共查询到18条相似文献,搜索用时 125 毫秒
1.
2.
柑橘和土壤中苯醚甲环唑残留动态研究及安全性评价 总被引:4,自引:0,他引:4
通过田间试验,研究了10 %苯醚甲环唑水分散粒剂在柑橘及土壤中的残留动态状况.结果表明,柑橘中苯醚甲环唑消解速度较快,橘皮中半衰期为7.95~12.65 d、橘肉中7.95~12.65 d、全果中7.95~12.65 d;土壤中苯醚甲环唑消解相对缓慢,半衰期为12.33~17.95 d.2年试验结果中,10 %苯醚甲环唑水分散粒剂按照施药浓度1000和2000 mg/kg,施药3、4次,末次施药距收获间隔21 d,柑橘全果中苯醚甲环唑残留量均低于0.5 mg/kg,该药按推荐剂量使用是安全的. 相似文献
3.
5.
建立了辣椒和土壤样品中苯醚甲环唑残留量的快速检测方法,样品于分液漏斗中用正己烷萃取,振荡提取3次,浓缩后正己烷定容,气相色谱-电子捕获检测器(GC-ECD)检测,外标法定量。结果表明院正己烷提取辣椒和土壤中苯醚甲环唑效果较好,无需净化可以直接上机检测。该方法在苯醚甲环唑添加量为0.01~1.00 mg/L范围内线性相关性良好,R2=0.997 1,最低检出限为0.002 5 mg/kg。在添加水平为0.01~1.00 mg/kg中,辣椒在3个添加水平下的苯醚甲环唑回收率为83.8%~102.2%,相对标准偏差为3.9%~4.9%;土壤在3个添加水平下的苯醚甲环唑回收率为83.7%~104.4%,相对标准偏差为6.7%~8.4%。它具有高效率、低成本、高灵敏度、定量准确等优点。 相似文献
6.
7.
8.
SPE-GC/ECD测定西瓜中的苯醚甲环唑残留 总被引:1,自引:0,他引:1
[目的]探索气相色谱法测定西瓜中苯醚甲环唑残留量。[方法]以西瓜为试材,确立了苯醚甲环唑的保留时间、线性回归方程、相关系数及检出限,并测定了它们在样品中的回收率。[结果]用该方法测定苯醚甲环唑线性关系良好,线性范围为0.1—10.0μg/ml,回收率在82%~90%。[结论]气相色谱法测定西瓜中苯醚甲环唑残留量具有较好的准确度和精确度,是检测西瓜中苯醚甲环唑残留的有效方法。 相似文献
9.
气相色谱法测定三七中苯醚甲环唑残留量 总被引:2,自引:1,他引:2
张雪燕 《湖南农业大学学报(自然科学版)》2010,36(2):229-232
建立了三七中苯醚甲环唑残留量的分析方法,并应用于三七样品检测.样品采用丙酮超声波提取,硅胶和中性氧化铝柱净化,GC-ECD检测.方法的最小检出量(LOD)为0.004ng,最低检测限(LOQ)为0.02mg/kg;样本中添加苯醚甲环唑0.02~0.5mg/kg时(n=5),平均回收率为80.6%~95.0%,相对标准偏差(RSD)为1.6%~11.9%,方法的灵敏度、精密度和准确度均满足农药残留分析要求.市场随机抽样检测表明,三七中苯醚甲环唑残留量为0.02~0.6mg/kg,检出率47%,检出率和残留水平从高到低均依次为三七花、三七须根、三七块根. 相似文献
10.
苯醚甲环唑在土壤中的降解动力学及其影响因子 总被引:2,自引:1,他引:2
研究了苯醚甲环唑在北京、萧县、杭州及长沙4个地区土壤中的降解动力学,并探讨了土壤微生物、温度、含水量及药剂质量分数对其降解的影响.结果表明:苯醚甲环唑在4个地区土壤中的降解半衰期为11.63~21.77 d.土壤微生物对苯醚甲环唑降解起主导作用,灭菌土壤降解半衰期是非灭菌条件下的6.09倍;15~40℃范围内,温度升高,土壤中苯醚甲环唑降解加快,15~25℃降解速率增加幅度较大;士壤含水量过高(150%)和过低(25%)都不利于苯醚甲环唑降解,而土壤中药剂质量分数的增大对苯醚甲环唑降解则起阻碍作用. 相似文献
11.
建立GC-NPD测定苯醚甲环唑和嘧菌酯在香蕉和土壤中残留的分析方法。样品经乙腈提取,弗罗里硅土小柱净化,洗脱液为正己烷∶丙酮=9∶1。结果表明:该方法可以同时检测出香蕉和土壤中两种物质的含量,两种物质在0.05~2μg/mL的范围内有良好的线性关系,苯醚甲环唑和嘧菌酯的线性相关系数分别为0.997 3和0.999 4。在香蕉果、肉和土中的最低检测浓度皆为0.05 mg/kg,最小检出量为0.05 ng,在不同样品中的平均回收率分别为85.4%~107.4%和93.4%~106.3%,相对标准偏差分别为1.67%~7.80%和1.40%~5.84%。 相似文献
12.
