首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyyti?l?, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.  相似文献   

2.
We estimated daily use of stored water by Scots pine (Pinus sylvestris L.) trees growing in a temperate climate with the ANAFORE model (ANAlysis of FORest Ecosystems) and compared the simulation results with sap flow measurements. The original model was expanded with a dynamic water flow and storage model that simulates sap flow dynamics in an individual tree. ANAFORE was able to accurately simulate diurnal patterns of measured sap flow under microclimatic conditions that differ from those of the calibration period. Strong relationships were found between stored water use and several tree characteristics (diameter at breast height, sapwood area, leaf area), but not with tree height. Relative to transpiration, stored water use varied over time (between < 1% and 44% of daily transpiration). On days when transpiration was high, trees were more dependent on stored water, indicating that the contribution of internal water to transpiration is not a constant in the water budget of trees.  相似文献   

3.
We investigated the impact of drought on the physiology of 41-year-old Scots pine (Pinus sylvestris L.) in central Scotland. Measurements were made of the seasonal course of transpiration, canopy stomatal conductance, needle water potential, xylem water content, soil-to-needle hydraulic resistance, and growth. Comparison was made between drought-treated plots and those receiving average precipitation. In response to drought, transpiration rate declined once volumetric water content (VWC) over the top 20 cm of soil reached a threshold value of 12%. Thereafter, transpiration was a near linear function of soil water content. As the soil water deficit developed, the hydraulic resistance between soil and needles increased by a factor of three as predawn needle water potential declined from -0.54 to -0.71 MPa. A small but significant increase in xylem embolism was detected in 1-year-old shoots. Stomatal control of transpiration prevented needle water potential from declining below -1.5 MPa. Basal area, and shoot and needle growth were significantly reduced in the drought treatment. In the year following the drought, canopy stomatal conductance and soil-to-needle hydraulic resistance recovered. Current-year needle extension recovered, but a significant reduction in basal area increment was evident one year after the drought. The results suggest that, in response to soil water deficit, mature Scots pine closes its stomata sufficiently to prevent the development of substantial xylem embolism. Reduced growth in the year after a severe soil water deficit is most likely to be the result of reduced assimilation in the year of the drought, rather than to any residual embolism carried over from one year to the next.  相似文献   

4.
The effect of drought on forest water use is often estimated with models, but comprehensive models require many parameters, and simple models may not be sufficiently flexible. Many tree species, Pinus species in particular, have been shown to maintain a constant minimum leaf water potential above the critical threshold for xylem embolism during drought. In such cases, prediction of the relative decline in daily maximum transpiration rate with decreasing soil water content is relatively straightforward. We constructed a soil-plant water flow model assuming constant plant conductance and daily minimum leaf water potential, but variable conductance from soil to root. We tested this model against independent data from two sites: automatic shoot chamber data and sap flow measurements from a boreal Scots pine (Pinus sylvestris L.) stand; and sap flow measurements from a maritime pine (Pinus pinaster Ait.) stand. To focus on soil limitations to water uptake, we expressed daily maximum transpiration rate relative to the rate that would be obtained in wet soil with similar environmental variables. The comparison was successful, although the maritime pine stand showed carry-over effects of the drought that we could not explain. For the boreal Scots pine stand, daily maximum transpiration was best predicted by water content of soil deeper than 5 cm. A sensitivity analysis revealed that model predictions were relatively insensitive to the minimum leaf water potential, which can be accounted for by the importance of soil resistance of drying soil. We conclude that a model with constant plant conductance and minimum leaf water potential can accurately predict the decline in daily maximum transpiration rate during drought for these two pine stands, and that including further detail about plant compartments would add little predictive power, except in predicting recovery from severe drought.  相似文献   

