首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoperiod modulates reproduction in goats. We tested the hypothesis that the excitatory glutamatergic tone is reduced in the photoinhibited goat. The objectives of this study were to determine the effect of photoperiod and glutamatergic stimulation on LH, GH, and testosterone (T) secretion in goat bucks. Eight mature, intact bucks were used in two simultaneous 4 x 4 Latin square designs. Variables were two photoperiod regimens (short day; SD, 10 h light:14 h dark, n = 4; vs long day; LD, 16 h light:8 h dark, n = 4) and four doses of N-methyl-D-L-aspartate (NMA; 0, 1, 2 and 4 mg/kg BW, i.v.). Venous blood was obtained for 2 h before and after NMA injection, followed by GnRH injection and then a final 1 h of sampling. Injection of NMA increased (P < 0.002) LH secretion within 20 min. This increase was sustained for 120 min, but the response was most pronounced in LD goats. The increase in mean LH was associated with a concomitant dose-dependent increase in pulse frequency (P < 0.006). However, NMA treatment had no effect (P > 0.10) on LH pulse amplitude. The release of LH after injection of GnRH was not affected by photoperiod. Exposure of bucks to LD reduced T secretion relative to that of SD bucks (P < 0.01). However, GH secretion was enhanced in LD bucks (P< 0.001). The response of GH to NMA was dependent on photoperiod history. A highly significant immediate and sustained increase (P < 0.001) was observed in LD but not in SD bucks within 10 min. Overall, a dose-dependent increase (P < 0.01) in T secretion was stimulated by NMA in both LD and SD bucks. These results indicate that NMA receptors may be involved in the regulation of LH, GH, and testosterone secretion in the goat. Furthermore, length of day influences GH secretion in the goat and NMA receptor activation had divergent effects on the secretion of this hormone.  相似文献   

2.
3.
N-methyl-D, L-aspartate (NMA) elicited secretion of growth hormone (GH)-releasing hormone from both the hypothalamic-preoptic area and the median eminence that were collected from boars. We suggest that the previously described increase in GH secretion that follows peripheral treatment of swine with NMA is attributable, at least in part, to NMA-stimulated secretion of GH-releasing hormone from the central nervous system.  相似文献   

4.
5.
N-甲基D,L-天冬氨酸对肥育猪生长性能和胴体品质的影响   总被引:15,自引:2,他引:13  
本试验以杜长大肥育猪为试验对象 ,研究了N 甲基D ,L 天冬氨酸对其生长性能和胴体品质的影响。结果表明 ,在日粮中添加 50mg/kgN 甲基D ,L 天冬氨酸使肥育猪 ( 1 )日增重提高 9.31 % (P <0 .0 1 ) ,饲料转化率提高 7.1 6 % (P <0 .0 2 ) ;( 2 )胴体瘦肉率提高 6 .53% (P <0 .0 1 ) ,脂肪比率降低 1 1 .76 %(P <0 .0 1 ) ,背膘厚降低 1 9.72 % (P <0 .0 1 ) ,眼肌面积提高 2 1 .0 1 % (P <0 .0 4 ) ;( 3)背最长肌、股二头肌和半膜肌重量分别增加 1 1 .3% (P <0 .0 1 )、1 0 .0 9% (P <0 .0 1 )和 1 4 .4 4% (P <0 .0 1 )。  相似文献   

6.
研究了不同剂量 N-甲基 -D,L-天门冬氨酸 ( NMA)对肥育猪脂肪代谢的影响。结果表明 ,饲粮中添加NMA 50 mg/ kg,肥育猪日增重提高 9.6 5% ( P<0 .0 1 ) ,胴体瘦肉率提高了 4 .0 8% ( P<0 .0 5) ,脂肪率降低3.50 % ( P<0 .0 1 ) ,皮下脂肪苹果酸脱氢酶总活力下降 1 8.6 4 % ( P<0 .0 5) ,葡萄糖 -6 -磷酸脱氢酶总活力下降 1 5.93% ( P<0 .0 5) ,异柠檬酸脱氢酶总活力下降 4 7.70 % ( P<0 .0 1 ) ,激素敏感脂肪酶活性提高 37.4 0 %( P<0 .0 3) ,脂肪组织中 c AMP含量提高 36 .6 8% ( P<0 .0 4 ) ,血清脂肪酶活性提高 1 1 5.1 5% ( P<0 .0 1 ) ,游离脂肪酸浓度上升 2 2 .6 4 % ( P<0 .0 1 )。据此认为 ,NMA可以通过调控脂肪代谢相关酶的活性 ,从而影响猪体脂肪代谢  相似文献   

