首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

There is growing evidence for a tight linkage between the structure and function of microbial communities and for the importance of this relationship in ecosystem responses to disturbances such as sea-level rise (SLR). While the role of plants in determining the capacity of salt marshes to keep pace with SLR through sediment accretion has received considerable attention, the role of microbes in offsetting these gains via decomposition is less understood.

Materials and methods

We conducted a controlled experiment to determine the structural and functional responses of microbes to SLR, using soil from the low intertidal zone of two New England salt marshes in Massachusetts and New Hampshire, USA. We used terminal restriction fragment length polymorphisms (t-RFLPs) generated from microbial 16S rDNA to evaluate community composition and diversity and focused on changes in respiration with SLR, measured as total respired carbon normalized by percent organic matter, as a surrogate for decomposition rate.

Results and discussion

We observed a 24% reduction in microbial respiration with a simulated rise in sea level of 40 cm. This functional change was accompanied by a structural shift in microbial community composition among samples from New Hampshire but not Massachusetts, assessed via principal coordinate analysis of t-RFLP data. We also found greater microbial diversity within our New Hampshire samples, suggesting that low diversity may constrain community compositional shifts.

Conclusions

Our results suggest that decreased microbial respiration could alleviate the negative effects of SLR on salt marsh surface elevation, at least in the short term, and that the diversity of the soil microbial community may positively influence functional responses such as respiration.
  相似文献   

2.
酸雨对土壤呼吸的影响机制研究进展与展望   总被引:2,自引:0,他引:2  
刘自强  危晖  章家恩  郭靖  李登峰 《土壤》2019,51(5):843-853
土壤呼吸是陆地生态系统与大气之间进行碳交换的主要途径,其动态变化直接影响着全球碳平衡。由于人类活动的影响,酸雨成为人类当前面临的最严重的生态环境问题之一,但其对土壤呼吸的影响及其机理尚无定论。本文综述了不同生态系统土壤呼吸对酸雨的响应特征,多数文献表明,高强度的酸雨抑制土壤呼吸,而在低强度的酸雨作用下土壤呼吸的响应存在差异。从影响土壤呼吸的4个关键生物因子,即光合作用、微生物、凋落物和根系生物量,重点讨论了酸雨对土壤呼吸的影响机制。在此基础上,提出了以下研究展望:①开展土壤呼吸对不同组成类型酸雨的响应研究;②开展与土壤碳排放相关的功能微生物对酸雨的响应研究;③开展不同物候期土壤呼吸对酸雨的响应研究;④开展土壤呼吸各过程对酸雨的响应研究;⑤建立全球酸雨地区土壤碳排放监测研究网络。  相似文献   

3.
Acid rain pollution is changing gradually from sulfuric acid rain (SAR) to mixed acid rain (MAR) and then to nitric acid rain (NAR) with the rapidly growing number of motor vehicles. The influences of changed acid rain types on ecosystem functions, particularly on litter decomposition, remain unclear. Two dominant litter types from a coniferous forest and a broad-leaved forest were incubated in microcosms with original forest soils and treated by five types of acid rain with different SO42− to NO3 ratios (1:0, 5:1, 1:1, 1:5, and 0:1). During a six-month incubation period, litter mass losses, soil microbial biomass, and enzyme activities were investigated. Results showed that various acid treatments inhibited litter decomposition, soil microbial biomass, and most enzyme activities, and the inhibitory effects of NAR were more significant than those of SAR and MAR. The resistance to external acid of microbial communities in broad-leaved forest was higher than that in coniferous forest. NAR and MAR treatments slowed down soil carbon (C), nitrogen (N), and phosphorus (P) mineralization by attenuating the correlations between litter mass losses and the enzymes involved in C, N, and P cycling. Results reveal that the ratio of SO42− to NO3 in acid rain is an important factor which profoundly influences litter decomposition process. In the future, a decreasing ratio of SO42− to NO3 in acid rain will be observed in subtropical forests. Thus, soil C would accumulate as a consequence of future acid precipitation, and this may seriously affect the balance of ecosystem C, N flux.  相似文献   