5.
Domec JC  Gartner BL 《Tree physiology》2002,22(2-3):91-104
We do not know why trees exhibit changes in wood characteristics as a function of cambial age. In part, the answer may lie in the existence of a tradeoff between hydraulic properties and mechanical support. In conifers, longitudinal tracheids represent 92% of the cells comprising the wood and are involved in both water transport and mechanical support. We used three hydraulic parameters to estimate hydraulic safety factors at several vertical and radial locations in the trunk and branches: vulnerability to cavitation; variation in xylem water potential (psi); and xylem relative water content. The hydraulic safety factors for 12 and 88 percent loss of conductivity (S(H12) and S(H88), representing the hydraulic safety factors for the air entry point and full embolism point, respectively) were determined. We also estimated the mechanical safety factor for maximum tree height and for buckling. We estimated the dimensionless hydraulic and mechanical safety factors for six seedlings (4 years old), six saplings (10 years old) and six mature trees (> 110 years old) of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Over the natural range of psi, S(H12) decreased linearly from treetop to a minimum of 0.95 at the tree base. Young and mature trees had S(H12) values 1.4 and 1.3 times higher, respectively, at their tips (juvenile wood) than at their bases (mature wood). Modeling analyses indicated that if trees were made entirely of mature wood, S(H12) at the stem base would be only 0.7. The mechanical safety factor was 1.2 times higher for the base of the tree than for the rest of the tree. The minimum mechanical safety factor-1.6 for the critical buckling height and 2.2 for the critical buckling load-occurred at the base of the live crown. Modeling analysis indicated that if trees were made only of mature wood, these values would increase to 1.7 and 2.3, respectively. Hydraulic safety factors had values that were less than half those for mechanical safety factors, suggesting that wood structure in Douglas-fir has evolved primarily as a result of selection for hydraulic safety rather than mechanical safety. The results suggest that forest managers must consider the role of juvenile wood in tree physiology to avoid producing plantations vulnerable to drought.  相似文献   

6.

To study and model the variation of wood properties, sample trees were selected from 42 Norway spruce and 20 Scots pine stands covering a wide variation in climatic and site conditions, stand maturation and tree sizes. Plot and tree measurements were followed by sampling wood from different heights in each sample tree and laboratory measurements of wood properties. Mixed linear and non-linear prediction models were developed using diameters, number of annual rings and climatic indices as explanatory variables. The variation in spruce properties explained by these variables was: basic density 50%, latewood content 52%, juvenile wood diameter 85%, heartwood diameter 94% and bark thickness 76%. The corresponding values for pine were 59, 54, 79, 92 and 85%. Random among-tree variance was an important contributor to the remaining variation for density and latewood. In general, only a minor part of the random variation was related to variance between stands. Predictions derived from the models for density and juvenile wood in both species, and heartwood in pine showed good agreement when validated with data sets from two other studies. The resulting models may be used for predicting wood properties in forest planning and in bucking computers in harvesters, provided that the essential information is available.  相似文献   

7.
We examined the effects of increased transpiration demand on xylem hydraulic conductivity and vulnerability to cavitation of mature ponderosa pine (Pinus ponderosa Laws.) by comparing trees growing in contrasting climates. Previous studies determined that trees growing in warm and dry sites (desert) had half the leaf/sapwood area ratio (A(L)/A(S)) and more than twice the transpiration rate of trees growing in cool and moist sites (montane). We predicted that high transpiration rates would be associated with increased specific hydraulic conductivity (K(S)) and increased resistance to xylem cavitation. Desert trees had 19% higher K(S) than montane trees, primarily because of larger tracheid lumen diameters. Predawn water potential and water potential differences between the soil and the shoot were similar for desert and montane trees, suggesting that differences in tracheid anatomy, and therefore K(S), were caused primarily by temperature and evaporative demand, rather than soil drought. Vulnerability to xylem cavitation did not differ between desert and montane populations. A 50% loss in hydraulic conductivity occurred at water potentials between -2.61 and -2.65 MPa, and vulnerability to xylem cavitation did not vary with stem size. Minimum xylem tensions of desert and montane trees did not drop below -2.05 MPa. Foliage turgor loss point did not differ between climate groups and corresponded to mean minimum xylem tensions in the field. In addition to low A(L)/A(S), high K(S) in desert trees may provide a way to increase tree hydraulic conductivity in response to high evaporative demand and prevent xylem tensions from reaching values that cause catastrophic cavitation. In ponderosa pine, the flexible responses of A(L)/A(S) and K(S) to climate may preclude the existence of significant intraspecific variation in the vulnerability of xylem to cavitation.  相似文献   

8.

