首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Striped bass (Morone saxatilis) collected from the Annapolis and Shubenacadie Rivers in Nova Scotia, Canada, were analyzed for Hg in four tissues and for PCB's in two tissues. Average Hg concentrations in the muscle, liver, kidney, and gonad of 3.9 kg fish from Annapolis River were 0.77, 0.79, 0.26, and 0.07 μg g?1, respectively, and the corresponding values for the much smaller, 1.5 kg, fish from the Shubenacadie River were 0.51, 0.27, 0.24, and 0.06 μg g?1. The PCB concentrations in the muscle tissues of fish from Annapolis and Shubenacadie Rivers are 0.02 and 0.01 μg g?1, respectively, while the concentrations in gonads are 1.4 and 0.04 μg g?1 The observed lack of recruitment of striped bass in the Annapolis River may be related to high PCB concentrations in the gonad tissue.  相似文献   

2.
The residue depletion profiles of tritium-labeled ivermectin and its metabolites in the muscle of aquacultured largemouth bass (LMB), hybrid striped bass (HSB), and yellow perch (YP) following oral treatment are reported. Fish were administered 3H-ivermectin at the dose level of 0.1 mg/kg body weight (7-9 μCi) in a gel capsule via stomach tube. At each postdose withdrawal time, six fish of each species were sedated with buffered MS-222 and blood samples taken. Fish were then euthanized, and fillets with adhering skin (scales removed) and bile samples were collected. The muscle fillets were homogenized in dry ice to a fine powder. Aliquots of tissue, plasma, and bile were assayed for total radioactive residue (TRR). The homogenized muscle was extracted in acetonitrile or methanol followed by high-performance liquid chromatographic (HPLC) analysis to determine the presence of parent ivermectin and its potential metabolites. The highest TRR concentrations (ivermectin equivalents) of 53, 45, and 44 ng/g (ppb) were obtained on postdose day 1 for HSB, LMB, and YP, respectively. The TRR depleted most slowly in HSB to 25 ppb at day 91, followed by YP to 19 ppb at day 42 and then by LMB to 22 ppb at day 35. The total residue of ivermectin and its metabolites by HPLC analysis followed the same depletion pattern in the three species. Additionally, the depletion rate of TRR of 3H-ivermectin in the three species followed the pattern bile > plasma > muscle. The results further indicate that one of the polar metabolites of ivermectin could serve as a potential marker residue as an indication of use, rather than the parent ivermectin.  相似文献   

3.
We studied precipitation chemistry at the Rhode River on the western shore of the Chesapeake Bay. We sampled on an event basis, beginning in 1973 for some constituents in bulk precipitation. Beginning in 1981, we also sampled wet precipitation separately from bulk precipitation. In this report, we examine temporal variability of precipitation chemistry at different time scales. Several constituents showed long-term trends. In bulk precipitation, hydronium concentration increased by 27% of its mean concentration per decade, calcium by 67%, ammonium by 28%, and nitrate by 25%, while organic nitrogen decreased by 41%, organic phosphorus by 31%, and organic carbon by 16%. In wet precipitation, ammonium increased by 33% and calcium by 100%, while magnesium decreased by 78% per decade. Concentrations differed greatly among precipitation events, increasing as the volume of precipitation decreased and as the interval since the previous event increased. Most constituents also showed marked seasonal variation. We used a regression model to predict concentrations for each event from month, precipitation volume, and the time since the previous event. We evaluated how much of the interannual variability could be explained by these factors. The event-scale model accounted for almost half of the variability among annual means for ammonium, sodium, and magnesium in bulk precipitation, and for potassium in wet precipitation. This suggests that much of the interannual variability of concentrations may result from interannual variation in the temporal distribution of precipitation.  相似文献   