4.
We studied the effects of the terrestrial isopod Armadillidium vulgare on organic matter decomposition and stabilization in a long-term (65-week) laboratory experiment. We quantified the microbial activity in leaf litter (Acer pseudoplatanus) which did not come into contact with isopods, in A. vulgare feces produced from the same litter, and in unconsumed leftover of this litter. Freshly fallen leaf litter and up to 3 day old feces and leftover of litter were used. All materials were air dried immediately after collection and rewetted 1 day before use. Simultaneously, we measured how microbial activity in litter and feces are affected by fluctuations in humidity and temperature and by the addition of easily decomposed substances (starch and glucose).Microbial respiration was lower in feces than in litter or unconsumed leaf fragments. At the same time, moisture and temperature fluctuations and addition of glucose or starch increased respiration much more in litter than in feces. The results indicate that the processing of litter by A. vulgare reduces microbial respiration and reduces the sensitivity of microbial respiration to environmental fluctuations. 13C NMR spectra from feces indicated preferential loss of polysaccharide-carbon and accumulation of lignin with some modification to the aromatic-carbon. TMAH-Py-GC MS showed that lignin content was higher in feces than in litter and that lignin quality differed between the two substrates. Guaiacyl units were depleted in the feces, which indicated breakdown of guaiacyl associated with gut passage. As a conclusion, the results suggest that this common isopod greatly affects leaf litter decomposition. Decomposition of isopod feces in a long-term experiment is lower than litter decomposition which may support stabilization of organic matter in soil. This is caused mainly due to higher content of aromatic carbon in feces, which may cause its considerable resistance to bacterial degradation.  相似文献   

5.
Traditional models of soil organic matter (SOM) decomposition are all based on first order kinetics in which the decomposition rate of a particular C pool is proportional to the size of the pool and a simple decomposition constant (dC/dt=kC). In fact, SOM decomposition is catalyzed by extracellular enzymes that are produced by microorganisms. We built a simple theoretical model to explore the behavior of the decomposition-microbial growth system when the fundamental kinetic assumption is changed from first order kinetics to exoenzymes catalyzed decomposition (dC/dt=KC×Enzymes). An analysis of the enzyme kinetics showed that there must be some mechanism to produce a non-linear response of decomposition rates to enzyme concentration—the most likely is competition for enzyme binding on solid substrates as predicted by Langmuir adsorption isotherm theory. This non-linearity also induces C limitation, regardless of the potential supply of C. The linked C and N version of the model showed that actual polymer breakdown and microbial use of the released monomers can be disconnected, and that it requires relatively little N to maintain the maximal rate of decomposition, regardless of the microbial biomass’ ability to use the breakdown products. In this model, adding a pulse of C to an N limited system increases respiration, while adding N actually decreases respiration (as C is redirected from waste respiration to microbial growth). For many years, researchers have argued that the lack of a respiratory response by soil microbes to added N indicates that they are not N limited. This model suggests that conclusion may be wrong. While total C flow may be limited by the functioning of the exoenzyme system, actual microbial growth may be N limited.  相似文献   

6.
Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.  相似文献   

7.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

8.
《Applied soil ecology》2009,41(3):401-410
Changes in enzyme activities during litter decomposition provide diagnostic information on the dynamics of decay and functional microbial succession. Here we report a comparative study of enzyme activities involved in the breakdown of major plant components and of other key parameters (microbial respiration, fungal biomass, N, lignin and cellulose contents) in homogeneous leaf litter of Quercus ilex L. incubated in three evergreen oak woods in Southern Italy (Campania), differing for chemical and physical soil characteristics and microclimatic conditions. The results showed that the litter mass loss rates were similar in the three wood sites. Independently of the incubation sites, cellulase, xylanase and peroxydase activities showed seasonal variations with maximum and minimum levels in wet and dry periods, respectively, and this pattern closely matched microbial respiration. Activities of α- and β-amylase, instead, were high at the beginning of incubation and quickly decreased with decomposition progress because their substrate was rapidly depleted. Laccase activity, in contrast, was low at the beginning of incubation but after 6 months it increased significantly. The increase of laccase activity was correlated to an increase in fungal biomass, probably reflecting a major shift in the litter microbial community. As concerns quality changes, N and lignin content did not significantly change during decay. The cellulosic component started being degraded after about 6 months in the litter incubated in two of the three wood sites and from the start of decomposition in the third site. Apart from minor differences in the levels of certain enzyme activities, the data showed that the functional microbial succession involved in the decomposition of Q. ilex leaf litter did not change appreciably in response to differences in soil and microclimatic conditions in the incubation sites.  相似文献   

