocytes of secondary and tertiary follicles, follicular cells of primary and secondary follicles, thecal and granulosa cells of tertiary follicles and steroidogenic cells of CLs. In wall cells of primary follicles, NGF, TrkA and p75 staining was strongest on day 16, while in secondary follicles, only p75 was more intensely stained on day 16 and 20. In walls of small (to 3 mm in diameter) and medium (4-6 mm in diameter) follicles, NGF staining was lower on day 16, and the p75 reaction was strongest on day 20. On day 20, NGF staining in large follicles (7-10 mm in diameter) was higher than in smaller follicles. The levels of NGF and p75 in small and medium follicles were highest on day 20. The contents of NGF and TrkA in large follicles on day 20 were higher than in smaller follicles. NGF and TrkA contents in CLs were highest on day 7. Our study demonstrates that NGF, TrkA and p75 are expressed in the ovary during the estrous cycle in gilts. These results suggest that NGF and its receptors may be important for ovarian function in cycling gilts.  相似文献   

3.
4.
The objective of this study was to determine the immunolocalization of NGF and its receptors (TrkA and p75LNGFR) in the reproductive tract of the Japanese Shiba goats. Five adult goats were used in this study and sections of ovaries, uteri and oviducts were immunostained by the avidin-biotin-peroxidase complex method (ABC). The results showed that NGF and its receptors (TrkA and p75LNGFR) were expressed in granulosa cells, theca cells, interstitial cells and lutein cells in ovaries. Immunoreactions for NGF, TrkA and p75LNGFR were also detectable in epithelial cells and muscle cells of the ampulla and isthmus of the oviduct, and in epithelial cells and uterine glands of the uterus. These results strongly suggest autocrine and paracrine regulation of reproductive function by NGF in the reproductive tract of female Shiba goats.  相似文献   

5.
Two experiments were conducted to determine if administration of progesterone within a low, subluteal range (0.1-1.0 ng/mL) blocks the luteinizing hormone (LH) surge (experiments 1 and 2) and ovulation (experiment 2) in lactating dairy cows. In experiment 1, progesterone was administered to cycling, lactating dairy cows during the luteal phase of the estrous cycle using a controlled internal drug release (CIDR) device. CIDRs were pre-incubated in other cows for either 0 (CIDR-0), 14 (CIDR-14) or 28 days (CIDR-28). One group of cows received no CIDRs and served as controls. One day after CIDR insertion, luteolysis was induced by two injections of prostaglandin (PG) F(2alpha) (25 mg) at 12 h intervals. Two days after the first injection, estradiol cypionate (ECP; 3 mg) was injected to induce a LH surge. Concentrations of progesterone after luteolysis were 0.11, 0.45, 0.78 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14, and CIDR-0, respectively. LH surges were detected in 4/4 controls, 4/5 CIDR-28, 2/5 CIDR-14 and 0/5 CIDR-0 cows following ECP. In experiment 2, progesterone was administered to cycling, lactating, Holstein cows during the luteal phase of the estrous cycle as in experiment 1. Luteolysis was induced as in experiment 1. The occurrence of an endogenous LH surge and ovulation were monitored for 7 days. Concentrations of progesterone after luteolysis were 0.13, 0.30, 0.70 and 1.20 ng/mL for cows treated with no CIDR, CIDR-28, CIDR-14 and CIDR-0, respectively. LH surges and ovulation were detected in 5/5 controls, 3/7 CIDR-28, 0/5 CIDR-14 and 0/5 CIDR-0 cows. It was concluded that low concentrations of progesterone can reduce the ability of either endogenous or exogenous estradiol to induce a preovulatory surge of LH and ovulation.  相似文献   

6.
The present study was conducted to evaluate the endocrinological effects of the pituitary on luteal maintenance and regression in the cyclic golden hamster (Mesocritus auratus). After hypophysectomy (Hypox) at 0900 h on day 1 of the estrous cycle (the day of ovulation), the animals received injection of prolactin (PRL) or PRL plus equine chorionic gonadotropin (eCG). They were decapitated at 1500 h on day 3 of the cycle, and trunk blood was collected for measurement of progesterone (P4). Corpora lutea (CLs) were dissected from one ovary for DNA ladder detection by electrophoresis, determination of DNA fragmentation ratio by fluorometric measurement method and measurement of P4. The other ovary was used for histological observation. After the Hypox, the daily injection of 1 mg ovine PRL restrained the DNA fragmentation ratio and number of apoptotic cell in the CLs. The PRL treatment maintained the luteal morphology and increased the luteal P4 concentration, but not in the plasma P4 concentration. In addition to PRL, injection of 2 IU eCG after the Hypox also restrained the DNA fragmentation ratio and number of apoptotic cells in the CLs to the level of a pregnant animal. The PRL plus eCG treatment maintained the luteal morphology in the same manner as the PRL only treatment and increased not only the luteal but also the plasma P4 concentration. These results suggest that PRL restrains luteal apoptosis and maintains luteal morphology and that the combination of PRL and eCG restrains not only structural but also functional luteal regression in the cyclic hamster.  相似文献   