4.
Decline in global surface water quality around the world is closely linked to excess sediment and nutrient inputs. This study examined sediment and phosphorus fluxes in Aquia Creek, a fourth-order sub-watershed of the Chesapeake Bay located in Stafford, Virginia. The Revised Universal Soil Loss Equation (RUSLE), sediment delivery ratio (SDR), field sediment traps, bank erosion pins, and LIDAR data, combined with historical aerial images, were used in quantifying rill and inter-rill erosion from the basin, as well as internally generated sediments. Stream water and stream bank soils were analyzed for phosphorus. RUSLE/SDR modeling estimates a basin total sediment flux of 25,247 tons year?1. The greatest calculated soil losses were in deciduous forests and cropland areas, whereas medium and high-intensity developed areas had the least soil loss. Cut-bank erosion ranged from 0.2 to 27.4 cm year?1, and annual bank sediment fluxes were estimated at 1444 Mg, with a corresponding annual mass of phosphorous of 13,760 kg year?1. The highest bank loss estimates were incurred along reaches draining urban areas. Stream water total phosphorous levels ranged from 0.054 μg g?1 during low flows to 134.94 μg g?1 during high discharge periods in autumn and spring. These results show that stormwater management practices in urban areas are limiting runoff water and soil contact, reducing surficial soil loss. However, the runoff acceleration due to expansion of impervious surfaces is progressively increasing the significance of intrinsic sediment and phosphorous sources by exacerbating stream bank erosion and resuspension of internally stored sediments.  相似文献   

5.
Soil microrelief, or roughness, as a result of tillage can have considerable impact on the rate and amount of wind and water erosion. This study is a review and analtsis of previous studies dealing with factors associated with the formation of tillage-induced random (non-oriented) roughness of the soil surface. Random roughness (RR) has been defined as the standard error of individual elevations after oriented roughness has been removed. In addition to being a function of the soil and its properties, RR is affected by many other factors. Tillage, rainfall amount and kinetic energy, runoff and soil texture effects on random roughness are discussed. Tillage and rainfall had the greatest effect on random roughness. A model predicting changes in random roughness with changes in tillage and rainfall amount is proposed. Random roughness varied from 5.0 cm for a large offset disk operation to 0.7 cm for no-till systems and decreased exponentially with increasing rainfall. The proposed model will make a significant contribution to new models, currently under development, to predict the effects of wind and water erosion on soil movement.  相似文献   

6.
Water quality trends from 1970 to 2005 were defined along 30 Delaware streams in the Delaware and Chesapeake Bay watersheds in the USA. Water quality improved or was constant at 69% of stations since 1990 and at 80% of stations since 1970/1980. Dissolved oxygen (DO) improved or was constant at 73% of streams since 1990 and 32% of streams since 1970/1980. Total suspended sediment improved or was constant at 75% of streams since 1990 and 100% of streams since 1970/1980. Enterococcus bacteria improved or remained constant at 80% of streams since 1990 and 93% of streams since 1970/1980. Total Kjeldahl nitrogen improved or was constant at 48% of streams since 1990 and 100% of streams since 1970/1980. Total phosphorus improved or was constant at 66% of streams since 1990 and 85% of streams since 1970/1980. During 2001–2005, median levels were good or fair at 100% of the stations for DO, 78% for sediment, 50% for bacteria, 59% for nitrogen, and 56% for phosphorus. Good water quality correlates with high amounts of forest area (>25%) in Delaware watersheds. Since the Federal Clean Water Act Amendments of the 1970s, improving Delaware water quality stations (50) outnumbered degrading stations (23) by a 2:1 margin. Since 1990, degrading water quality stations (46) exceeded improving stations (38) mostly due to deteriorating nitrogen levels in half of Delaware streams, a reversal from early gains achieved since the 1970s. Over the last three and a half decades, watershed strategies have improved or preserved water quality along Delaware streams; however, greater emphasis is needed to curb recently resurging increases in nitrogen levels.  相似文献   

