首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
针对我国规模化、高密度化水产养殖中机械增氧方式单一和增氧效率偏低的问题,提出利用耕水机白天以低功率驱动养殖池水体上下循环,促进各层水体中的藻类循环到上层,通过光合作用大幅度提高水体溶解氧含量,以减少其他增氧机械应急增氧。分析了溶解氧含量测量节点对测量误差的二次抛物线自修正,进行了可变因子与固定因子模糊变频增氧控制、复合增氧与单一机械增氧的对比试验。通过试验发现,可变因子模糊变频控制可更快提高水体溶解氧含量,在额定区域内更稳定;在晴朗白天、无应急增氧情况下,复合增氧模式下养殖池水体溶解氧分布不仅上下层均匀,而且整个水体吸收了更多藻类光合作用产生的氧气;在应急增氧情况下,复合增氧模式下养殖池不仅各层水体溶解氧含量得到提高,而且耕水机驱散了叶轮增氧机附近的高溶解氧含量水体,有利于提高增氧机效率。试验表明,复合增氧模式下晴天单个养殖池每天节约电能7.80kW·h,第3季度节约电能587.34kW·h,〖JP〗表明水产养殖中复合式机械增氧有利于节约电能。  相似文献   

2.
水产养殖业是发展农业和农村经济的重要产业之一,也是农民致富的重要途径。当前,随着高产高效技术的大面积推广和名特优水产养殖的强劲发展,对增氧技术提出了新的要求。针对水产养殖发展的新变化新特点,简要地分析了机械增氧装备的结构特点、增氧方式和应用现状,以及在发展过程中存在的问题,并结合生产实际,探讨机械增氧装备与技术发展的趋势。  相似文献   

3.
使用增氧机是增加溶解氧量的有效方法,除了增加氧气之外,还可促进水的流通并可以防止水体的温度层化、化学层化及氧气层化。同时增氧机能在水塘深处运作,改善水塘底部的土质,使底层土增氧并避免产生有毒气体,达到有效防止水产动物的患病死亡可能性的目的。  相似文献   

4.
5.
增氧机是一种通过电动机或柴油机等动力源驱动工作部件,使空气中的“氧”迅速转移到养殖水体中的设备,它可综合利用物理、化学和生物等功能,不但能解决池塘养殖中因为缺氧而产生的鱼浮头的问题,而且可以消除有害气体,促进水体对流交换,改善水质条件,降低饲料系数,提高鱼池活性和初级生产率,从而可提高放养密度,增加养殖对象的摄食强度,促进生长,使单位产量大幅度提高,达到养殖增收的目的。  相似文献   

6.
我国是世界第一水产大国,水产养殖对于农村和农业经济的发展具有重要的意义,同时也是农民增收的主要手段之一。传统养殖技术由于诸多客观条件的限制,很难实现高产量。为了提高水产养殖产量,必须提升在单位空间里水产养殖的密度和质量,而水中的溶解氧水平直接影响鱼类摄食、生长、饲料转化和生存,进而关系到养殖成败和养殖效益的高低。因此,高密度水产养殖模式下,必须维持水中的溶解氧浓度,当水中的溶解氧浓度不足时,必须通过使用增氧设备装置提高溶解氧含量。研究了叶轮式、水车式两种增氧机,介绍其基本工作原理、结构特点,并比较了增氧能力和动力效率。  相似文献   

7.
为了更准确地评价池塘养殖中主要的三种不同增氧方式的增氧机的性能,通过标准水池试验和养殖池塘中实地试验,研究了三种增氧机的增氧方式在清水试验中的增氧能力、动力效率和养殖池塘中的溶解氧均匀度与水温均匀度的变化。结果表明,曝气式增氧机增氧能力和动力效率最好,增氧能力比水车的高55.1%,动力效率比水车的高出64.0%。增氧能力和动力效率从高到低依次是曝气式、叶轮式和水车式。水车增氧机对养殖池溶解氧的均匀度提升最快,最高的达到46.43%,曝气增氧设备对养殖池溶解氧的均匀度提升达到29.46%;对养殖池水温均匀度的提升,三种增氧机都不是很明显。该研究为在池塘养殖中合理运用不同增氧方式提供了有益的借鉴。  相似文献   

