首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

2.
Four-year-old Norway spruce (Picea abies L. (Karst.)) seedlings were exposed to ambient and elevated (1.5 x ambient in 1997 and 1.6 x ambient in 1998) ozone concentrations [O3] and three nitrogen (N) and two phosphorus (P) availabilities: "optimal" values (control); 70% of the control N and P values (LN and LP); and 150% of the control N value (HN). Treatments were applied in an open-field ozone fumigation facility during the 1997 and 1998 growing seasons. Effects on growth, mineral and pigment concentrations, stomatal conductance and ultrastructure of needles were studied. The HN treatment increased growth significantly, whereas elevated [O3] had a slight or variable impact on growth and biomass allocation in all N treatments. Although there were no significant effects of the LP treatment on plant growth during the second year, there was a reduction in 1-year-old shoot dry mass in the elevated O3 + LP treatment at the end of the experiment. There were no significant treatment effects on mineral concentrations of current-year and 1-year-old needles at the final harvest. In response to the HN treatment, chlorophyll a and b and carotenoid concentrations increased significantly in current-year needles. Chlorophyll a/b ratio decreased in response to elevated [O3] alone, but increased in seedlings in the O(3) + LP treatment. Stomatal conductance of current-year needles decreased with increasing N availability, but increased in response to elevated [O3]. However, the O3-induced increase in stomatal conductance was less in the LN and LP treatments than in the control treatment. In chloroplasts of current-year needles, increased N availability decreased mean starch grain area, but increased the number of plastoglobuli. We conclude that Norway spruce seedlings are relatively tolerant to slightly elevated [O3], and that nitrogen and phosphorus imbalances do not greatly affect the influence of O3 on this species when the exposure lasts for two growing seasons or less.  相似文献   

3.
Five-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment chambers. Plants were acclimated to a soil temperature of 16 degrees C during the first and third growing seasons, but were allocated at random to soil temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season. Low soil temperature during the second growing season depressed stomatal conductance and photosynthetic rate (A) per unit of projected leaf area, although intercellular CO2 concentrations did not differ significantly between treatments. At all soil temperatures, total chlorophyll concentration first decreased and then increased, although the rate of increase and the final concentration increased with soil temperature, which may explain the effect of soil temperature on A. Neither chlorophyll a/b ratio nor leaf nitrogen concentration was significantly affected by soil temperature. Treatment differences disappeared during the third simulated growing season when plants were again acclimated to a soil temperature of 16 degrees C.  相似文献   

4.
Kayama M  Kitaoka S  Wang W  Choi D  Koike T 《Tree physiology》2007,27(11):1585-1593
Growth characteristics of Picea glehnii Masters, P. jezoensis (Sieb. et Zucc) Carr., P. jezoensis var. hondoensis (Mayr) Rehder and P. shirasawae Hayashi from Japan, P. abies (L.) Karst. from Europe and P. glauca Voss, P. mariana Britt., Sterns and Pogg. and P. rubens Sarg. from North America were compared. The trees were grown in similar conditions at the Tomakomai Experimental Forest of Hokkaido University in northern Japan. Tree growth, needle biomass, longevity, photosynthetic rate, nitrogen concentration and specific leaf area (SLA) were measured, and photosynthetic nitrogen-use efficiency was calculated. Picea jezoensis, P. jezoensis var. hondoensis, P. abies and P. glauca had high growth rates, high photosynthetic rates in young needles, high needle nitrogen concentrations and short needle life spans. In contrast, P. glehnii, P. shirasawae, P. mariana and P. rubens had low growth and photosynthetic rates, low needle nitrogen concentrations, long needle life spans and maintained a high photosynthetic nitrogen-use efficiency in older needles. Examination of relationships between several growth parameters of the eight taxa revealed positive correlations between SLA and mass-based photosynthetic rate and between SLA and mass-based nitrogen concentration, whereas mass-based photosynthetic rate and mass-based nitrogen concentration were negatively correlated with needle longevity. The species differed greatly in growth characteristics despite being grown in similar conditions.  相似文献   