气相色谱电子捕获法测定氟啶胺在辣椒和土壤中动态残留 总被引:5,自引:0,他引:5
【目的】建立辣椒和土壤中氟啶胺残留的分析方法,探明氟啶胺在辣椒田中使用后的残留行为,为安全施药提供依据。【方法】采用田间试验法研究氟啶胺在辣椒和土壤中的残留消解动态。【结果】氟啶胺在辣椒中半衰期为2.5~3.7 d,土壤中为1.2~4.2 d。使用氟啶胺50%悬浮剂,制剂用量为495 g•ha-1。(有效成分247.5 g•ha-1),施药4次, 距末次施药后7 d收获的辣椒中氟啶胺残留量小于0.06 mg•kg-1,低于韩国规定的最大残留限量值(0.3 mg•kg-1)。【结论】该分析方法操作简单,精密度、准确度和灵敏度都符合农药残留标准要求,适用于辣椒和土壤中的氟啶胺残留测定;建议氟啶胺50%悬浮剂在辣椒上防治病害,最多使用4次,用量为247.5~495 g•ha-1(有效成分123.75~247.5 g•ha-1),安全间隔期为7 d。 相似文献
13.
辛硫磷在宁夏甘草及对应根际土壤中的残留及消解动态 总被引:2,自引:0,他引:2
为制定辛硫磷在甘草上的安全使用技术标准,采用田间试验和液相色谱法,测定辛硫磷在宁夏甘草及对应根际土壤中的残留及消解动态。样品经乙腈提取、柱层析法净化、紫外检测器检测,结果表明,在设定的色谱条件下,样品的最小检出量为1.00×10-9g,最小检出含量为0.005 mg/kg。不同进样量测定结果表明,在0.1~10μg/mL的范围内,辛硫磷峰面积与进样量之间有良好的线性关系,线性方程为Y=1.2190X+0.1658(r2=0.9940)。甘草中辛硫磷的添加回收率在81.7%~85.1%之间,RSD介于3.39%~5.91%之间,甘草对应根际土壤中辛硫磷的添加回收率在90.9%~95.3%之间,RSD介于2.89%~4.07%之间,各项指标均符合农药残留分析检测限量的要求。残留检测结果表明,药后不同时期甘草根及土壤中辛硫磷的残留含量完全符合一级反应动力学方程式,分别为CT=1.0024e-0.1027T(r=0.9715)和CT=0.4577e-0.0402T(r=0.9836),残留消解较快,半衰期分别为6.75 d和17.24 d;40%辛硫磷乳油依推荐剂量1次施药后40 d,2次施药后53 d,在甘草及其土壤中的残留均低于0.05 mg/kg,因此建议40%辛硫磷乳油在甘草上依推荐剂量1次施药的安全间隔期不得少于40 d,2次施药的安全间隔期不得少于53 d。 相似文献
14.
采用菌丝生长速率法测定了氯啶菌酯、苯醚甲环唑及其混配制剂对葡萄炭疽病菌和穗轴褐枯病菌菌丝生长的抑制活性,并用孙云沛法测定了混配制剂的共毒系数(CTC)。结果表明:氯啶菌酯抑制葡萄炭疽病菌和穗轴褐枯病菌菌丝生长的抑制中浓度(EC50值)分别为2.1793和1.1274μg/mL,而苯醚甲环唑的EC50值分别为0.6667和0.1041μg/mL。当氯啶菌酯与苯醚甲环唑按10∶1混配时复配制剂抑制这2种病原菌菌丝生长的CTC最高,增效作用最大。田间试验结果显示:试制样品22%氯啶菌酯.苯醚甲环唑EC(20%氯啶菌酯+2%苯醚甲环唑)以90~120 g a.i./hm2喷药2~3次对葡萄黑痘病、霜霉病、炭疽病均有较高的防治效果。 相似文献
15.
[目的]建立黄瓜和土壤中醚菌酯残留检测方法。[方法]用乙腈提取黄瓜和土壤样品,经弗罗里硅柱净化后用气相色谱ECD检测器检测。[结果]在醚菌酯添加水平为0.05、0.20、0.50 mg/kg 3个浓度时,黄瓜中回收率为80.2%~114.0%,变异系数为2.1%~5.8%;土壤中回收率为95.1%~106.5%,变异系数为3.1%~7.3%,醚菌酯的最小检出量为2.5×10-2ng,最低检出浓度为2.5μg/kg。[结论]该方法灵敏度高、检测限低、重现性好,完全能够满足黄瓜和土壤中醚菌酯残留的检测要求。 相似文献
16.
17.
在河北省11个市区进行大尺度的样品采集,采用快速溶剂萃取仪和气相色谱仪研究了河北省土壤中有机氯农药六六六(HCH)的残留状况。结果表明,河北省土壤中HCH残留量均值为1.31 ng/g,经对比相关标准,河北省土壤中的HCH残留量处于极低的污染水平。 相似文献
18.
毛细管气相色谱法测定唑草酮在甘蔗及其土壤中的残留量 总被引:2,自引:0,他引:2
为建立唑草酮在甘蔗及其土壤中残留的分析方法,用甲醇∶水=4∶1(v/v)溶液提取甘蔗及其土壤中的唑草酮,然后用石油醚∶二氯甲烷=4∶1 (v/v)萃取.石油醚和二氯甲烷相经浓缩后过弗罗里硅土桂净化,毛细管柱分离,用微池电子捕获检测器(μECD)测定.结果表明:唑草酮在0.005~1.00μg/mL范围内线性良好,线性相关系数(r)为0.9990.该方法对唑草酮的最小检出量为1.0×10-12 g,唑草酮在甘蔗植株和土样的最低检测浓度均为0.001 mg/kg,对甘蔗及其土壤空白样本的平均添加回收率为88.59%~ 102.74%,相对标准偏差为1.77%~5.39%.该方法符合农药残留分析的要求,具有操作简单、净化分离效果好、检测灵敏度高特点. 相似文献