9.
Sources of CO2 efflux from soil and review of partitioning methods   总被引:7,自引:0,他引:7  
Five main biogenic sources of CO2 efflux from soils have been distinguished and described according to their turnover rates and the mean residence time of carbon. They are root respiration, rhizomicrobial respiration, decomposition of plant residues, the priming effect induced by root exudation or by addition of plant residues, and basal respiration by microbial decomposition of soil organic matter (SOM). These sources can be grouped in several combinations to summarize CO2 efflux from the soil including: root-derived CO2, plant-derived CO2, SOM-derived CO2, rhizosphere respiration, heterotrophic microbial respiration (respiration by heterotrophs), and respiration by autotrophs. These distinctions are important because without separation of SOM-derived CO2 from plant-derived CO2, measurements of total soil respiration have very limited value for evaluation of the soil as a source or sink of atmospheric CO2 and for interpreting the sources of CO2 and the fate of carbon within soils and ecosystems. Additionally, the processes linked to the five sources of CO2 efflux from soil have various responses to environmental variables and consequently to global warming. This review describes the basic principles and assumptions of the following methods which allow SOM-derived and root-derived CO2 efflux to be separated under laboratory and field conditions: root exclusion techniques, shading and clipping, tree girdling, regression, component integration, excised roots and insitu root respiration; continuous and pulse labeling, 13C natural abundance and FACE, and radiocarbon dating and bomb-14C. A short sections cover the separation of the respiration of autotrophs and that of heterotrophs, i.e. the separation of actual root respiration from microbial respiration, as well as methods allowing the amount of CO2 evolved by decomposition of plant residues and by priming effects to be estimated. All these methods have been evaluated according to their inherent disturbance of the ecosystem and C fluxes, and their versatility under various conditions. The shortfalls of existing approaches and the need for further development and standardization of methods are highlighted.  相似文献   

10.

Purpose

The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils.

Materials and methods

A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid–base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0–7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined.

Results and discussion

pH buffering capacity had a range of 9.1–32.1 mmol kg–1 pH–1 for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R 2?=?0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha?1 increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation/deprotonation of oxygen-containing functional groups of biochars was the main mechanism for the increase of pH buffering capacity of acid soils with the incorporation of biochars.

Conclusions

CEC was a key factor determining pH buffering capacity of acid soils from tropical and subtropical regions of China. Decreased CEC and content of 2:1-type clay minerals during evolution of tropical soils led to decreased pH buffering capacity. Incorporation of biochars generated from crop straws did not only ameliorate soil acidity, but also increased soil pH buffering capacity.
  相似文献   

11.
Little is known about the decomposition rates of shoot and root residues of perennial grasses. This knowledge is important to estimate the carbon sequestration potential of the grasses. An incubation experiment was carried out in a sandy clay loam with shoot and root residues of three native perennial grasses (Wallaby grass, Stipa sp. and Kangaroo grass) and the annual grass barley either separately or in mixtures of two residues. Respiration rate was measured over 18 days, and microbial C and available N were measured on days 0 and 18. Decomposition was lower for roots than for shoots and lower for residues of perennial grasses than for barley. Cumulative respiration was positively correlated with water-soluble C in the residues but not with residue C/N. In the mixtures, the measured cumulative respiration was higher than the expected value in five of the nine mixes usually where the differences in cumulative respiration between the individual residues were relatively small. Lower than expected cumulative respiration were found in two of the mixtures in which barley shoots (high cumulative respiration) were mixed with residues with low cumulative respiration. There was a negative correlation between the change in microbial biomass C concentration from day 0 to day 18 and cumulative respiration on day 18. In the amended soils, the available N concentration decreased from day 0 to day 18. It is concluded that the low decomposition rate of perennial grasses residues should favour C sequestration, but that mixing residues of similar decomposition rate may accelerate their decomposition.  相似文献   