7.
以肥育猪为对象,探讨了日粮中添加50mg/kgN-甲基-D,L-天冬氨酸(NMA)对其生长激素(GH)基因表达的影响。结果表明,添加NMA后,肥育猪日增重提高了9.31%(P<0.01);料重比降低了7.16%(P<0.02);血清GH含量提高了92.54%(P<0.01);垂体GH-mRNA水平提高了153.03%(P<0.01);下丘脑cAMP水平降低了21.89%(P<0.01);腺垂体中cAMP水平升高88.57%(P<0.05)。  相似文献   

8.
Thirty-nine adult light horse mares, geldings, and stallions were used in two experiments to assess the pituitary hormone and insulin responses to infusions of arginine, aspartic acid, lysine, glutamic acid, and N-methyl-D,L-aspartate (NMA). In Exp. 1, 27 horses were assigned to one of three infusion treatments: 1) physiological saline (1 L); 2) 2.855 mmol of arginine/kg BW in 1 L of water; or 3) 2.855 mmol of aspartic acid/kg BW in 1 L of water. In Exp. 2, 12 horses were assigned, in a multiple-square 4 x 4 Latin square design, to one of four infusion treatments: 1) 2 mL of saline/kg BW; 2) 2.855 mmol of lysine/kg BW in water; 3) 2.855 mmol of glutamic acid/kg BW in water; or 4) 1 mg of NMA/kg BW in water. In Exp. 1, an acute (within 20 min) release of growth hormone (GH) was induced (P = 0.002) by aspartic acid. In contrast, acute release of prolactin (P = 0.001) and insulin (P = 0.002) was induced only by arginine; moreover, the arginine effect on insulin was present only in mares (P = 0.011). In Exp. 2, an acute release of GH was induced (P = 0.001) by glutamic acid and NMA. In males, the glutamic acid-induced GH release was greater than that of NMA; in mares, the NMA-induced GH release was greater than that of glutamic acid (P = 0.069). Both lysine and glutamic acid induced (P = 0.001) acute release of prolactin, whereas an acute release of insulin was elicited (P = 0.002) only by lysine. The NMA-induced LH response was due almost entirely to the response in mares and stallions (P = 0.016), and the NMA-induced FSH release was due almost entirely to the response in mares (reproductive status effect; P = 0.004). In the horse, aspartic acid, glutamic acid, and NMA seem to stimulate GH release; arginine and lysine seem to stimulate prolactin and insulin release; and NMA seems to stimulate LH and FSH release. It seems that N-methyl-D-aspartate glutamate receptors are involved in controlling GH, LH, and FSH secretion, whereas other mechanisms are involved with prolactin secretion. These results also indicate that gonadal steroids interact with amino acid-induced pituitary hormone release in adult horses.  相似文献   

