首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
香菇冷冻干燥工艺参数的试验研究   总被引:17,自引:6,他引:17       下载免费PDF全文
确定了最优的香菇冷冻干燥工艺参数,以提高冻干效率和冻干香菇品质.通过单因素试验以及4因素5水平的二次回归正交试验,研究了冻干室压力、加热板温度、预冻降温速度和物料厚度等因素对冻干时间、干燥前后物料体积收缩率及复水比等几个指标的影响;建立了各指标与试验因子之间的回归数学模型;最后利用多目标非线性优化理论与方法,在保证香菇干燥品质的情况下,得到了香菇(厚度6~10 mm)冷冻干燥的最优工艺参数,干燥室压力111 Pa,加热板温度 42.5℃,降温速率-0.29℃/min.  相似文献   

2.
为减少脱水蔬菜冷冻干燥过程的能耗,以胡萝卜片为试材,采用真空微波和冷冻干燥组合的工艺,即先微波真空后冻干(组合Ⅰ)和先冻干后微波真空干燥(组合Ⅱ)。组合Ⅰ的优化参数为:真空微波阶段微波功率密度1.6w/g,脱去40个百分点的湿基水,冻干阶段升华干燥4 h,解析干燥3 h;组合Ⅱ的优化参数为:冻干阶段升华干燥7 h;真空微波干燥功率密度选1.0w/g以下,采用温度控制模式。所干燥胡萝卜片的β-胡萝卜素保留率和复水率等与纯冻干产品接近,体积保留率比纯冻干稍小,但仍能保持平直的外形;两种组合干燥工艺比纯冻干分别节能47.0%和54.2%,且干燥时间可缩短一半。  相似文献   

3.
为减少脱水蔬菜冷冻干燥过程的能耗,以胡萝卜片为试材,采用真空微波和冷冻干燥组合的工艺,即先微波真空后冻干(组合Ⅰ)和先冻干后微波真空干燥(组合Ⅱ)。组合Ⅰ的优化参数为:真空微波阶段微波功率密度1.6 w/g,脱去40个百分点的湿基水,冻干阶段升华干燥4 h,解析干燥3 h;组合Ⅱ的优化参数为:冻干阶段升华干燥7 h;真空微波干燥功率密度选1.0 w/g以下,采用温度控制模式。所干燥胡萝卜片的β-胡萝卜素保留率和复水率等与纯冻干产品接近,体积保留率比纯冻干稍小,但仍能保持平直的外形;2种组合干燥工艺比纯冻干分别节能47.0%和54.2%,且干燥时间可缩短一半。  相似文献   

4.
芦荟冷冻干燥的最佳工艺参数的试验研究   总被引:8,自引:1,他引:8  
芦荟冷冻干燥工艺参数试验研究旨在确定最优的冻干工艺参数,以提高芦荟的干燥效率和改进干燥品质。通过单因素试验以及四因素五水平的二次回归正交试验,研究了冻干室压力、加热板温度、预冻降温速度和物料厚度对冻干时间的影响;建立了各因子与冻干时间关系的回归数学模型;最后利用非线性优化理论与方法,在保证芦荟干燥品质的前提下,得到了芦荟(厚度6~9 mm)冷冻干燥的最佳工艺参数为:干燥室压力108 Pa,加热板温度38~39℃,降温速率-0.47~-0.35℃/min,干燥时间为6~7 h。  相似文献   

5.
不同真空冷冻干燥(FD)程序中的温度设定影响果蔬干制品的感官和营养品质。为获得蓝莓FD较优程序,本研究采用差示扫描量热法探究蓝莓热力学特性及玻璃化转变温度(Tg)的变化,采用低场核磁共振技术测定水分分布及含量变化,以收缩率、花青素含量和质构品质为指标,探究5种FD不同升温程序对蓝莓脆干燥特性和营养品质的影响。结果表明,超声处理后蓝莓共晶点、共熔点和Tg无显著变化;随着蓝莓含水率的降低,其Tg升高,蓝莓中的自由水先转换为不易流动水,随后不易流动水转换为自由水和结合水。FD不同程序设定下,蓝莓脆粒的收缩率、色泽、感官和营养品质变化显著(P<0.05)。程序2干燥后蓝莓脆粒的收缩率最小,程序1干燥后蓝莓脆粒的脆性最大,程序5干燥后蓝莓硬度最大;程序4干燥后蓝莓△E值最大,程序1干燥后蓝莓脆粒的维生素C(Vc)含量最高、抗氧化活性较高。综合考虑,确定较优FD程序为程序2:0℃(2 h)→5℃(2 h)→10℃(2 h)→20℃(2 h)→30℃(2 h)→40℃(2 h)→50℃(12 h)。本研究结果为蓝莓脆产品开发提供了理论基础。  相似文献   