7.
GnRH对人工孪生处理母牛下丘脑-垂体-性腺轴的调控   总被引:1,自引:0,他引:1  
从农区黄牛群中选择21头产后正常母牛,分比三组。组Ⅰ在产后发情周期第17天注射孕马血清促性腺激素(PMSG),发情当天注射抗PMSG血清,配种时注射生理盐水。组Ⅱ和组Ⅲ的PMSG及其抗血清处理方法与组Ⅰ相同,但在配种时分别注射促性腺激素释放激素(GnRH)或其抗体。各组母牛在PMSG处理前安装颈静脉血管导管,每日间隔15分钟收集血样,连续3小时。发情当天,间隔30分钟收集血样,直至发情征兆消失。应用双重酶标免疫测定方法和酶联免疫吸咐测定方法,分别检测血清中GnRH、LH和P_4(孕酮)水平。结果表明,(1)在结合应用PMSG及其抗体处理的母牛发情期间,外源GnRH可使外周血中GnRH和LH水平升高。用GnRH抗体中和内源GnRH,可使血中GnRH和LH的水平降低,并阻抑排卵。(2)在母牛排卵前,通过某种途径调控GnRH和LH的脉冲释放水平,可以提高母牛的超排效果,并有可能控制母牛的排卵数。(3)用PMSG及其抗体和GnRH超排处理的母牛,发情期间的GnRH在排卵前有多个脉冲释放峰,但LH只有一个脉冲释放峰,而且GnRH脉冲释放高峰出现的时间较LH峰早。(4)在配种后第8天检出的血清孕酮水平与排卵数呈强正相关?  相似文献   

8.
Estrous cycles of heifers (n = 137) were synchronized with prostaglandin (PGF) and follicular development stimulated with follicle stimulating hormone. Twenty-eight animals were administered Norgestomet implants 12 hr prior to the initial PGF2α injection to suppress the LH surge that initiates ovulation. Animals were ovariectomized every 12 hr after the initial PGF2α (7–9/time, 12–108 hr and at 192 and 240 hr post PGF2α) and divided into three treatment groups to consist of: 1) animals exhibiting a normal luteinizing hormone (LH) surge (n = 86), 2) animals in which no LH surge was detected (n = 23), and 3) suppression of the LH surge via Norgestomet implants (72–108 hr, n = 28). Follicular diameter was measured and follicular fluid was collected for analysis of prolactin, estradiol, progesterone and glycosaminoglycan concentrations. Progesterone concentrations were increased in animals exhibiting an LH surge as compared to animals in which no LH surge was detected; primarily in large follicles (> 8 mm diameter) after the LH surge. Animals not exhibiting an LH surge also had increased follicular progesterone concentrations compared to Norgestomet-implanted animals (242.3 ± 36.3 vs 86.7 ± 6.4 ng/ml, respectively, P < .01), indicating some LH stimulation. Follicular estradiol in animals exhibiting an LH surge increased up to the time of LH surge detection and then declined whereas animals with no LH surge detected had follicular estradiol concentrations that declined after the PGF injection. No differences were noted between those that did not exhibit an LH surge or in which the LH surge was suppressed with Norgestomet in relation to follicular estradiol concentrations. Follicular estradiol concentrations increased with follicular size in all treatment groups (P < .01). Follicular concentrations of prolactin were increased in small follicles (P < .05; ≤ 4 mm diameter) and follicular prolactin increased from 12 to 36 hr post PGF2α injection, then declined after the LH surge. Follicular glycosaminoglycan concentrations decreased with increases in follicular size (P < .01) and were higher in animals that did not exhibit an LH surge (P < .01). No differences in follicular glycosaminoglycans were noted between Norgestomet-implanted animals and those not exhibiting an LH surge. In the animals representing days 4 and 6 of the subsequent estrous cycle (192 and 240 hr post PGF2α), numbers of small-sized follicles were increased. Follicular progesterone and estradiol concentrations were related to atretic large follicles unovulated from the prior estrus and a wave of growth in small and medium follicles. Follicular prolactin and glycosaminoglycans increased with time of the new estrous cycle and were increased in smaller follicles (P < .01). Suppression of LH with progestin implants (Norgestomet) may relate to early effects of progesterone, which may not be totally eliminated at target tissues and subsequently alters the LH surge, steroidogenesis of the follicle, and ovulation. Oocytes were predominantly found in the follicular fluid from animals in which an LH surge was detected and in the buffer wash of follicles in which no LH surge was detected. Oocyte viability was higher in animals exhibiting an LH surge (75% viable) whereas the oocytes of Norgestomet-implanted animals were 75% degenerate.  相似文献   