9.
The objectives of our experiments were 1) to determine the effect of N-methyl-D,L-aspartate (NMA), an agonist of the neuroexcitatory amino acids aspartate and glutamate, on growth hormone (GH) release in ovariectomized ewes, and 2) to determine the effect of naloxone, an opioid antagonist, on the GH response to NMA. Jugular blood was collected via venipuncture at 12-min intervals for 2 h before and 2 h after i.v. injection of NMA. In Exp. 1, ewes received either 0, 6, 12 or 24 mg NMA/kg BW dissolved in .9% saline solution (n = 4 per treatment). Growth hormone concentrations were similar (P greater than .1) between groups prior to injection (9.8 +/- .7 ng/ml; mean +/- SEM) and were unaffected (P greater than .1) by saline treatment. In contrast, 6, 12 or 24 mg NMA/kg BW increased mean GH concentration by 210% (P less than .04), 273% (P less than .02) and 234% (P less than .02), respectively. In Exp. 2, ewes received NMA (6 mg/kg BW) 5 min after either saline (n = 4) or naloxone (1 mg/kg BW; n = 4) pretreatment. Serum GH concentrations averaged 7.0 +/- 1.1 ng/ml before pretreatment and increased similarly (238%; P greater than .1) in both groups following NMA. In summary, NMA increased GH concentrations in ovariectomized ewes by some mechanism that does not involve opioid receptors that are antagonized by naloxone.  相似文献   

10.
The hypothesis that subnormal luteal function after induced ovulation in anestrous ewes was the result of uterine influences exerted during the periovulatory period was tested. Crossbred ewes (n = 27) in seasonal anestrus were induced to ovulate by administration of 12 doses of 250 ng of LHRH at 2-h intervals, followed immediately by a bolus injection of LHRH (250 micrograms; d 0). Ewes were unilaterally hysterectomized on either d -3 (PRELHRH) or 2 (POSTLHRH). Daily blood samples were collected and assayed for progesterone (P4) and 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM). All ewes were slaughtered on d 10, and corpora lutea (CL) were collected, weighed, and assayed for concentration of P4. All ewes that ovulated exclusively in the ovary ipsilateral to the remaining uterine horn had a transient increase in plasma P4 of 2 to 3 d (short luteal phase). In ewes with at least one CL in the isolated ovary, elevated plasma P4 was maintained after hysterectomy but was consistently lower (P less than .05) in POSTLHRH ewes than in PRELHRH ewes. Concentrations of PGFM did not differ between treatments. The CL ipsilateral to the remaining uterine horn weighted less (P less than .01) and contained less P4 (P less than .01) than contralateral CL. These data confirm the hypothesis that premature regression of subnormal CL is uterine-dependent in a local fashion. Presence of the uterus during the follicular and(or) early luteal phase inhibited subsequent luteal function in seasonally anestrous ewes.  相似文献   

11.
This study examined the role of the adrenergic system in the regulation of growth hormone (GH) secretion in sheep. Intravenous infusion of noradrenaline (0.5μg/kg per min for 2 hr) totally suppressed plasma GH concentrations. Concomitant treatment of animals with the β-adrenergic antagonist propranolol completely blocked the noradrenaline-induced suppression of GH. In contrast, intravenous injection of the centrally acting α2-agonist clonidine (2μg/kg) elicited a release of GH. To further investigate the central adrenergic regulation of GH secretion 10 μg of noradrenaline or adrenaline was microinjected (1μl) directly into the preoptic area of the hypothalamus of ovariectomized ewes. When the time of injection coincided with a GH trough period, both noradrenaline and adrenaline caused an increase in plasma GH concentrations, whereas if the injection coincided with an endogenous pulse of GH no additional GH response was obtained. In conclusion, these results provide evidence for the involvement of the adrenergic system in the regulation of GH secretion in sheep. Centrally, adrenergic pathways exert a stimulatory effect on GH release via an α2-adrenergic system, whereas peripherally adrenergic pathways exert an inhibitory effect via β-adrenergic mediated mechanisms. Furthermore, adrenergic stimulation of the preoptic area may inhibit somatostatin activity and directly facilitate a GH pulse. Alternatively, adrenergic innervation of the preoptic area may influence neurons (somatostatin or other) that project to the arcuate nucleus and stimulate the release of GH-releasing factor.  相似文献   