12.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

13.
A 13C natural abundance experiment including GC-c-IRMS analysis of phospholipid fatty acids (PLFAs) was conducted to assess the temporal dynamics of the soil microbial community and carbon incorporation during the mineralization of plant residues under the impact of heavy metals and acid rain. Maize straw was incorporated into (i) control soil, (ii) soil irrigated with acid rain, (iii) soil amended with heavy metal-polluted filter dust and (iv) soil with both, heavy metal and acid rain treatment, over a period of 74 weeks. The mineralization of maize straw carbon was significantly reduced by heavy metal impact. Reduced mineralization rate of the added carbon likely resulted from a reduction of the microbial biomass due to heavy metal stress, while the efficiency of 13C incorporation into microbial PLFAs was hardly affected. Since acid rain did not significantly change soil pH, little impact on soil microorganisms and mineralization rate was found. Temporal dynamics of labelling of microbial PLFAs were different between bacterial and fungal PLFA biomarkers. Utilization of maize straw by bacterial PLFAs peaked immediately after the application (2 weeks), while labelling of the fungal biomarker 18:2ω6,9 was most pronounced 5 weeks after the application. In general, 13C labelling of microbial PLFAs was closely linked to the amounts of maize carbon present in the soil. The distinct higher labelling of microbial PLFAs in the heavy metal-polluted soils 74 weeks after application indicated a large fraction of available maize straw carbon still present in the soil.  相似文献   

14.
Assessments of terrestrial carbon fluxes require a thorough understanding of links between primary production, soil respiration and carbon loss through drainage. In this study, stem girdling was used to terminate autotrophic soil respiration including rhizosphere respiration and root exudation in a temperate Norway spruce stand. Rates of soil respiration and dissolved organic carbon (DOC) formation were measured in the second year after girdling, comparing an intact plant-rhizosphere continuum with an exclusive decomposer system. The molecular and isotopic composition of DOC in the soil solution was analysed with a coupled Py-GC/MS-C-IRMS system to distinguish between the carbon sources of dissolved carbon. Pyrolysis products were grouped according to their precursor origins: polysaccharides, proteins or of mixed origin (mainly derivates of lignins and proteins). When dead roots became available for decomposition, rates of heterotrophic soil respiration in girdling plots peaked at 6.5 μmol m−2 s−1, comparable to peak rates of total soil respiration (autotrophic and heterotrophic) in control plots, 6.1 μmol m−2 s−1. A significant response of soil respiration to temperature was found in control plots only, showing that an unlimiting supply of organic substrates for microbial respiration may mask any temperature effects. The enhanced decomposition in girdled plots was further supported by the isotopic composition of DOC in soil solution; all three precursor groups became isotopically enriched as the growing season progressed (polysaccharides by 2.3‰, proteins by 1.9‰, mixed origin group by 2.2‰). This indicates a trophic level shift due to incorporation of organic substrate into the microbial food chain. In the control plots’ mixed origin fraction, the isotopic composition changed over time from a signature resembling that of lignin (−28.9‰) to one similar of the protein fraction (−25.7‰). Significant temporal changes of structural DOC composition occurred in the girdling plots only. These results suggest that changes in the microbial community and in decomposition rates occurred in both girdled and control plots in the following ways: (i) increased substrate availability (dead roots) gave rise to generally enhanced performance of the decomposer community in girdled plots, (ii) root-derived exudates probably contributed to enhanced decomposition of recalcitrant lignin in the control plots and (iii) the structural composition of DOC seemed to be more a result of decomposition than of plant root exudation in all plots.  相似文献   