5.
Four clones of Sitka spruce (Picea sitchensis (Bong.) Carr.) from two provenances, at 53.2 degrees N (Skidegate a and Skidegate b) and at 41.3 degrees N (North Bend a and North Bend b), were grown for three growing seasons in ambient (~350 micromol per mol) and elevated (~700 micromol per mol) CO2 concentrations. The clones were grown in stress-free conditions (adequate nutrition and water) to assess the effect of elevated [CO2] on tree physiology. Growth in elevated [CO2] significantly increased instantaneous photosynthetic rates of the clonal Sitka spruce saplings by about 62%. Downward acclimation of photosynthesis (A) was found in all four clones grown in elevated [CO2]. Rubisco activity and total chlorophyll concentration were also significantly reduced in elevated [CO2]. Provenance did not influence photosynthetic capacity. Best-fit estimates of Jmax (maximum rate of electron transport), Vcmax (RuBP-saturated rate of Rubisco) and Amax (maximum rate of assimilation) were derived from responses of A to intercellular [CO2] by using the model of Farquhar et al. (1980). At any leaf N concentration, the photosynthetic parameters were reduced by growth in elevated [CO2]. However, the ratio between Jmax and Vcmax was unaffected by CO2 growth concentration, indicating a tight coordination in the allocation of N between thylakoid and soluble proteins. In elevated [CO2], the more southerly clones had a higher initial N use efficiency (more carbon assimilated per unit of leaf N) than the more northerly clones, so that they had more N available for those processes or organs that were most limiting to growth at a particular time. This may explain the initial higher growth stimulation by elevated [CO2] in the North Bend clones than in the Skidegate clones.  相似文献   

6.
Branches of nine-year-old loblolly pine trees grown in a 2 x 2 factorial combination of fertilization and irrigation were exposed for 11 months to ambient, ambient + 175, or ambient + 350 micro mol mol(-1) CO(2). Rates of light-saturated net photosynthesis (A(max)), maximum stomatal conductance to water vapor (g(max)), and foliar nitrogen concentration (% dry mass) were assessed monthly from April 1993 until September 1993 on 1992 foliage (one-year-old) and from July 1993 to March 1994 on 1993 foliage (current-year). Rates of A(max) of foliage in the ambient + 175 CO(2) treatment and ambient + 350 were 32-47 and 83-91% greater, respectively, than that of foliage in the ambient CO(2) treatment. There was a statistically significant interaction between CO(2) treatment and fertilization or irrigation treatment on A(max) on only one measurement date for each age class of foliage. Light-saturated stomatal conductance to water vapor (g(max)) was significantly affected by CO(2) treatment on only four measurement dates. Light-saturated g(max) in winter was only 42% of summer g(max) even though soil water during winter was near field capacity and evaporative demand was low. Fertilization increased foliar N concentration by 30% over the study period when averaged across CO(2) treatments. During the study period, the ambient + 350 CO(2) treatment decreased average foliar N concentration of one-year-old foliage in the control, irrigated, fertilized and irrigated + fertilized plots by 5, 6.4, 9.6 and 11%, respectively, compared with one-year-old foliage in the corresponding ambient CO(2) treatments. The percent increase in A(max) due to CO(2) enrichment was similar in all irrigation and fertilization treatments and the effect persisted throughout the 11-month study period for both one-year-old and current-year foliage.  相似文献   

7.
Net CO2 exchange in a 35-year-old boreal Norway spruce (Picea abies (L.) Karst.) forest in northern Sweden was measured at the shoot (NSE), tree (NTE) and ecosystem levels (NEE) by means of shoot cuvettes, whole-tree chambers and the eddy covariance technique, respectively. We compared the dynamics of gross primary production (GPP) at the three levels during the course of a single week. The diurnal dynamics of GPP at each level were estimated by subtracting half-hourly or hourly model-estimated values of total respiration (excluding light-dependent respiration) from net CO(2) exchange. The relationship between temperature and total respiration at each level was derived from nighttime measurements of NSE, NTE and NEE over the course of 1 month. There was a strong linear relationship (r2 = 0.93) between the hourly estimates of GPP at the shoot and tree levels, but the correlation between shoot- and ecosystem-level GPP was weaker (r2 = 0.69). However, the correlation between shoot- and ecosystem-level GPP was improved (r2 = 0.88) if eddy covariance measurements were restricted to periods when friction velocity was > or = 0.5 m s(-1). Daily means were less dependent on friction velocity, giving an r2 value of 0.94 between shoot- and ecosystem-level GPP. The correlation between shoot and tree levels also increased when daily means were compared (r2 = 0.98). Most of the measured variation in carbon exchange rate among the shoot, tree and ecosystem levels was the result of periodic low coupling between vegetation and the atmosphere at the ecosystem level. The results validate the use of measurements at the shoot and tree level for analyzing the contribution of different compartments to net ecosystem CO2 exchange.  相似文献   