12.
This study investigated the efficacy of two dosage regimens of a potent GnRH analogue (GnRHa), deslorelin acetate, in inducing ovulation in seasonally anestrous mares. Forty-five seasonally anestrous mares were randomly assigned according to follicular size to one of three treatment groups: control, increasing GnRHa dose, and constant GnRHa dose. Treatment began on February 28 and continued until ovulation or for a maximum of seven treatments. Mares were palpated every other day until a 35 mm follicle was detected, then every day until ovulation or regression of the follicle occurred. Blood samples were taken from five randomly chosen mares in each treatment group and analyzed for LH levels.Twenty percent of mares in both deslorelin treatment groups ovulated, while no control mares ovulated during the treatment period. There was no difference in the number of mares that ovulated between treatment groups. Four of the six mares that ovulated were in transitional anestrus at the initiation of treatment, while only two were in deep anestrus.Concentrations of LH were greater (p=0.0008) in both GnRH-treated groups than in the control mares. Concentrations of LH did not differ between the two GnRH-treated groups until day 12 of treatment, when mares treated with a constant dosage had higher (p=0.0358) levels of LH than those treated with an increasing dosage. It is possible that administration of larger amounts of the GnRH agonist lowered the sensitivity of the pituitary to stimulation by GnRH.Deslorelin acetate did stimulate follicular growth and ovulation in a limited number of anestrous mares. Further investigation into the potential of this short-term implant to shorten the onsent of the breeding season is recommended.  相似文献   

13.
14.
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an 1-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50 μg) was injected (i.m.) and Doxazosin (100 nmol/h) or vehicle was infused into the third ventricle 2–26 h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-β-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.  相似文献   

15.
16.
The effect of the centrally acting α-adrenoceptor agonist, clonidine, on plasma LH and FSH was studied in oestradiol-primed and unprimed ewes and in oestrous ewes. In unprimed anoestrous ewes, clonidine stimulated LH and FSH release after a lag period of 18 h, and noradrenaline intracarotid injection or i.v. infusions immediately stimulated LH release. In oestradiol-infused anoestrous ewes, clonidine produced either a delay or inhibition of the gonadotrophin surge and noradrenaline i.v. infusion advanced the LH surge. In oestrous ewes treated with clonidine, there was marked delay in the LH surge, but the magnitude of the LH and FSH surges were unaffected. Intravenous administration of α-adrenoceptor blockers, phentolamine and phenoxybenzamine, blocked the oestradiol-induced gondotrophin surge in anoestrous ewes. The effect of phenoxybenzamine on gonadotrophin surge was dose dependent in oestrous ewes. Small doses (4 mg/kg i.v.) of phenoxybenzamine delayed the synchronous LH and FSH surges. There was complete blockade of the LH surge and partial blockade of FSH surges in ewes given phenoxybenzamine (8 mg/kg i.v.) before the expected synchronous gonadotrophin surges. After this experiment, the initial rise of plasma progesterone concentrations did not occur until day 6 of oestrous cycle. Administration of phenoxybenzamine before the expected second FSH surge had no effect on the second FSH surge. Gonadotrophin release induced by gonadotrophin-releasing hormone was attenuated by phenoxybenzamine, but not by clonidine. The results suggest that the LH surge is under α-adrenergic control and the first FSH surge is under partial α-adrenergic control, but the second FSH surge is not under α-adrenergic control. The results also suggest oestradiol modulation of α-adrenergic receptor action.  相似文献   

17.
Three experiments were conducted to examine the relationship between systemic concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) after withdrawal of progesterone in cycling ewes. In Exp. 1, ewes were assigned randomly to one of three treatments: laparotomy (C), removal of the luteal ovary (ULO), or ULO plus anesthesia with sodium pentobarbital for 6 h beginning 4 h after surgery. Anesthesia was used in an attempt to block the expected increase in tonic secretion of LH. Patterns of LH and E2 in these three groups did not differ during the 24-h experimental period. In Exp. 2, a longer period of anesthesia was utilized. Forty-eight ewes were assigned at random to one of four treatments: C, ULO, lutectomy or an intrafollicular injection of prostaglandin F2 alpha (PGF2 alpha). One-half of the ewes in each group were anesthetized with sodium pentobarbital from initiation of treatment (0 h) until 10 h after surgery. Sodium pentobarbital did not suppress the increases in LH and E2 after progesterone withdrawal. The regression of concentrations of E2 on concentration of LH was not significant. In Exp. 3, ewes were infused with either saline or dopamine after receiving an im injection of PGF2 alpha. Tonic secretion of LH increased after 4 h in ewes infused with saline, but not in ewes infused with dopamine. Despite the suppression of LH, concentrations of E2 increased in dopamine-treated ewes as in control ewes. Therefore, the initial increase in E2 after a decline of progesterone in cycling ewes is independent of increases in LH.  相似文献   