This study demonstrates the correlation between stem form and compression wood content in 36 sampled trees from a 6-yr-old container grown Scots pine ( Pinus sylvestris L.) plantation in central Sweden. Root analyses were carried out to examine causes for the high incidences of basal sweep. On the sampled trees basal sweep, stem sweep and maximum bow-height were measured. Discs were cut at different heights and the compression wood content was analysed using digital image analysis. Pith eccentricity and out-of-roundness were calculated for each disc as well as per stem. Compression wood and pith eccentricity was most pronounced near the stem base, where sweep tends to be high. In general, pith eccentricity increased with degree of basal sweep. As a conclusion, expression of basal sweep can be used to predict compression wood content in young Scots pine trees. This study also shows the importance of anchoring of a tree to prevent basal sweep formation due to instability.  相似文献   

9.
The effect of water-stress conditioning on water relations and histological features ofPinus thunbergii Parl. inoculated with avirulent isolate ofBursaphelenchus xylophilus (Steiner and Buhrer) Nickle, pine wood nematode, were investigated. Pines were kept under 8 days cycle of severe water stress. One-half of the water-stressed pines died as a result of infection by avirulent pine wood nematode and water stress tended to induce increased susceptibility and/or decreased resistance of pines to avirulent pine wood nematode. In dead pines, the water conducting function of xylem was lost, and all of the parenchyma cells died. In surviving pines, the xylem hydraulic conductivity and the xylem water content were significantly reduced (12 to 23% and 77 to 83%, respectively) compared to controls. Safranin dye perfusion of excised axis stem segments indicated that the water conductance was limited to the very narrow peripheral area of xylem. Embolism caused by cavitation in the tracheids occurred in the central part of xylem and in that dysfunctional region of the xylem the axial parenchyma cells surrounding the epithelial cells, and ray parenchyma cells partly degenerated but the epithelial cells survived. The disruption of tracheid shape observed in surviving pines indicates that avirulent pine wood nematode temporarily disturbed cell division of the cambium. Considering the differences in responses between dead pines and surviving pines after inoculation with avirulent pine wood nematode, the death of water-stressed pines apparently resulted from death of cells, in particular the vascular cambium and the loss of xylem hydraulic function by cavitation.  相似文献   

10.
While needles represent a proportionally large fraction of whole-plant hydraulic resistance, no studies to date have investigated how source–sink disturbances affect needle xylem structure. In this study, we evaluated structural changes in xylem in current-year needles of Scots pine 227 and 411 days after stem girdling (hereafter referred to as DAG). Maximum and minimum tracheid lumen diameters and therefore also the size of tracheid lumen areas increased in needles 227 DAG compared to control needles. In contrast, tracheid dimensions were similar in needles 411 DAG as in the control needles, but smaller xylem area and lower number of tracheids resulted in the lower theoretical needle hydraulic conductivity of those needles. Several needle xylem parameters were intercorrelated in both control and girdled trees. These observed changes provide a new understanding of the processes that occur following a source–sink disturbance. Considering anatomical parameters such as the number of tracheids, tracheid dimension, or needle xylem area, which are rarely described in physiological studies, could be helpful, for example, in understanding to tree hydraulic systems or for modeling gas exchange. Finally, empirical equations were developed to calculate needle theoretical hydraulic conductivity and the number of tracheids in needles using an easily measurable parameter of needle xylem area.  相似文献   