8.
Effects of phosphorus supply and mycorrhizal status on the response of photosynthetic capacity to elevated CO(2) were investigated in loblolly pine (Pinus taeda L.) seedlings. Seedlings were grown in greenhouses maintained at either 35.5 or 71.0 Pa CO(2) in a full factorial experiment with or without mycorrhizal inoculum (Pisolithus tinctorius (Pers.) Coker & Couch) and with an adequate or a limiting supply of phosphorus. Assimilation versus internal CO(2) partial pressure (C(i)) curves were used to estimate maximum Rubisco activity (V(c,max)), electron transport mediated ribulose 1,5-bisphosphate regeneration capacity (J(max)), phosphate regeneration capacity (PiRC) and daytime respiration rates (R(d)). Nonmycorrhizal seedlings grown with limiting phosphorus had significantly reduced V(c,max) and PiRC compared to seedlings in other treatments. Elevated CO(2) increased photosynthetic capacity in nonmycorrhizal seedlings in the low phosphorus treatment by increasing PiRC, whereas it induced phosphorus limitation in mycorrhizal seedlings in the low phosphorus treatment and did not affect the photosynthetic capacity of seedlings in the high phosphorus treatment. Despite the variety of effects on photosynthetic capacity, seedlings in the elevated CO(2) treatments had higher net assimilation rates than seedlings in the ambient CO(2) treatments. We conclude that phosphorus supply affects photosynthetic capacity during long-term exposure to elevated CO(2) through effects on Rubisco activity and ribulose 1,5-bisphosphate regeneration rates.  相似文献   

9.
Abstract

Elevated levels of atmospheric carbon dioxide (CO2) can directly affect the cold hardening process in evergreens through their effect on the accumulation of carbon and nitrogen reserves. This study investigated the biochemical responses of black spruce [Picea mariana (Mill.) B.S.P.] seedlings to CO2 enrichment during growth, cold hardening and dehardening. Seedlings were grown under 350 (ambient) or 710 (elevated) ppm of CO2 for 12 months in eight mini-greenhouses. Photoperiod and temperature were gradually lowered in autumn to induce cold hardening, and the conditions were reversed in spring to promote dehardening. At regular intervals, cold tolerance was assessed and sugars, starch and amino acid concentrations were measured. The freezing tolerance differed between the two treatments only in early autumn, with seedlings growing under high CO2 being more tolerant. The northern ecotype was more cold tolerant with concomitant higher concentrations of sucrose, fructose, pinitol, glucose and total soluble sugars. The concentration of soluble sugars increased in needles and roots of black spruce along with cold hardening, and the concentrations of the cryoprotective sugars sucrose and raffinose were lower under elevated CO2. Amino acid concentrations were also lower under elevated than under ambient CO2. The lower level of reserve did not translate into a lower level of freezing tolerance.  相似文献   

10.
Zhang S  Dang QL 《Tree physiology》2006,26(11):1457-1467
To investigate the interactive effects of atmospheric carbon dioxide concentration ([CO(2)]) and nutrition on photosynthesis and its acclimation to elevated [CO(2)], a two-way factorial experiment was carried out with two nutritional regimes (high- and low-nitrogen (N), phosphorus (P) and potassium (K)) and two CO(2) concentrations (360 and 720 ppm) with white birch seedlings (Betula papyrifera Marsh.) grown for four months in environment-controlled greenhouses. Elevated [CO(2)] enhanced maximal carboxylation rate (V(cmax)), photosynthetically active radiation-saturated electron transport rate (J(max)), actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/F(m)') and photosynthetic linear electron transport to carboxylation (J(c)) after 2.5 months of treatment, and it increased net photosynthetic rate (A(n)), photosynthetic water-use efficiency (WUE), photosynthetic nitrogen-use efficiency (NUE) and photosynthetic phosphorus-use efficiency (PUE) after 2.5 and 3.5 months of treatment, but it reduced stomatal conductance (g(s)), transpiration rate (E) and the fraction of total photosynthetic linear electron transport partitioned to oxygenation (J(o)/J(T)) after 2.5 and 3.5 months of treatment. Low nutrient availability decreased A(n), WUE, V(cmax), J(max), triose phosphate utilization (TPU), (/F(m)' - F)//F(m)' and J(c), but increased J(o)/J(T) and NUE. Generally, V(cmax) was more sensitive to nutrient availability than J(max). There were significant interactive effects of [CO(2)] and nutrition over time, e.g., the positive effects of high nutrition on A(n), V(cmax), J(max), DeltaF/F(m)' and J(c) were significantly greater in elevated [CO(2)] than in ambient [CO(2)]. In contrast, the interactive effect of [CO(2)] and nutrition on NUE was significant after 2.5 months of treatment, but not after 3.5 months. High nutrient availability generally increased PUE after 3.5 months of treatment. There was evidence for photosynthetic up-regulation in response to elevated [CO(2)], particularly in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation (or increased mesophyll resistance) rather than stomatal limitation. Elevated [CO(2)] reduced leaf N concentration, particularly in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentration. High nutrient availability generally increased area-based leaf N, P and K concentrations, but had negligible effects on K after 2.5 months of treatment.  相似文献   