18.
Background: Immune stress induced by lipopolysaccharide(LPS) influences the gonadotropin-releasing hormone(GnRH)/luteinizing hormone(LH) secretion. Presence of LPS interacting Toll-like receptor(TLR) 4 in the hypothalamus may enable the direct action of LPS on the GnRH/LH secretion. So, the aim of the study was to investigate the influence of intracerebroventricular(icv) injection of TLR4 antagonist on GnRH/LH secretion in anestrous ewes during LPS-induced central inflammation. Animals were divided into three groups icv-treated with: Ringer-Locke solution, LPS and TLR4 antagonist followed by LPS.Results: It was demonstrated that TLR4 antagonist reduced LPS-dependent suppression of GnRH gene expression in the preoptic area and in the medial basal hypothalamus, and suppression of receptor for GnRH gene expression in the anterior pituitary gland. It was also shown that TLR4 antagonist reduced suppression of LH release caused by icv injection of LPS. Central administration of LPS stimulated TLR4 gene expression in the medial basal hypothalamus.Conclusions: It was indicated that blockade of TLR4 prevents the inhibitory effect of centrally acting LPS on the GnRH/LH secretion. This suggests that some negative effects of bacterial infection on the hypothalamic-pituitary-gonadal axis activity at the hypothalamic level may be caused by central action of LPS acting through TLR4.  相似文献   

19.
20.
This study examined the effects of long-term exposure to the endocrine-disrupting compounds (EDCs) Bisphenol-A (BPA) and Octylphenol (OP) on gonadotrophin secretion in pre-pubertal female sheep. Four-week-old, female lambs were randomly allocated to four groups (n=6), and twice each week treated with i.m. injections of either corn oil (vehicle controls), diethylstilbestrol (DES; 0.175mg/kg), BPA (3.5mg/kg) or OP (3.5mg/kg). After 5 weeks of treatment, animals were ovariectomized (ovx) and ovary weights recorded. Two weeks later, blood samples were collected from lambs every 15min for 6h, for LH pulse analysis. Animals were then euthanased and adrenal and kidney weight recorded. An age-related increase in tonic LH secretion was noted in Control, BPA- and OP-treated lambs, but was absent in DES-treated lambs. Following ovx, LH secretion increased in all except DES-treated lambs; FSH concentrations increased in all groups. BPA and DES significantly suppressed LH pulse frequency (C: 6.7+/-0.3pulses/6h, DES: 1.5+/-0.8pulses/6h, BPA: 2.3+/-0.8pulses/6h) and amplitude (C: 7.1+/-1.0ng/ml, DES: 1.9+/-0.6ng/ml, BPA: 1.6+/-0.4ng/ml). OP had no effect on LH secretion (Frequency: 5.8+/-0.5pulses/6h, amplitude: 8.0+/-2.0ng/ml). Ovary weight was similar among all groups. Results show that chronic in vivo exposure of prepubertal female lambs to BPA, at levels lower than those reported previously, can have significant effects on LH secretion that are comparable to those seen following exposure to the known xenoestrogen, DES. Exposure to an equal dose of the EDC OP, over the equivalent period of time was without effect on gonadotropin secretion in the prepubertal ewe lamb. These results indicate that exposure of prepubertal female lambs to the EDC BPA can induce significant effects on gonadotropin secretion, the potential long-term effects of exposure and the effects of these changes on reproductive performance and efficacy, therefore, merit further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号