7.
This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed.  相似文献   

8.
The effects of land uses on soil erosion in Spain: A review   总被引:4,自引:0,他引:4  
Soil erosion is a key factor in Mediterranean environments, and is not only closely related to geoecological factors (lithology, topography, and climatology) but also to land-use and plant cover changes. The long history of human activity in Spain explains the development of erosion landscapes and sedimentary structures (recent alluvial plains, alluvial fans, deltas and flat valleys infilled of sediment). For example, the expansion of cereal agriculture and transhumant livestock between the 16th and 19th centuries resulted in episodes of extensive soil erosion. During the 20th century farmland abandonment prevailed in mountain areas, resulting in a reduction of soil erosion due to vegetation recolonization whereas sheet-wash erosion, piping and gullying affected abandoned fields in semi-arid environments. The EU Agrarian Policy and the strengthening of national and international markets encouraged the expansion of almond and olive orchards into marginal lands, including steep, stony hill slopes. Vineyards also expanded to steep slopes, sometimes on new unstable bench terraces, thus leading to increased soil erosion particularly during intense rainstorms. The expansion of irrigated areas, partially on salty and poorly structured soils, resulted in piping development and salinization of effluents and the fluvial network. The trend towards larger fields and farms in both dry farming and irrigated systems has resulted in a relaxation of soil conservation practices.  相似文献   

9.
Water, Air, & Soil Pollution - In the Sudbury region of Ontario, Canada, fallout of sulfur oxides has been shown to be responsible for damage to vegetation, lakes and fishes. The acidic fallout...  相似文献   

10.
Biochar effects on soil biota - A review   总被引:3,自引:0,他引:3  
Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biology literature that recognize the observed large variations of biochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and thereby inactivation of growth-inhibiting substances likely plays a role for increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability, reducing the need for symbionts. In the short term, the release of a variety of organic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.  相似文献   

11.
This paper reviews the impacts of recreation on freshwater plants and animals. A distinction is made between water- and shore-based activities, and between physical and chemical effects. The impacts of water-based recreation, which result mainly from boating, are discussed in terms of wash, turbulence and turbidity, propeller action, direct contact, disturbance to animals, pollution from outboard motors and sewage. Those resulting from shore-based activities, such as angling and swimming, include trampling and associated effects, as well as sewage and other chemical impacts. The effects of management for recreation are also considered. There is relatively more information on the effects of recreational activities on plants than on animals, but the authors consider that further research is required in both fields. Some possible approaches are presented.  相似文献   

12.
A physico-chemical sub-cloud rain acidification model is used to simulate the acidification processes of rainwater in ten cities of China, based on the observation data of the chemical components of cloud- and rainwater and the concentrations of gaseous and aerosol species. The results show that there are in-cloud process and below-cloud process in the formation of acid rain, but the relative importance of these two processes is different in various cities. The acidification of rainwater under cloud is very important in Guiyang, Shanghai, Jilin, Beijing, Changsha and Chongqing, and the in-cloud and below-cloud process contribute equally to the acidification in Guilin, however, the acidification of rainwater in cloud is more important in Nanchang and Guangzhou. Overall, the aerosol has an alkalization effect on the rain, about 11%–25% of H+ concentration in the rainwater is neutralized over Southern China and 60%–70% is neutralied over Northern China by aerosol species. The effect of atmospheric SO2 on acidification of rainwater is nonlinear and is different in various regions. The effects of the variation of atmospheric NH3, H2O2 and aerosol species on pH of rainwater are also discussed in detail.  相似文献   

13.
This review focuses on the success and survivorship of captive-born versus wild-caught carnivores used in reintroductions. Previous reviews have suggested that reintroduction projects using captive-born animals are less likely to be successful than projects translocating wild-caught animals. The purpose of this paper is to examine this statistically and investigate how captivity may affect the survival of reintroduced carnivores. We examined results published in previous reviews, and found evidence to support that reintroduction projects using wild-caught animals are significantly more likely to succeed than projects using captive-born animals. We further compiled our own review of 45 case studies in carnivore reintroduction projects (in 17 species across 5 families) to investigate survival rates rather than overall project ‘success’. We found that (1) wild-caught carnivores are significantly more likely to survive than captive-born carnivores in reintroductions; (2) that humans were the direct cause of death in over 50% of all fatalities and (3) that reintroduced captive-born carnivores are particularly susceptible to starvation, unsuccessful predator/competitor avoidance and disease.  相似文献   