11.
The effects of three common tree species - Scots pine, Norway spruce and silver birch - on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the O horizon, DOC concentrations and fluxes in the birch stands were lower than in the spruce and pine stands; annual fluxes were 21 g m−2 y−1 for birch and 38 g m−2 y−1 and 37 g C m−2 y−1 for spruce and pine, respectively. Under the B horizon, annual fluxes for all tree species ranged between 3 and 5 g C m−2 y−1, implying greater loss of DOC in the mineral soil in the coniferous stands than in the birch stands. We did not find any effect of tree species on the quality of the dissolved organic matter, as measured by SUVA, indicating that the chemical composition of the organic matter was similar in leachates from all three tree species. Substantial amounts of nitrogen was leached out of the soil profile at the bottom of the B horizon from the pine and birch stands, whereas the spruce stands seemed to retain most of the nitrogen in the soil. These differences in N leaching have implications for soil N budgets.  相似文献   

12.
Northern forests are currently experiencing increasing mean temperatures, especially during autumn and spring. Consequently, alterations in carbon sequestration, leaf biochemical quality and freezing tolerance (FT) are likely to occur. The interactive effects of elevated temperature and ozone (O(3)), the most harmful phytotoxic air pollutant, on Norway spruce (Picea abies (L.) Karst.) seedlings were studied by analysing phenology, metabolite concentrations in the needles, FT and gas exchange. Sampling was performed in September and May. The seedlings were exposed to a year-round elevated temperature (+1.3 °C), and to 1.4× ambient O(3) concentration during the growing season in the field. Elevated temperature increased the concentrations of amino acids, organic acids of the citric acid cycle and some carbohydrates, and reduced the concentrations of phenolic compounds, some organic acids of the shikimic acid pathway, sucrose, cyclitols and steroids, depending on the timing of the sampling. Although growth onset occurred earlier at elevated temperature, the temperature of 50% lethality (LT(50)) was similar in the treatments. Photosynthesis and the ratio of photosynthesis to dark respiration were reduced by elevated temperature. Elevated concentrations of O(3) reduced the total concentration of soluble sugars, and tended to reduce LT(50) of the needles in September. These results show that alterations in needle chemical quality can be expected at elevated temperatures, but the seedlings' sensitivity to autumn and spring frosts is not altered. Elevated O(3) has the potential to disturb cold hardening of Norway spruce seedlings in autumn, and to alter the water balance of the seedling through changes in stomatal conductance (g(s)), while elevated temperature is likely to reduce g(s) and consequently reduce the O(3)-flux inside the leaves.  相似文献   