8.
文章介绍了水产养殖增氧设备的工作原理、主要类型及应用领域,并结合技术应用现状,分析了增氧机开发应用前景.  相似文献   

9.
为了提高鱼塘养殖密度,防止水体溶氧量过低造成鱼类缺氧死亡,研制了一套基于Zigbee技术的精确补氧系统。通过RY952型溶解氧传感器实时监测鱼塘溶氧量,以Zigbee无线传输数据,支持用户自定义溶氧量阈值,根据温度不同修正溶氧量补偿值,实现了增氧机无线智能控制。应用证明,该系统可实现溶氧量的实时调控,减轻了养殖户劳动强度,增加了养殖经济效益。  相似文献   

10.
本文通过增氧机机组机械效率简单说明增氧机叶轮浸没深度对增氧能力和动力效率的影响。  相似文献   

11.
溶解氧是水产养殖中重要的水质因子。通过对溶解氧控制系统的分析,建立了系统的数学模型;借助MATLAB软件中模糊逻辑工具箱,对系统的输入和输出进行了模糊化,并建立了控制规则;通过SIMULINK软件设计了溶解氧仿真系统;通过仿真验证模糊控制,能够达到较好的控制效果。上述措施为水产养殖的溶解氧控制探索出一条新途径。  相似文献   

12.
水产养殖中溶解氧的检测与控制技术的研究   总被引:5,自引:0,他引:5  
针对工厂化水产养殖的现状,系统地研究了溶解氧的检测与控制以及水体温度、溶解氧的相互耦合与补偿关系;并设计出相应的检测与控制技术,建立了智能化水产养殖监控体系,使水产品生产在最适宜的环境下,达到增产、节能、减轻工人劳动强度,减少污染的效果.  相似文献   

13.
工厂化水产养殖溶解氧预测模型优化   总被引:4,自引:0,他引:4  
为准确预测溶解氧变化趋势,降低水产养殖风险,提出混沌变异的分布估计(CMEDA)算法优化最小二乘支持向量机模型(LSSVR),提高了溶解氧预测精度。并对粒子群算法和遗传算法分别优化的LSSVR模型(PSOLSSVR、GA-LSSVR)以及传统的LSSVR模型与CMEDA优化的LSSVR模型(CMEDA-LSSVR)进行了比较研究。利用该模型对江苏省扬中市红鲷鱼工厂化养殖鱼塘溶解氧含量进行了预测。实验结果表明,CMEDA-LSSVR的预测精度高于其他3种算法,CMEDA-LSSVR、PSO-LSSVR、GA-LSSVR、LSSVR 4种模型预测精度评价指标平均绝对百分比误差分别为0.32%、1.27%、1.98%和2.56%。实际应用结果表明该模型可以为鱼塘水质决策管理提供依据,具有一定的应用价值。  相似文献   

14.
为了保证养殖水体溶解氧充足,水产养殖普遍采用全天大功率开启增氧机的生产方式,这造成了很大的能源消耗。针对上述问题,本文提出了一种基于建模预测与关系规则库的溶解氧调控方法,首先构建了一种自适应增强的粒子群优化极限学习机预测模型(AdaBoost-PSO-ELM),实现溶解氧含量的准确预测;然后进行增氧预实验,采用曲面拟合方法对溶解氧初始含量、曝气流量和增氧机开启时间之间的作用关系进行精确量化,构建关系规则库;最后专家系统基于溶解氧含量预测值,调用已建立的关系规则库,合理控制增氧机的开启功率与时间。与其它常规的预测模型相比,AdaBoost-PSO-ELM模型的MSE、MAE和RMSE均为最优,分别为0.0055mg2/L2、0.0531mg/L、0.0745mg/L,可以实现溶解氧的准确预测。增氧实验结果表明,基于三次多项式的先验方程能够对〖JP2〗溶解氧初始含量、曝气流量和增氧机开启时间之间非线性关系进行准确量化,拟合R2均在0.99以上。由此可知,基于量化结果所构建的规则库与预测模型相结合能够合理控制增氧机的开启功率与时间,节省电能和提高养殖效率。  相似文献   