14.
Contamination of soils in agroecosystems with microplastics (MPs) is of increasing concern. The contamination of the environment/farmland soils with MPs (1 µm to 5 mm sized particles) and nanoplastics (NPs; <1 µm sized particles) is causing numerous effects on ecological soil functions and human health. MPs enter the soil via several sources, either from intentional plastic use (e.g., plastic mulch, plastic greenhouses, plastic-coated products) or indirectly from the input of sewage sludge, compost, or irrigation water that is contaminated with plastic. Once in the soil, plastic debris can have various impacts such as changes in soil functions and physicochemical properties and it affects soil organisms due to its toxic behavior. This review paper describes the different effects of plastic waste to understand the consequences for agricultural productivity. Furthermore, we identify knowledge gaps and highlight the required approaches, indicating future research directions on sources, transport, and fate of MPs in soils to improve our understanding of various unspecified abiotic and biotic impacts of MP pollution in agroecosystems.  相似文献   

15.
Study of soil physical processes such as water infiltration and redistribution, groundwater recharge, solute transport in the unsaturated zone, compaction and aeration in variably saturated soil hardly is possible without knowledge of the capillary pressure of the soil water as a function of the degree of saturation. Pore space topology, interfacial tension, and temperature probably are the most important physical factors affecting the capillary pressure at a given water content. Despite intensive research in the past decades on the water retention characteristics of soils, our knowledge of their response to varying ambient conditions is far from being complete. Current models of soil water retention as well as of hydraulic conductivity for unsaturated porous media often still use the simplified representation of the pore system as a bundle of cylindrical capillaries. Physical effects, like surface water film adsorption, capillary condensation and surface flow in liquid films, as well as volumetric changes of the pore space are often ignored. Consequently, physical properties of the solid phase surfaces, and their impact on water adsorption and flow, are often not considered. The objective of this contribution is to review various interfacial properties with possible application to the conventional water content — matric potential relation of soils. The ignoring of inter‐facial effects on the water retention of soils is widespread in the literature. The motivation of this paper is therefore to point out some of the more significant deficiencies of our current knowledge on the interaction of solid particle surfaces and the liquid phase in soil. We will first emphasize the impact of the wetting angle on the wetting of dry soil and to present the impact of interfacial tension of the liquid phase in the three‐phase system. At low water content, the transition from capillary‐bound water to adsorbed water and to wetting films is discussed separately, because of its impact on the rewetting process of dry soil. Finally, we discuss the impact of temperature on interfacial tension and water retention of soil as a second important interfacial process affecting directly the water retention of porous media.  相似文献   

16.
In this study, we examined the effects of chronic sublethal low pH exposure (pH 4.5) on endocrine and immune functions in carp. Plasma cortisol levels elevated rapidly from 3 hours after acid exposure and kept high until 2 days. Subsequently cortisol levels decreased gradually, but were significantly higher than those of control groups even at 4 weeks after acid exposure. Plasma immunoglobulin M (IgM) levels declined transiently at 1 week after the initiation of acid exposure, and then recovered to control levels at 4 weeks after acid exposure. Phagocytic rates of peripheral blood leukocytes also decreased significantly after 1 week of acid exposure, and was still low at 4 weeks. These results suggest that acidification stress causes a transient depression of the non-specific immune activity by the immunosuppressive effect of cortisol.  相似文献   