15.
Recent studies suggest the long-standing discrepancy between measured and modeled leaf litter decomposition in drylands is, in part, the result of a unique combination of abiotic drivers that include high soil surface temperature and radiant energy levels and soil-litter mixing. Temperature and radiant energy effects on litter decomposition have been widely documented. However, under field conditions in drylands where soil-litter mixing occurs and accelerates decomposition, the mechanisms involved with soil-litter mixing effects are ambiguous. Potential mechanisms may include some combination of enhanced microbial colonization of litter, physical abrasion of litter surfaces, and buffering of litter and its associated decomposers from high temperatures and low moisture conditions. Here, we tested how soil-litter mixing and soil moisture interact to influence rates of litter decomposition in a controlled environment. Foliar litter of two plant species (a grass [Eragrostis lehmanniana] and a shrub [Prosopis velutina]) was incubated for 32 weeks in a factorial combination of soil-litter mixing (none, light, and complete) and soil water content (2, 4, 12% water-filled porosity) treatments. Phospholipid fatty acids (PLFAs) were quantified one week into the experiment to evaluate initial microbial colonization. A complementary incubation experiment with simulated rainfall pulses tested the buffering effects of soil-litter mixing on decomposition.Under the laboratory conditions of our experiments, the influence of soil-litter mixing was minimal and primarily confined to changes in PLFAs during the initial stages of decomposition in the constant soil moisture experiment and the oscillating soil moisture conditions of the rainfall pulse experiment. Soil-litter mixing effects on CO2 production, total phospholipid concentrations, and bacterial to total PLFA ratios were observed within the first week, but responses were fairly weak and varied with litter type and soil moisture treatment. Across the entire 32-week incubation experiment, soil moisture had a significant positive effect on mass loss, but soil-litter mixing did not. The lack of strong soil-litter mixing effects on decomposition under the moderate and relatively constant environmental conditions of this study is in contrast to results from field studies and suggests the importance of soil-litter mixing may be magnified when the fluctuations and extremes in temperature, radiant energy and moisture regimes common dryland field settings are in play.  相似文献   

16.
Plant effects on ecosystem processes are mediated through plant-microbial interactions belowground and soil enzyme assays are commonly used to directly relate microbial activity to ecosystem processes. Live plants influence microbial biomass and activity via differences in rhizosphere processes and detrital inputs. I utilized six grass species of varying litter chemistry in a factorial greenhouse experiment to evaluate the relative effect of live plants and detrital inputs on substrate-induced respiration (SIR, a measure of active microbial biomass), basal respiration, dissolved organic carbon (DOC), and the activities of β-glucosidase, β-glucosaminidase, and acid phosphatase. To minimize confounding variables, I used organic-free potting media, held soil moisture constant, and fertilized weekly. SIR and enzyme activities were 2-15 times greater in litter-addition than plant-addition treatments. Combining live plants with litter did not stimulate microbial biomass or activity above that in litter-only treatments, and β-glucosidase activity was significantly lower. Species-specific differences in litter N (%) and plant biomass were related to differences in β-glucosaminidase and acid phosphatase activity, respectively, but had no apparent effect on β-glucosidase, SIR, or basal respiration. DOC was negatively related to litter C:N, and positively related to plant biomass. Species identity and living plants were not as important as litter additions in stimulating microbial activity, suggesting that plant effects on soil enzymatic activity were driven primarily by detrital inputs, although the strength of litter effects may be moderated by the effect of growing plants.  相似文献   

17.
Temporal changes of microbial respiration of leaf litter during gut passage by two species of bibionid flies (Penthetria holosericae and Bibio marci) and immediately after defecation were studied as well as the effect of B. marci feeding on microbial respiration in the remaining consumed leaf litter. Respiration in the guts of both species was lower than respiration of the original leaves. Microbial respiration increased after defecation, but respiration was higher in comparison with the original litter only for B. marci. Later, microbial respiration in both species decreased dramatically over several hours. Respiration of the remains of consumed leaves, from which the excrements were removed, was significantly higher than the respiration of non-consumed leaves. Scanning electron microscopy indicated that plant cells in the unconsumed part of the litter were massively broken-up by feeding activity and potentially exposed to microbial colonisation from the surrounding soil and microflora coming from the excrements deposited on the consumed litter. Long term (11 months) exposure of leaf litter and excrements produced from this litter showed that the decomposition of excrements was significantly slower than that of leaves. These findings indicate that bibionid feeding activity causes a short term increase in microbial mineralization of litter, but slows it down in the long term.  相似文献   