6.
基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化   总被引:2,自引:11,他引:2  
为了提高杏鲍菇干制产品品质,降低干燥能耗,该文应用微波真空技术干燥杏鲍菇。采用三元二次回归旋转组合设计方法进行工艺参数优化试验,考察分析微波强度(X1)、物料厚度(X2)、腔体绝对压力(X3)因素对品质指标色差(Y1)、复水比(Y2)、氨基酸含量(Y3)和单位能耗(Y4)的影响及因子间交互作用对指标的影响;采用线性加权法,将多目标综合优化,确定干燥工艺的最优参数组合。结果表明:微波强度、物料厚度、腔体绝对压力对试验指标色差、复水比、氨基酸含量、单位能耗影响显著,物料厚度是影响色差的主要因素,物料厚度小于2 cm时,产品色泽较差;腔体绝对压力是影响复水比和氨基酸含量的主要因素,较小的腔体绝对压力有利于产品复水和减少氨基酸损失;微波强度是影响单位能耗的主要因素,高的微波强度,能耗较高,高的微波强度与较小的腔体绝对压力组合时,干燥能耗更高;杏鲍菇微波真空干燥高品质低能耗的最优工艺参数组合为微波强度12.5 kW/kg、物料厚度2.4 cm、腔体绝对压力18 kPa,此条件下干燥的产品品质优良,色泽洁白,色差L为78,复水性好,复水比为1.58,氨基酸破坏少,其值为473.1 mg/100 g,单位能耗较低,为9.3 kJ/kg。  相似文献   

7.
摘要:为降低稻谷干燥能耗并提高其生产效率,在全面分析已有相关指标基础上,提出了可反映热力特性的稻谷深床干燥新指标效能比。利用深床干燥试验台进行稻谷干燥单因素试验和五因素五水平二次正交旋转组合试验,建立了试验因子与效能比间关系的回归数学模型,分析了各因素对效能比的作用规律,利用频数分析法进行干燥工艺参数优化,得到了比能耗具有95%概率低于2000 kJ/(kg?h)的参数范围:热风温度56.2~57.7℃,表现风速0.89~0.96 m/s,谷层厚度35.3~37.0 cm,初始含水率21.31~21.86%,干燥时间2.87~3.16 h。为稻谷干燥机的节能设计与操作提供参考。  相似文献   

8.
黄土区陡坡侵蚀过程试验研究   总被引:3,自引:0,他引:3  
《土壤与环境》2002,11(4):356-359
  相似文献   

9.
预冻对苹果片真空冷冻干燥特性及品质的影响   总被引:8,自引:8,他引:0  
预冻是果蔬真空冷冻干燥(Freeze Drying,FD)的必须工艺环节,预冻冻结速率和冻融处理(Freeze Thaw Cycles,FTC)可用于调控果蔬FD干燥效率和改善产品品质。为探究冻结速率和冻融处理对FD苹果片干燥特性和品质的影响,缩短干燥时间并保持原料品质,该研究采用不同温度(-20℃、-80℃、液氮冻结)预冻和1~3次冻融(FTC-1、FTC-2、FTC-3)处理苹果片,探讨预冻处理对FD苹果片冻结特性、干燥特性,及微观结构、色泽、硬脆度和营养功能等核心品质的影响。结果表明,相较快速冻结处理(-80℃),缓慢冻结(-20℃)处理的苹果片FD干燥时间缩短5%,脆度提高50.1%,感官评价得分较高;相比于-20℃预冻组,FTC-1处理的苹果片具有较均匀的大孔隙结构,比孔容提高37.2%,FD干燥时间缩短15.3%,干燥能耗降低约14.6%,脆度增加117.6%;-20℃缓慢冻结联合冻融1次处理可显著提高苹果片干燥效率及综合品质。  相似文献   