9.
We tested the hypothesis that melengestrol acetate (MGA), an orally active progestin, blocks estrus and the preovulatory surge of luteinizing hormone (LH) in beef heifers. Cycling yearling Angus heifers were divided randomly into two groups: MGA-treated (n = 6) and control (n = 5). All heifers received injections of prostaglandin F2alpha (PGF) on d -25, -11, and 0 to synchronize estrus. Following the last PGF injection on d 0, heifers were fed either 0.5 mg MGA in a carrier or the MGA carrier each day for 8 d. At 4-h intervals on d 1 through 6, all heifers were observed for expression of estrous behavior, and blood samples were collected and assayed for LH. Daily blood samples were collected at 0800 on d 1 through 10 and assayed for circulating progesterone concentrations. All control heifers exhibited estrus and a preovulatory surge of LH. In each case, this was followed by increases in circulating concentrations of progesterone indicative of ovulation and normal luteal function. In contrast, none of the MGA-treated heifers exhibited estrus, LH surges, or evidence of ovulation. The results of this experiment show that MGA prevents ovulation in cattle by inhibiting the preovulatory surge of LH.  相似文献   

10.
11.
Six lactating Holstein cows were used to determine whether a serum luteinizing hormone (LH) surge induced by luteinizing hormone-releasing hormone (LHRH) could be detected in milk. A double antibody radioimmunoassay was evaluated for measuring LH in whole milk. Cows (d 10 of the estrous cycle) were injected with saline (time zero), followed by LHRH 12 h later. Blood samples were collected hourly for 12 h via jugular cannula following each injection; milk removal was accomplished every 2 h by a portable milking machine. On d 10 of the next estrous cycle, treatment, order was switched, with the same cows receiving LHRH at time zero and saline 12 h later. Approximately 2 h following LHRH treatment, serum LH levels peaked at 29 ng/ml and remained elevated for 5 h. There was no corresponding change in milk LH detected during the 12-h to 24-h period following the induced serum LH surge. Our conclusion is that the measurement of LH in the milk of cows shows little promise for predicting ovulation time in the cow.  相似文献   

12.
为了研究发情旺季母水牛生殖激素水平的变化规律,试验采用酶联免疫分析方法(ELISA)测定了发情周期血样中的促卵泡素(FSH)、促黄体素(LH)、雌二醇(E2)和孕酮(P4)4种激素,并分析了这些生殖激素在发情周期中的变化规律。结果表明:血清中FSH和LH的含量均由排卵前的第4天开始缓慢上升,排卵前达到峰值,在排卵后又明显下降;E2的含量在排卵前1天出现峰值,在排卵后第9天又出现1个小波峰;P4的含量在排卵后的第5天明显上升,第13天时达峰值,在排卵前3天出现最低水平。  相似文献   

13.
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an 1-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50 μg) was injected (i.m.) and Doxazosin (100 nmol/h) or vehicle was infused into the third ventricle 2–26 h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-β-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.  相似文献   

14.
While the luteinizing hormone (LH) surge has long been accepted as the key event in the estrous cycle of the bitch, historically, there has been no practical way to identify it. In the past, the veterinary practitioner had to rely on general and/or subjective information received from vaginal cytology, physical examinations, and observations. With the recent development of in-clinic progesterone and LH assays, and the wider availability of laboratory quantitative progesterone assays, the LH surge can either be identified directly or estimated by the detection of changes in progesterone. As a result, ovulation time can now be predicted with high accuracy in a private practice setting.  相似文献   