17.
Salinization of soil is recognised as one of the most pressing environmental challenges to resolve for the next century. We here conduct a synoptic review of the available research on how salt affects decomposer microbial communities and carbon (C) cycling in soil. After summarizing known physiological responses of microorganisms to salinity, we provide a brief overview and qualification of a selection of widely applied methods to assess microorganisms in soil to date. The dominant approaches to characterise microbial responses to salt exposure have so far been microbial biomass and respiration measurements. We compile datasets from a selection of studies and find that (1) microbial biomass-carbon (C) per C held in soil organic matter shows no consistent pattern with long-term (field gradients) or short-term (laboratory additions) soil salinity level, and (2) respiration per soil organic C is substantially inhibited by higher salt concentrations in soil, and consistently so for both short-term and long-term salinity levels. Patterns that emerge from extra-cellular enzyme assessments are more difficult to generalize, and appear to vary with the enzyme studied, and its context. Growth based assessments of microbial responses to salinization are largely lacking. Relating the established responses of microbial respiration to that of growth could provide an estimate for how the microbial C-use efficiency would be affected by salt exposure. This would be a valuable predictor for changes in soil C sequestration. A few studies have investigated the connection between microbial tolerance to salt and the soil salinity levels, but so far results have not been conclusive. We predict that more systematic inquiries including comprehensive ranges of soil salinities will substantiate a connection between soil salinity and microbial tolerance to salt. This would confirm that salinity has a direct effect on the composition of microbial communities. While salt has been identified as one of the most powerful environmental factors to structure microbial communities in aquatic environments, no up-to-date sequence based assessments currently exist from soil. Filling this gap should be a research priority. Moreover, linking sequencing based assessments of microbial communities to their tolerance to salt would have the potential to yield biomarker sets of microbial sequences. This could provide predictive power for, e.g., the sensitivity of agricultural soils to salt exposure, and, as such, a useful tool for soil resource management. We conclude that salt exposure has a powerful influence on soil microbial communities and processes. In addition to being one of the most pressing agricultural problems to solve, this influence could also be used as an experimental probe to better understand how microorganisms control the biogeochemistry in soil.  相似文献   

18.
Forest soils from field plots, subjected to long-term acidification by H2SO4 treatment, or to liming, were examined for the effects of treatment on net mineralization and turnover rates of carbon and nitrogen during incubation. The total soil respiration was decreased as a result of acidification, whereas the proportion of labeled C, introduced as 14C-glucose at start of the incubation, was increased in the CO2 pool emitted. The accumulation of mineral N (ammonium) was not significantly influenced by acidification, whereas the rate of microbial N turnover, obtained from 15N-dilution data for the exchangeable NH4+ fraction, was markedly decreased.  相似文献   

19.
城市污泥农用的环境效应及控制标准的发展现状   总被引:10,自引:0,他引:10  
由于城市污泥中富含植物生长所需要营养元素和有机质, 城市污泥农用已成为污泥资源化进程中的重要方式之一。近十几年来, 国内外在污泥重金属的形态、生物有效性及其在污泥-土壤-植物系统中的迁移转化规律等方面进行了广泛的研究, 并取得显著进展。同时, 污泥中有机污染物质和病原体的环境效应也越来越受到关注。但是在我国, 污泥农用的环境风险评价的长期性、系统性和田间数据验证还需进一步加强, 为合理制定或修改污泥农用标准积累有效的科学数据和提供可靠的科学依据。本文简述了国内外城市污泥的理化性质、污泥农用环境效应以及我国污泥农用标准的研究现状和进展, 并对污泥农用研究进行了展望, 以期为我国污泥农用的研究和发展提供参考依据。  相似文献   

20.
Freshly squeezed orange juice aroma is due to a complex mixture of volatile compounds as it lacks a specific character impact compound. Fresh hand-extracted juice is unstable, and thermal processing is required to reduce enzyme and microbial activity. Heating protocols range from the lightly heated not from concentrate, NFC, to the twice heated, reconstituted from concentrate, RFC, juices. Thermal processing profoundly effects aroma composition. Aroma volatiles are further altered by subsequent time-temperature storage conditions. Heating reduces levels of reactive aroma impact compounds such as neral and geranial, and creates off-flavors or their precursors from Maillard, Strecker, and acid catalyzed hydration reactions. Off-flavors such as 4-vinylguaiacol, p-cymene, and carvone are the products of chemical reactions. Other off-flavors such as butane-2,3-dione, guaiacol, and 2,6-dichlorophenol are indicators of microbial contaminations. Since most orange juice consumed worldwide is processed, the goal of this review is to summarize the widely scattered reports on orange juice aroma differences in the three major juice products and subsequent aroma changes due to packaging, storage, and microbial contamination with special emphasis on results from GC-O studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号