10.
为探索预干燥处理对不同果蔬脆片结构及质地特性的影响,该研究采用真空冷冻干燥作为预干燥,并选取了3个水分转换点(60%、45%、30%),对预干燥过程中6种典型果蔬(苹果,梨,桃,山药,马铃薯,青萝卜)水分状态、细胞结构、收缩率、孔隙度、应力-松弛特性与质地特性进行测定与分析。结果表明,随着预干燥的进行,水分含量逐渐降低,自由水逐渐散失,以不易流动水为主,收缩率逐渐减小,孔隙度逐渐增大,硬度、咀嚼性、弹性模量逐渐增加;水分转换点为60% 时不同果蔬脆片具有较高的硬脆度,其中马铃薯与山药脆片硬度较高,桃与梨的脆片脆度较高;水分转换点为30%时,6种果蔬的孔隙度最高,且青萝卜的孔隙度显著高于其他果蔬(P < 0.05);在干燥后期,果蔬样品骨架基本形成,且收缩率较低,致使内部孔隙度变大;由相关性分析可知真空冷冻预干燥过程中水分转换点、孔隙度与果蔬脆片质地特性极显著相关(P < 0.05),研究结果可为预干燥对果蔬脆片质地影响提供参考。  相似文献   

11.
在果蔬真空冷冻干燥过程中对果蔬物料含水率进行实时监测,可为冻干过程监控和优化提供依据。该文研究以冻干果蔬物料含水分图像纹理分析为技术手段,实现连续表达干燥过程中物料的含水率。试材选用苹果,采用环形光源和高速CCD组件,在冻干仓窗外分别采集原始苹果样本MA和经CuSO4溶液染色的苹果样本MB在一个完整冻干周期中表面含水纹理变化的动态图像,运用主成分分析法对图像均值等6个含水纹理特征指标进行统计分析,并对原始样本纹理特征的第一主分量与其含水率W1、染色样本含水纹理特征的第一主分量与其含水率W2、W1和W2分别进行非线性回归分析。结果表明,模型的决定系数达到0.9376、0.9289和0.9930,且显著性检验概率均<0.0001,模型检验极显著。同时,模型相对误差基本<3%。因此,由果蔬物料含水图像的纹理特征可实现含水率的在线监测。该方法不但为真空冷冻干燥加工过程控制探索一种利用水分图像处理方法进行水分在线监测的新方法,而且也可在其他干燥加工水分监测及过程控制中应用。  相似文献   

12.
用图像法分析茄子在冻干过程中的水分动态运移规律   总被引:1,自引:2,他引:1  
为研究真空冻干果蔬内部水分扩散及运移过程和规律,以茄子为研究对象,运用图像处理技术建立水分运移微位移场并以微位移量对真空冻干过程中果蔬内部水分扩散及运移规律进行表达和定量分析。使用CCD(charge coupled device)相机每隔1 h采集茄子样本在真空冻干过程中横截面图像,直至6 h冷冻干燥完成终止。用自动阈值分割法、K均值聚类算法、伪彩色图像处理法可准确提取出原始图像中未冻干区域,再用Sobel边缘检测法提取得到水分边界。将6幅边界图像叠加并以物料几何中心为原点建立微位移场,用Harris角点检测法提取水分边缘与坐标轴相交的各个角点及其坐标值,计算得到每隔1 h各角点的位移量。通过对角点位移量与物料含水率相关性分析可知,模型显著性检验概率0.000 1,决定系数达0.999 8,说明模型检验极显著且拟合精度高。回归参数的检验结果表明,四个角点的微位移量对物料含水率平方的响应极显著,说明物料干燥水分边界微位移场变化量与含水率的关系可用该回归模型预测,物料含水率可用表达水分边界的微位移场参数来表示。该研究为果蔬冻干水分在线检测提供了一种新的方法,同时也为探索冻干机理和低能耗冻干工艺提供了参考。  相似文献   