13.
The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo and light microscopic levels in fresh-cut and fixed buds obtained by regular field samplings during the spring of 2007, 2008 and 2009. Buds were collected from 15 randomly selected trees (all 16 years old in 2007) of one southern Finnish half-sib family. The air temperature was recorded hourly throughout the observation period. In 2008 and 2009, initial events in the buds, seen as accumulation of lipid droplets in the cortex area, started in mid-March and were depleted in late April, simultaneously with the early development of vascular tissue and primordial needles. In mid-April 2007, however, the development of the buds was at least 10 days ahead as a result of warm spells in March and early April. Variation in the timing of different developmental phases within and among the sample trees was negligible. There was no clear one-to-one correspondence between the externally visible and the internal development of the buds. The dependence of the primordial shoot ratio on different types of temperature sum was studied by means of regression analysis. High coefficients of determination (R(2)?≈?95%) were attained with several combinations of the starting time (beginning of the year/vernal equinox), the threshold value (from -3 to +5 °C), and the time step (hour/day) used in the temperature summation, i.e., the prediction power of the primordial shoot ratio models turned out to be high, but the parameter estimate values were not unambiguous. According to our results, temperature sums describe the growth of the primordial shoot inside the bud before bud burst. Thus, the results provide a realistic interpretation for the present phenological models of bud development that are based on temperature sums and external observations of bud burst only, and they also provide new tools for improving the models.  相似文献   

14.
Trees must respond to many environmental factors during their development, and light is one of the main stimuli regulating tree growth. Thinning of forest stands by selective tree removal is a common tool in forest management that increases light intensity. However, morphological and anatomical adaptations of individual shoots to the new environmental conditions created by thinning are still poorly understood. In this study, we evaluated shoot morphology (shoot length, needle number, projected leaf area) and anatomy (tracheid lumen area, tracheid number, tracheid dimensions, xylem area, potential hydraulic conductivity) in three Norway spruce (Picea abies/L./Karst.) families exposed to different thinning regimes. We compared shoot characteristics of upper-canopy (i.e. sun-exposed) and lower-canopy (i.e. shaded) current-year shoots in a control plot and a plot thinned to 50 % stand density the previous year. One tree per family was chosen in each treatment, and five shoots were taken per canopy position. We found that upper-canopy shoots in both plots had higher values than lower-canopy shoots for all studied parameters, except lumen roundness and tracheid frequency (i.e. tracheid number per xylem area). Thinning had little effect on shoot morphology and anatomy 1 year after thinning, except for small but significant changes in tracheid dimensions. Needles were more sensitive to altered light conditions, as projected leaf area of shoot, needle number and leaf hydraulic conductivity changed after thinning. Differences between upper- and lower-canopy shoots did not seem to be influenced by thinning and were almost the same in both plots. Our results suggest that lower-canopy shoots require several years to modify their morphology and anatomy to new light conditions following thinning. The slow light adaptation of the lower canopy may be of practical importance in forest management: thinned stands may be predisposed to drought stress because newly exposed shoots experience increased illumination and transpiration after thinning.  相似文献   

15.
Stumps are the largest coarse woody debris component in managed forests, but their role in nutrient cycling is poorly understood. We studied carbon (C) and nitrogen (N) dynamics in Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and silver birch (Betula pendula) stumps, which had decomposed for 0, 5, 10, 20, 30 and 40 years after clear-cutting in southern Finland. Carbon and N were released significantly faster from birch stumps than from conifer stumps. In 40 years, conifer stumps lost 78% and birch stumps 90% of their initial C. In contrast, the amount of N in stumps increased, indicating that external N accumulated in the stumps. After 40 years of decomposition, the amount of N was 1.7 and 2.7 times higher than the initial amount in pine and spruce stumps, respectively. Nitrogen was released from birch stumps, but only after they had decomposed for 20 or more years. On average, 59% of N stored in birch stumps was released during 40 years. The results indicate that the stumps of the major tree species in Fennoscandian forests are long-term C and, especially, N pools which serve as N sinks, thus potentially diminishing N leaching into ground water and watercourses after harvesting. This suggests that the removal of stumps for bioenergy production may markedly affect the nutrient status and nutrient cycling of boreal forests.  相似文献   

16.
In Alaska, an outbreak of spruce beetles (Dendroctonus rufipennis) recently infested over one million hectares of spruce (Picea spp.) forest. As a result, land management agencies have applied different treatments to infested forests to minimize fire hazard and economic loss and facilitate forest regeneration. In this study we investigated the effects of high-intensity burning, whole-tree harvest, whole-tree harvest with nitrogen (N) fertilization, and conventional harvest of beetle-killed stands 4 years after treatment, as well as clear-cut salvage harvest 6 years after treatment. We measured available soil ammonium and nitrate and estimated N loss from leaching using in situ cation and anion resin exchange capsules. We also assessed spruce regeneration and responses of understory plant species. Availability and losses of N did not differ among any of the management treatments. Even a substantial application of N fertilizer had no effect on N availability. Spruce regeneration significantly increased after high-intensity prescribed burning, with the number of seedlings averaging 8.9 m−2 in burn plots, as compared to 0.1 m−2 in plots that did not receive treatment. Biomass of the pervasive grass bluejoint (Calamagrostis canadensis) was significantly reduced by burning, with burn plots having 9.5% of the C. canadensis biomass of plots that did not receive treatment. N fertilization doubled C. canadensis biomass, suggesting that N fertilization without accompanying measures to control C. canadensis is the least viable method for promoting rapid spruce regeneration.  相似文献   