11.
In this work, empirical ring-based models were developed to predict the distribution of early wood percentage, wood density and fibre length along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. The performance of the ring-based models was also compared for Scots pine and Norway spruce with corresponding disc-based (cross-sectional) models. Moreover, both models were integrated with example simulations by a process-based growth and yield model to analyze how management, such as thinning, affects the growth and wood properties of Scots pine trees over a rotation as an average for the tree stem, but also along the stem.The ring-based models built for annual early wood percentage (explained by ring width), air dry wood density (explained by early wood percentage and cambial age) and fibre length (explained by radial growth percentage and cambial age) predicted reasonably well the wood properties both at an intra-ring level, but also at a cross-sectional level. These predictions were also reasonably well in line with corresponding cross-sectional predictions by the disc-based models (which predicted the properties based on the number of annual rings and diameter at breast height and/or the cross-section being considered and temperature sum). The example simulations also demonstrated that both models predicted slightly lower wood density for dominant trees compared to dominated ones grown in thinned and unthinned Scots pine stands over a rotation. Unlike the disc-based model, the ring-based model predicted, on average, higher early wood percentage in dominant trees than in dominated ones. However, fibre length was not significantly affected when the averages of the whole stems were predicted, and this held true for both ring- and disc-based models.In summary, the incorporation of empirical ring-based wood property models into a process-based growth and yield model, offers a means to study in detail how environmental conditions, forest structure and management affect the quantity and properties of stem wood produced over a rotation. The disc-based wood property models used in this work are based on data with large geographical and genetic variation, and therefore may turn out to be more applicable for predicting future wood and fibre resources at a regional and national level. This kind of integrated use of wood property models with a process-based growth and yield model could help us to evaluate the forest resources under current and changing climate.  相似文献   

12.
Internal water reserves in bark and foliage of trees contribute to transpiration (T) and play an essential role in optimizing water transport by buffering extreme peaks of water consumption. We examined patterns of stem shrinkage and their relationship to tree water dynamics. We measured fluctuations in root radius and stem radius at different stem heights, T of twigs at the top of the crown and sap flow velocities in stem sections of mature subalpine Norway spruce (Picea abies (L.) Karst.) trees over 2 years. The output of each sensor was coupled by physical functions to a mechanistic flow and storage model of tree water relations. The data verified the model-predicted lag in water storage depletion in response to the onset of transpiration and the lag increased with increasing distance from the crown periphery. Between the crown and stem base, the delay ranged from a few minutes to several hours, depending on microclimatic conditions and tree water status. Stem volume changes were proportional to the amount of water exchanged between the elastic tissues of the bark and the rigid xylem, indicating that the "peristaltic" wave of stem contraction along the flow path represented depletion of water stored in bark. On a daily basis, stems lost between 0.2 and 0.5% of their volume as a result of bark dehydration, corresponding to about 2 to 5 l of water. This water contributed directly to T. According to the model based on hydraulic principles, there are three main components underlying the dynamics of water storage depletion: flow resistance, storage capacities of needles and bark, and T of each tree section. The resistances and capacities were proportional to the response delay, whereas T in the lower parts of the tree was inversely proportional. The pattern of T within the crown depended on water intercepted by the branches. Because of these weather-dependent factors, there was no time constant for the response delay along the flow path. Nevertheless, the upper crown and the root section tended to have longer response delays per meter of flow path than the stem. The diurnal course of stem radius fluctuations represents the sum of all external and internal conditions affecting tree water relations; stem radius fluctuations, therefore, provide a sensitive measure of tree water status.  相似文献   

13.
Published data suggest that differences in wood cellulose carbon isotope composition (delta13C) and xylem ring width among natural populations of Scots pine in Scotland (Pinus sylvestris L.) are attributable to the persistence of palaeotypes of various post-glacial migratory origins. We assessed differences in wood cellulose delta13C and ring width among Scottish Scots pine populations grown in a clone bank and in natural stands at various locations in northern and central Scotland. Ring width and wood cellulose delta13C varied significantly among natural stands. Potential water deficit was positively correlated with wood cellulose delta13C and xylem ring width in the natural stands. Neither wood cellulose delta13C nor xylem ring width of clone bank trees correlated with any climate variables at the sites from which the trees originated, indicating little adaptation to climate for these traits. Xylem ring width showed a site x population interaction for the growth sites (i.e., natural stands versus clone bank), but wood cellulose delta13C did not. These results suggest that climate variation in Scotland has not resulted in significant genetic variation in wood cellulose delta13C or xylem ring width in post-glacial populations.  相似文献   