18.
Purpose

Understanding ecosystem processes such as litter decomposition in response to dramatic land-use change is critical for modeling and predicting carbon (C) cycles. However, the patterns of litter decomposition along with long-term secondary succession (over 100 years) are not well reported, especially concerning nutrient limitations on litter decomposition.

Materials and methods

To clarify the response of litter decomposition to changes in soil nutrient availability, we conducted four incubation experiments involving soil and litter and nutrient addition from different successional stages and investigated the changes in microbial respiration and litter mass loss.

Results and discussion

Our results revealed that microbial respiration increased with succession without any litter addition (1.19~1.73 mg C g?1 soil), and litter addition significantly promoted microbial respiration (16.5~72.9%), especially in the early successional stage (grassland and shrubland). The decomposition rate of the same litter decreased with succession. In addition, nitrogen (N) and phosphorus (P) addition showed significant effects on litter decomposition and microbial respiration; P addition promoted litter decomposition (2.4~15.3%) and microbial respiration (10.1~34.5%) in all successional stages, while N addition promoted litter decomposition (4.0~10.3%) and microbial respiration (5.4~27.2%) in all except the last stage of succession, which showed a negative effect on litter decomposition (??7.5%) and microbial respiration (??6.1%), indicating possible N saturation of litter decomposition and microbial respiration.

Conclusions

This work highlights that soil nutrient availability and successional stages need to be taken into account to predict the changes to litter decomposition in response to global changes.

  相似文献   

19.
Atmospheric emissions of fly ash and SO2 from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant (sites Ia, II, and III, respectively), representing high, moderate and low emission rates. An additional site (site Ib) at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO2 emissions. Soil microbial biomass C and N, CO2 evolved and activities of l-asparaginase, l-glutaminase, β -glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). The emission-induced increases in ferromagnetic susceptibility, soil pH, concentrations of mobile (NH4NO3 extractable) Cd, Cr, and Ni, effective cation exchange capacity and base saturation in the humus layer along the 15 km long transect significantly (P<0.05) reflected the effect of past depositions of alkaline fly ash. Soil microbial and biochemical parameters were significantly (P<0.05) affected by chronic fly ash depositions. The effect of forest type (i.e. comparison of sites Ia and Ib) on the studied parameters was generally dominated by the deposition effect. Alkaline depositions significantly (P<0.05) decreased the microbial biomass C and N, microbial biomass C-to-N ratios and microbial biomass C-to-organic C ratios. Microbial respiration, metabolic quotient (qCO2) and the activities of l-asparaginase, l-glutaminase, β-glucosidase, acid phosphatase and arylsulfatase were increased by long-term depositions from the power plants. Acid phosphatase had the highest specific (enzyme activities expressed per unit organic C) activity values among the enzymes studied and arylsulfatase the lowest. The responses of the microbial biomass and soil respiration data to different atmospheric deposition loads were mainly controlled by the content of organic C and cation exchange capacity, while those of enzyme activities were governed by the soil pH and concentrations of mobile heavy metals. We concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.  相似文献   

20.
The effect of acid precipitation on vegetation is the result of an interaction between acid and plant. The metabolism of plants is dependent on optimal pH-values, which are maintained by regulation. There are differences in the effectiveness of regulation under such exogenous influences as acidic precipitation. These differences can be related to the resistance of plants to acidic precipitation. Such differences were measured as buffering capacity of homogenized leaves during titration with acid. There are significant differences in buffering capacity between clones in Pinus spp. and Picea abies. A highly significant variance in buffering capacity also was found among families of P. abies. Calculations of genetical parameters show that the phenotypical variance of buffering capacity is governed mainly by genetical factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号