17.
Changes in the Earth's atmosphere are expected to influence the growth, and therefore, carbon accumulation of European forests. We identify three major changes: (1) a rise in carbon dioxide concentration, (2) climate change, resulting in higher temperatures and changes in precipitation and (3) a decrease in nitrogen deposition. We adjusted and applied the hydrological model Watbal, the soil model SMART2 and the vegetation model SUMO2 to asses the effect of expected changes in the period 1990 up to 2070 on the carbon accumulation in trees and soils of 166 European forest plots. The models were parameterized using measured soil and vegetation parameters and site-specific changes in temperature, precipitation and nitrogen deposition. The carbon dioxide concentration was assumed to rise uniformly across Europe. The results were compared to a reference scenario consisting of a constant CO2 concentration and deposition scenario. The temperature and precipitation scenario was a repetition of the period between 1960 and 1990. All scenarios were compared to the reference scenario for biomass growth and carbon sequestration for both the soil and the trees.  相似文献   

18.
Phillips N  Bergh J  Oren R  Linder S 《Tree physiology》2001,21(12-13):851-860
We investigated effects of nutrition and soil water availability on sap flux density, transpiration per unit leaf area (EL), and canopy stomatal conductance (GS) of Norway spruce (Picea abies L. (Karst.)) in northern Sweden during the 1996 growing season. Our objectives were to determine (1) if artificially imposed drought (65% rain diversion) reduces soil water sufficiently to cause physiological limitations to whole-tree and plot-scale water transport, and (2) whether increased capacity for water transport resulting from fertilization-induced increases in leaf (> 3-fold) and sapwood areas (> 2.3-fold) deplete soil water sufficiently to cause a negative feedback on GS and EL. We monitored soil water content (theta) and soil water potential (PsiS) in control (C), drought (D), fertilized (F) and irrigated + fertilized (IL) treatment plots, along with site meteorological conditions. Ten trees per plot were monitored for sap flow. Although there were significant treatment differences in mean daily EL (C > D > F; P < 0.01) and GS (C > D > F; P < 0.05), variation in absolute magnitudes was small. Therefore, transpiration differences on a unit ground area basis (EC) were nearly proportional to leaf area differences. Precipitation was well distributed throughout the study period and so PsiS remained high, except during short dry periods in Plot F when it declined rapidly. Thus, although soil water was not limiting to GS, EL or EC when precipitation was uniformly distributed throughout the growing season, we cannot conclude that water availability would not limit GS in fertilized stands if the seasonal distribution of precipitation were altered.  相似文献   

19.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

20.
Young individuals of a single black cottonwood (Populus trichocarpa Torr. & Gray) clone were raised for three growing seasons in whole-tree chambers and exposed to either ambient or elevated atmospheric carbon dioxide concentration ([CO2]), with either a high or a low mineral nutrient supply, in a factorial experimental design. Nutrient availability had a larger effect on growth and dry matter partitioning than did [CO2]. Total biomass did not differ significantly with CO2 treatment when nutrient availability was low. However, elevated [CO2] increased whole-plant biomass by 47% in the high nutrient availability treatment. Carbon dioxide enrichment reduced leaf area ratio and specific leaf area significantly, but had no significant effect on mean leaf size or leaf mass ratio. Root mass ratio was significantly increased by elevated [CO2] at low, but not at high nutrient availability. A modified "demographic harvesting approach" made possible the retrospective estimation of stem and branch dry masses for different years. The relative growth rates of stem and branch were significantly enhanced by elevated [CO2] with high, but not with low nutrient availability. Canopy productivity index (CPI), i.e., the amount of stem and branch wood produced annually per unit leaf area, was raised 12% by elevated [CO2] when nutrient availability was high, but was reduced when nutrient availability was low, because of increased below ground allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号