14.
We examined drought-induced changes in susceptibility of potted Scots pine (Pinus sylvestris L.) trees to a bark-beetle associated fungus (Leptographium wingfieldii Morelet, from the bark beetle Tomicus piniperda L.). Five-year-old field-grown trees were transplanted to 50-l pots and grown for 1 year before the treatments were applied. Trees in the drought treatment were subjected to several successive, 3-week-long drought cycles, with predawn water potential dropping below -2 MPa at peak drought intensity. The experimental drought cycles were more severe than the natural drought episodes usually recorded in Scots pine stands. Trees were then mass-inoculated with L. wingfieldii at a density close to the critical threshold density of inoculations (400 m(-2)) above which tree resistance is overcome. Inoculation of well-watered trees resulted in induced reaction zones around the inoculation points and very limited damage (resinosis) in the sapwood. Drought alone had no long-lasting consequences on tree water relations, except for a decrease in hydraulic conductance in the youngest segments of the main stem. However, the combination of mass-inoculation and drought stress after inoculation resulted in a dramatic loss of stem hydraulic conductivity that was paralleled by conspicuous damage to the sapwood (resinosis, drying and blue staining). There was a close correlation between amount of visible sapwood damage and loss of hydraulic conductivity. The intensity of induced reactions in the phloem was unaffected by drought stress. We conclude that tree defence against L. wingfieldii is decreased during severe drought stress, resulting in changes in the spread and action of the fungus in the sapwood but not in the phloem.  相似文献   

15.
We examined interrelated xylem water tensions and embolism dynamics under field conditions by simultaneously monitoring ultra-acoustic emissions and changes in stem xylem diameter. Variation in stem xylem diameter was measured with linear displacement transducers to estimate variation in sap tension. Measured ultrasonic acoustic emissions coincided well with changes in xylem diameter, indicating that individual peaks in embolism occurred simultaneously with peaks in water tension. The good time resolution between measurements makes this method especially suitable for observing embolism dynamics on a short timescale. Longer lasting measurements can also be made to monitor inter-daily patterns in water tension and embolism because the techniques are non-destructive. Ultra-acoustic emissions occurred mainly during periods of decreasing stem xylem diameter, i.e., increasing water tension, when the water tension was high enough. Embolism also occurred during periods of increasing xylem diameter, i.e., decreasing water tension, but the number of embolizing conduits under these conditions was small.  相似文献   

16.
In plants, water flows from roots to leaves through a complex network of xylem conduits. The xylem architecture is characterized by the conduit enlargement towards the stem base and the multiplication of conduits near the apices of lateral branches. The xylem architecture of a small ash tree was analysed by measuring the vessel hydraulic diameter (Dh) and number (N) at different heights along the stem and branches. Along the stem, Dh and N increased from the apex to the point of crown insertion. Below, Dh and N decreased and remained constant, respectively. In branches, the Dh and N of apices increased with distance from the ground (PL) (P < 0.001 and P < 0.0001, respectively), indicating that apical resistance (R(APEX)) becomes lower in the most peripheral branches (P < 0.0001). At the level of branch nodes along the stem, the total conductive area (AC) of the stem and branches just above the node was 11% higher than that of the stem just below the node (P = 0.024), whereas the conductivity (Kh) remained invariant above and below (P = 0.76). The difference in AC (ΔAC) between the branches and stem above each node increased with the distance of the node position from the stem apex (L). The xylem architecture of the analysed tree was characterized by anatomical modifications likely aimed at equilibrating the different path length effects on the hydraulic resistance of the different branches. Conduit tapering and multiplication seem to play a crucial role for the achievement of equal hydraulic resistance of all the leaves in the crown.  相似文献   

17.
Old provenance experiments with Scots pine and Norway spruce in Finland were used for assessing the long‐term effects of the projected climatic change on forest trees. The northernmost origins showed an increase in wood production when transferred southwards into a climate with an annual mean effective temperature sum close to that which is expected in northern areas as a result of the projected climatic change. A model is constructed with the estimated changes in wood production as a function of the annual mean temperature sum at the original location and the change in the annual mean temperature sum caused by the geographical transfer. The major changes in wood production are expected to occur in the northernmost areas of tree growth.  相似文献   