15.
Cyclic AMP (cAMP) is a second messenger that plays a critical role in follicular recruitment, development and luteinization in the mammalian ovary. The cellular level of cAMP is largely dependent on the activity of phosphodiesterase (PDE), which degrades cAMP into 5'-AMP. The present study was conducted to investigate the level of cAMP and the activity of cAMP-PDE in postnatal rats; immature rats during gonadotropin-primed follicular development, ovulation and luteinization; adult rats during normal estrous cycling; and aged rats that spontaneously developed persistent estrous (PE) by radioimmunoassay (RIA). All four rat models were confirmed by histological examination of one ovary and assayed using the other ovary by RIA. In the postnatal rats, the ovarian cAMP level was high on day 10 after birth, while ovarian cAMP-PDE activity was highest at 21 days of age. In the immature female rats, both the ovarian cAMP level and cAMP-PDE activity increased remarkably after treatment with equine chorionic gonadotropin (eCG), increased continuously 24 h after injection of human chorionic gonadotropin (hCG) for induction of ovulation and luteinization, and then declined significantly. In the adult rats during the normal estrous cycle, the ovarian cAMP levels were low on the day of estrus, and there were no significant changes in ovarian cAMP-PDE activity throughout the estrous cycle. In the PE rats, the ovarian cAMP levels were similar to those of the adult rats on the day of estrus but were lower than those on the other days of the estrous cycle; ovarian cAMP-PDE activity was lower than that in the adult rats on any day of the estrous cycle. Together, these findings indicate that the ovarian cAMP level and cAMP-PDE activity were regulated in a stage-dependent manner during ovarian follicular development, atresia and luteinization and providing evidences that cAMP and cAMP-specific PDEs are involved in these physiological processes.  相似文献   

16.
Prolactin may play multiple roles in equine reproduction. Prolactin appears to be associated with seasonal reproduction, and fluctuating prolactin levels during the estrous cycle suggest that it may play a role in estrous cyclicity as well. The purpose of this research was to investigate the activity of prolactin during the follicular phase of the estrous cycle. In experiment 1, prolactin concentrations were determined from plasma samples collected at least every other day throughout the estrous cycle. Periovulatory (ovulation ± 1 day) prolactin concentrations were compared with concentrations during early diestrus (days 2−10 postovulation). In experiment 2, prolactin concentrations were measured in follicular fluid collected from 74 follicles of various sizes. Follicles were grouped into small (≤20 mm), medium (21−35 mm), and large (>35 mm) size categories. Prolactin concentrations increased during the periovulatory period in cycling mares. This periovulatory surge was superimposed on baseline prolactin concentrations that varied with season. Prolactin was present in significant quantities in the follicular fluid. Follicular fluid prolactin concentrations were lowest in small follicles and increased in medium and large follicles. Concentrations did not differ between medium and large follicles. Follicular fluid prolactin concentrations were lower in autumnal follicles compared with summer follicles of comparable size. It is possible that the short-term surge in circulating prolactin around ovulation could be linked to the significant levels of prolactin in follicular fluid. Ovulation releases a relatively large volume of fluid into the peritoneum. The prolactin in this fluid could be a contributor to the periovulatory prolactin surge.  相似文献   

17.
Prostaglandin F2 alpha (PGF2 alpha) was injected on d 5, 8 or 11 postestrus in ewes to determine how stage of the estrous cycle would affect PGF2 alpha-induced changes in concentrations of ovarian and pituitary hormones and intervals to the onset of estrus and the preovulatory surge of luteinizing hormone (LH). Initial concentrations of progesterone and average values during the 12 h after PGF2 alpha were related positively to the day of cycle on which PGF2 alpha was administered. Patterns of decline in progesterone after injection of PGF2 alpha were similar among the 3 d. Concentrations of LH in plasma increased in a similar manner from 0 to 12 h in all ewes. After 12 h LH continued to increase, plateaued or declined in ewes treated on d 5, 8 or 11, respectively. Initial concentrations of follicle stimulating hormone (FSH) in plasma were related positively to day of treatment. After treatment with PGF2 alpha, FSH increased within 2 h on d 5 but declined by that time on d 8 or 11. Concentrations of estradiol following treatment did not vary with day. The onset of estrus and the preovulatory surge of LH occurred at 36 and 35, 40 and 45, and 48 and greater than 48 h in ewes treated on d 5, 8 or 11, respectively. It is concluded that: 1) the initial increase in LH is dependent on a decrease in plasma progesterone and 2) differences in patterns of secretion of gonadotropins before the preovulatory surge of LH might be caused by differences in progesterone or progesterone:-estradiol ratio when luteal regression is induced on different days of the estrous cycle.  相似文献   