15.
为了保证养殖水体溶解氧充足,水产养殖普遍采用全天大功率开启增氧机的生产方式,这造成了很大的能源消耗。针对上述问题,本文提出了一种基于建模预测与关系规则库的溶解氧调控方法,首先构建了一种自适应增强的粒子群优化极限学习机预测模型(AdaBoost-PSO-ELM),实现溶解氧含量的准确预测;然后进行增氧预实验,采用曲面拟合方法对溶解氧初始含量、曝气流量和增氧机开启时间之间的作用关系进行精确量化,构建关系规则库;最后专家系统基于溶解氧含量预测值,调用已建立的关系规则库,合理控制增氧机的开启功率与时间。与其它常规的预测模型相比,AdaBoost-PSO-ELM模型的MSE、MAE和RMSE均为最优,分别为0.005 5 mg2/L2、0.053 1 mg/L、0.074 5 mg/L,可以实现溶解氧的准确预测。增氧实验结果表明,基于三次多项式的先验方程能够对溶解氧初始含量、曝气流量和增氧机开启时间之间非线性关系进行准确量化,拟合R2均在0.99以上。由此可知,基于量化结果所构建的规则库与预测模型相结合能够合理控制增氧机的开启功率...  相似文献   

16.
在水产养殖中,水体的溶氧量对鱼类生长和发育有很大影响,很有必要对其进行监控.为了提高监控的效果,建立了水产养殖溶解氧监控系统的数学模型,利用Simulink软件设计了PID控制器,并利用该软件中的非线性控制设计模块优化了控制器的参数.系统仿真分析表明,系统稳定,且优化后系统的超调量很小,响应变快,能够得到较好的控制效果.通过对水产养殖溶解氧监控系统的建模与仿真,可以为分析该系统提供重要基础,同时在实际应用方面积累了经验.  相似文献   

17.
工厂化水产养殖智能监控系统设计   总被引:2,自引:0,他引:2  
提出了一种工厂化水产养殖中具有可溯源功能的智能监控系统.系统利用PROFIBUS-DP总线和工业以太网技术实现了数据的传输与共享,利用模糊控制与神经网络相结合的算法实现了对数据的处理分析,并得到控制信号,进行闭环控制,利用无线射频识别技术( RFID)实现了水产品质量的可溯源功能.结果表明,养殖环境各关键环境因子均满足控制精度,水产品的可溯源信息写入与读出均完整有效,完全达到了设计要求,能够满足工厂化水产养殖智能化的需要.  相似文献   

18.
水产养殖大数据技术研究进展与发展趋势分析   总被引:4,自引:0,他引:4  
水产养殖对象特殊、环境复杂、影响因素众多,精准地监测、检测和优化控制极其困难。大数据技术结合数学模型,把水产养殖产生的大量数据加以处理和分析,并将有用的结果以直观的形式呈现给生产者与决策者,是解决上述难题的根本途径。本文主要对水产养殖大数据技术研究进展与发展趋势进行了深入剖析,提出了水产养殖业大数据技术的总体架构;分析了水产养殖大数据的来源和获取手段,重点总结了几种水产养殖大数据分析技术的研究进展和现有水产养殖大数据平台及其提供的应用服务;最后针对水产养殖与大数据技术结合过程所面临的困难与挑战,从实现全面感知、全产业链数据智能分析与自动决策、水产养殖大数据标准体系建设等方面提出水产养殖大数据技术的发展方向。数据是根本,分析是核心,利用大数据技术提高水产养殖综合生产力和效益是最终目的,应深度挖掘现实需求,整合水产养殖全产业链数据,加强基础理论和核心关键技术研究,从而推进大数据技术与水产养殖产业的深度融合,支撑我国水产养殖业彻底转型升级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号