18.
Variations in slope, exposure, relief and substrate over a short distance and their influences on plant function are poorly understood. We investigated the influences of soil hydrological characteristics on internal stem structure and hydraulic properties of downy oak (Quercus pubescens Willd.) growing along a hill slope. Increment wood cores were extracted from the base and at breast height (BH) of tree stems. Relative wood water content (W(c)) and wood density (D(w)) were measured in the sapwood. Wood compression strength (delta) in the longitudinal direction was measured with a fractometer. Thin sections were cut from the transversal face of each core and vessel lumen area (V(A)) was measured and xylem theoretical hydraulic conductivity (L(th)) estimated over the sapwood. Topsoil volumetric water content (theta(v)) was determined around trees and the hydrological behavior of the slope was studied through field surveys. Data were used as input to a hydrological model to simulate topsoil water distribution along the slope. Results showed that theta(v) tends to decrease with increasing altitude. Groundwater levels were lower upslope than downslope, and results from the hydrological model confirmed these trends. Mean W(c) at the base of each tree decreased significantly with increasing altitude, whereas at BH, no differences were found along the slope. There was a significant positive relationship between W(c) measured at the tree base and theta(v) along the hill slope, but not for W(c) measured at BH. Values of D(w) and delta measured at both stem positions increased significantly with increasing altitude and decreasing theta(v). Significant negative relationships were found between delta and theta(v) measured at the stem base and at BH. At both stem positions, delta was closely related to D(w) and L(th). Vessel lumen areas at BH and the stem base were significantly regressed with altitude, theta(v), D(w) and delta. Xylem theoretical hydraulic conductivity at both stem positions was negatively related to altitude and soil theta(v), but only L(th) measured at the stem base was negatively regressed with D(w). The results are discussed in the context of how tree position along a hill slope influences water uptake and internal xylem structure.  相似文献   

19.
Calibration of a recently developed water flow and storage model based on experimental data for a young diffuse-porous beech tree (Fagus sylvatica L.) and a young ring-porous oak tree (Quercus robur L.) revealed that differences in stem wood anatomy between species strongly affect the calibrated values of the hydraulic model parameters. The hydraulic capacitance (C) of the stem storage tissue was higher in oak than in beech (939.8 versus 212.3 mg MPa(-1)). Model simulation of the elastic modulus (epsilon) revealed that this difference was linked to the higher elasticity of the stem storage tissue of oak compared with beech. Furthermore, the hydraulic resistance (R (x)) of beech was about twice that of oak (0.1829 versus 0.1072 MPa s mg(-1)). To determine the physiological meaning of the R (x) parameter identified by model calibration, we analyzed the stem wood anatomy of the beech and oak trees. Calculation of stem specific hydraulic conductivity (k (s)) of beech and oak with the Hagen-Poiseuille equation confirmed the differences in R (x) predicted by the model. The contributions of different vessel diameter classes to the total hydraulic conductivity of the xylem were calculated. As expected, the few big vessels contributed much more to total conductivity than the many small vessels. Compared with beech, the larger vessels of oak resulted in a higher k (s) (10.66 versus 4.90 kg m(-1) s(-1) MPa(-1)). The calculated ratio of k (s) of oak to beech was 2, confirming the R (x) ratio obtained by model calibration. Thus, validation of the R (x) parameter of the model led to identification of its physiological meaning.  相似文献   

20.
We studied effects of tree age, size and competitive status on foliage and stem production of 43 Scots pine (Pinus sylvestris L.) trees in southern Finland. The tree attributes related to competition included foliage density, crown ratio and height/diameter ratio. Needle mass was considered to be the primary cause of growth through photosynthesis. Both stem growth and foliage growth were strongly correlated with foliage mass. Consequently, differences in growth allocation between needles and stem wood in trees of different age, size, or position were small. However, increasing relative height increased the sum of stem growth and foliage growth per unit foliage mass, indicating an effect of available light. Suppressed trees seemed to allocate more growth to stem wood than dominant trees, and their stem growth per unit foliage mass was larger. Similarly, trees in dense stands allocated more growth to stem wood than trees in sparse stands. The results conformed to the pipe model theory but seemed to contradict the priority principle of allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号