13.
真空冷冻干燥对柠檬挥发性风味化合物保留的影响   总被引:1,自引:4,他引:1  
为探索真空冷冻干燥方法对柠檬中挥发性风味化合物保留特性的影响,该研究采用一体化冻干、传统冷冻干燥2种不同工艺方法进行对比干燥试验。结果表明,柠檬一体化冻干法在真空冻结阶段预先脱除了近1/3的初始水分,在预冻和升华干燥环节分别与比传统冻干法节省2.5、2h,冻干后形成相对致密的多孔网络结构,细胞壁孔室较为完整。新鲜柠檬原料挥发性风味化合物中单萜烯类化合物占绝对主导地位,主要为D-柠檬烯、萜品烯、左旋-β-蒎烯、β-蒎烯,主要倍半萜烯风味化合物为1-石竹烯、巴伦西亚橘烯、β-防风根烯,主要醛类化合物为柠檬醛、二甲基-辛二烯醛、壬醛、癸醛、己醛,主要醇类化合物为α-松油醇、橙花醇、4-萜烯醇、芳樟醇、香叶醇,主要酯类化合物为橙花乙酸酯、5-甲基-2-4-己烯-1-醇乙酸酯;各类主要挥发性风味化合物在2种方法冻干柠檬中保留率均较低,绝大部分迁移出被冷阱凝霜捕集或真空泵抽排机外损失;一体化冻干柠檬中各类风味化合物含量显著高于传统冻干柠檬(P0.05),对挥发性风味化合物的保留具有显著优势;主要单萜烯类风味化合物在传统冻干冷阱凝霜中含量显著高于一体化冻干冷阱凝霜(P0.05),而主要倍半萜烯化合物、醛类化合物、醇类化合物、脂类化合物在一体化冷阱凝霜中含量均显著高于传统冻干冷阱凝霜(P0.05)。2种冻干柠檬挥发性风味化合物保留特性的差异可能与冻干工艺时间、微观组织形态有关。该研究结果为柠檬等果蔬冷冻干燥加工制品的保香提质提供参考。  相似文献   

14.
基于能耗分析的真空冷冻干燥食用菌汤块制备中试   总被引:2,自引:2,他引:0  
为了降低冷冻干燥过程中能耗、推动冻干技术在食品中的应用,该研究应用在线调控预冻-冷冻干燥一体化设备进行食用菌汤块制备中试研究.对实际生产中冻结阶段(预冻温度、装盘物料厚度)、升华阶段(干燥仓压强、加热板温度)、解析阶段(水分转换点、升温工艺)等工艺进行了试验分析及优化,得出了适宜食用菌汤块冻干的节能工艺条件.提出了解析...  相似文献   

15.
熟肉真空冷却过程中水分迁移理论分析和实验(简报)   总被引:1,自引:1,他引:1  
真空冷却过程是复杂的相变传热传质过程。该文在能量和质量守恒理论的基础上,经过适当的简化,建立熟肉真空冷却过程中水分迁移的数学模型来分析水分迁移机理。利用圆柱形熟肉块的真空冷却实验来验证真空冷却过程中水分迁移的数学模型以获得真空冷却过程中熟肉的温度和压力的变化。结果分析发现:温度的模拟结果与实验数据基本一致,最大误差在5%以内,这表明此模型能够很好地预测真空冷却过程中熟肉内部的温度和压力分布。而且,通过模拟结果和实验数据可以得知:真空冷却过程中水分从熟肉内部向外部迁移的主要驱动力是熟肉内部之间的压差以及熟肉与真空室内之间的压差。因此,在实际应用过程中,为了提高真空冷却速率,应尽可能降低真空室内的压力以增加水分迁移的驱动力。  相似文献   

16.
牛蒡微粉加工工艺参数试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在对牛蒡微粉加工中影响因素进行单因素试验及分析的基础上,采用二次回归正交试验设计,研究了球磨机转速、研磨时间、粉碎介质填充率和物料填充率等因素对粉体粒度、单位粉体耗能等指标的影响,建立了各指标与试验因子间关系的回归数学模型。利用多目标非线性优化方法,确定了优化指标的工艺参数组合为:行星球磨机转速为272 r/min,研磨时间为85 min,介质填充率为12%,被粉碎物料填充率为13%,此时最低耗电量为0.002 kW·h/g。研究所确立的牛蒡微粉加工优化工艺参数对牛蒡微粉加工具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号