18.
Ovarian follicular growth, function and turnover in cattle: a review   总被引:3,自引:0,他引:3  
Studies in cattle assessing changes in number and size of antral follicles, concentrations of estradiol, androgens and progesterone in serum and follicular fluid, and numbers of gonadotropin receptors per follicle during repetitive estrous cycles and postpartum anestrus are reviewed. The rate of growth of small follicles (1 to 3 mm) into larger follicles increases as the estrous cycle progresses from d 1 to 18 (d 0 = estrus). Size of the largest antral follicle present on the ovary also increases with advancement of the estrous cycle. Most large follicles (greater than 10 mm) persist on the ovarian surface for 5 d or more between d 3 and 13 of the bovine estrous cycle. After d 13, most of these large follicles are replaced more frequently by new growing follicles (turnover) with an increased probability for recruitment of the ovulatory follicle after d 18. More research is needed to determine the time required for growth of bovine follicles from small to large antral size and evoke recruitment of the ovulatory follicle. Factors that regulate selection of the ovulatory follicle are unknown but may involve increased frequency of LH pulses in blood, altered blood flow and(or) changes in intrafollicular steroids and proteins. Quantitative evaluation of ovarian follicles indicated occurrence of consistent short-term changes in fluid estradiol and numbers of luteinizing hormone receptors in cells of large follicles only during the pre-ovulatory period. Presumably, low concentrations of follicular estradiol found during most of the estrous cycle are not due to a lack of aromatizable precursor or follicle-stimulating hormone receptors. Follicular fluid concentrations of progesterone increase only near the time of ovulation. Little is known about changes in follicular growth, turnover and function during postpartum anestrus in cattle. However, preliminary data suggest that the steroidogenic capacity of large follicles changes markedly during the postpartum period.  相似文献   

19.
The ovarian dynamics and uterine and ovarian blood flows of a 6-year-old (2 parturitions) Holstein Friesian cow with right uterine horn aplasia were observed during two estrous cycles. In one estrous cycle, a corpus luteum (CL) formed in the right ovary, but regression of the CL and subsequent ovulation were not observed. In the other estrous cycle, a CL formed in the left ovary and delayed regression of the CL and subsequent ovulation were observed. The blood velocity of the right uterine artery was lower than that of the left uterine artery throughout both estrous cycles when a CL formed in either the right and left ovary. The blood velocities of the right and left ovarian arteries were unaffected by right uterine horn aplasia and changed depending on the presence of a CL. These results indicated that the blood flow of the right uterine artery was very weak and that aplasia of one uterine horn affects the estrous cycle, especially CL regression.  相似文献   

20.
Two experiments were conducted to investigate the response of the bovine corpus luteum to surges of luteinizing hormone (LH) induced by natural gonadotropin-releasing hormone (GnRH) administered twice during the same estrous cycle. In experiment 1, eight mature beef cows, each cow serving as her own control, were injected intravenously (iv) with saline on days 2 and 8 of the cycle (day of estrus = day 0 of the cycle), then with 100 micrograms GnRH on days 2 and 8 of the subsequent cycle. Jugular blood samples were taken immediately prior to an injection and at 15, 30, 45, 60, 120 and 240 min postinjection, to quantitate changes in serum luteinizing hormone. Blood was also collected on alternate days after an injection until day 16 of the cycle, to characterize changes in serum progesterone concentrations. Although exogenous GnRH caused release of LH on days 2 and 8 of the cycle, the quantity of LH released was greater on day 8 (P less than .025). Serum levels of progesterone after treatment with GnRH on day 8 of the cycle did not differ significantly from those observed during the control cycles of the heifers. Because exposure of the bovine corpus luteum to excess LH, induced by GnRH early during the estrous cycle, causes attenuated progesterone secretion during the same cycle, these data suggest that a second surge of endogenous LH may ameliorate the suppressive effect of the initial release of LH on luteal function. Duration of the estrous cycle was not altered by treatment (control, 20.4 +/- .5 vs. treated, 20.4 +/- .4 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号