首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herbicide glyphosate, supplied as Roundup (Monsanto Canada Inc.), was tested for effects on nitrification in four soils from Atlantic Canada. These included a sandy loam (pH 6.8), two silt loam (pH 6.4 and 5.8) agricultural soils and a clay loam forest soil (pH 3.5). Glyphosate was tested at normal field exposure rates (FR) and levels up to 200 times higher. FR values ranged from 19.83 to 29.26 ppm (jig glyphosate g?1 soil). Glyphosate had no deleterious effects on nitrification in any soil when tested at FR concentrations. In the sandy loam soil nitrification was significantly stimulated at a glyphosate level 50 times higher than FR. With this soil and one of the silt loam soils (pH 6.4) glyphosate levels of 100 times FR and higher were required for a significant inhibition of nitrification. With the other silt loam soil (pH 5.8) glyphosate significantly inhibited nitrification at concentrations 10 times FR and higher. Nitrification in the acidic forest soil was very low and accurate toxicity data could not be obtained. The EC50 of glyphosate towards nitrification in soil ranged from 1435 to 2920 ppm, which corresponds to exposure levels from 67 to 150 times higher than recommended field application rates. The use of glyphosate in agriculture and forestry should have no toxic effects on nitrification in soil.  相似文献   

2.

Purpose

The primary purpose of this study was to determine how flooding and draining cycles affect the redox chemistry of metal (hydr)oxides and organic matter in paddy soils and how the pH influences these processes. Our secondary purpose was to determine to what extent a geochemical thermodynamic equilibrium model can be used to predict the solubility of Mn and Fe during flooding and draining cycles in paddy soils.

Material and methods

We performed a carefully designed column experiment with two paddy soils with similar soil properties but contrasting pH. We monitored the redox potential (Eh) continuously and took soil solution samples regularly at four depths along the soil profile during two successive flooding and drainage cycles. To determine dominant mineral phases of Mn and Fe under equilibrium conditions, stability diagrams of Mn and Fe were constructed as a function of Eh and pH. Geochemical equilibrium model calculations were performed to identify Mn and Fe solubility-controlling minerals and to compare predicted total dissolved concentrations with their measured values.

Results and discussion

Flooding led to strong Eh gradients in the columns of both soils. In the acidic soil, pH increased with decreasing Eh and vice versa, whereas pH in the alkaline soil was buffered by CaCO3. In the acidic soil, Mn and Fe solubility increased during flooding due to reductive dissolution of their (hydr)oxides and decreased during drainage because of re-oxidation. In the alkaline soil, Mn and Fe solubility did not increase during flooding due to Mn(II) and Fe(II) precipitation as MnCO3, FeCO3, and FeS. The predicted levels of soluble Mn and Fe in the acidic soil were much higher than their measured values, but predictions and measurements were rather similar in the alkaline soil. This difference is likely due to kinetically limited reductive dissolution of Mn and Fe (hydr)oxides in the acidic soil. During flooding, the solubility of dissolved organic matter increased in both soils, probably because of reductive dissolution of Fe (hydr)oxides and the observed increase in pH.

Conclusions

Under alternating flooding and draining conditions, the pH greatly affected Mn and Fe solubility via influencing either reductive dissolution or carbonate formation. Comparison between measurements and geochemical equilibrium model predictions revealed that reductive dissolution of Mn and Fe (hydr)oxides was kinetically limited in the acidic soil. Therefore, when applying such models to systems with changing redox conditions, such rate-limiting reactions should be parameterized and implemented to enable more accurate predictions of Mn and Fe solubility.  相似文献   

3.

Purpose

The effect of Fe oxides on the natural acidification of highly weathered soils was investigated to explore the natural acidification process in variable charge soils

Materials and methods

A variety of highly weathered soils with different Fe oxide contents were collected from the tropical and subtropical regions of southern China to investigate the soil acidity status. Electrodialysis experiments were conducted to simulate natural acidification process and promote accelerated acidification in a variety of systems such as relatively less weathered soils, mixtures of goethite with montmorillonite or kaolinite, an Alfisol, a limed Ultisol, and Fe oxides coated montmorillonite. The objective was to gather evidence for the occurrence of Fe oxide inhibited natural acidification in highly weathered soils.

Results and discussion

Highly weathered soils with free Fe2O3?<?100?g/kg (17 soils) had an average pH?=?4.64?±?0.06, while the soils with free Fe2O3?>?100?g/kg (49 soils) had an average pH?=?5.25?±?0.04. A significant linear relationship was found between the soil pH and Fe oxide content of these soils. Similar results were obtained in electrodialysis experiments, i.e., in soils that underwent accelerated acidification. A negative correlation was found between the Fe oxide content and exchangeable acidity or effective cation exchange capacity, respectively. In another set of experiments, goethite slowed down acidification in experiments conducted with this Fe oxide and montmorillonite, or kaolinite, or an Alfisol, or a limed Ultisol. The overlapping of the electrical double layers on the positively charged Fe oxide particles and negatively charged minerals may have caused the release and subsequent leaching of the base cations, but inhibited the production of exchangeable acidity cations. In addition, when montmorillonite or Fe oxide-coated montmorillonite were electrodialyzed in another set of experiments, exchangeable acidity of the former was much greater than that of the latter, suggesting that the positively charged Fe oxide coatings on montmorillonite have partially neutralized the permanent negative charge on montmorillonite surfaces, decreasing exchangeable acidity.

Conclusions

Fe oxides may function as natural ??anti-acidification?? agents through electric double-layer overlapping and coating of phylliosilicates in highly weathered soils.  相似文献   

4.
This study evaluated the effect of extreme HCl deposition on soil acid neutralization following simulated shuttle rocket launches. Four soils along a soil chronosequence from Vandenberg Air Force Base were selected and evaluated as a function of pH spike addition (pH=1.0, 2.5, 4.0, and 5.6) and time (0 to 4 mo) in a leaching-incubation experiment. The pH=1.0 treatment led to a rapid soil extract pH decrease to 2.5 in poorly buffered soils and increased leaching of basic cations (Ca, Mg, K, and Na), Al, and Si. In general, there were no significant differences among the pH= 2.5, 4.0, and 5.6 treatments. Acid neutralization capacity increased with increasing soil age. The acid neutralization process involved two steps. In Step 1, acid is neutralized by direct or indirect exchange with exchangeable basic cations. The most likely mechanisms for this step are: (1) the direct exchange of H′ for basic cations followed by an interchange reaction between surface H′ and structural Al, and (2) the indirect exchange through H+ neutralization by polyhydroxyl-Al complexes with concurrent base displacement. Acid neutralization by a gibbsite-like mineral is an unlikely mechanism controlling the initial acid neutralization step. Eventually a pure acidic (H-A l) complex develops. In Step 2, further acid neutralization is governed by mineral dissolution via the acidic cations (H′, All').  相似文献   

5.
After exposure of samples of three forest soils (pH 3.4 to 3.9) from the Adirondacks region of New York to 60, 230, or 400 cm of simulated rain of pH 3.5 or 5.6 in 4, 14, or 24 weeks, respectively, the soil samples were separated into the 0 to 2 and 2 to 5 cm organic layers and further incubated. The rates of N mineralization in Woods soil exposed to the simulated precipitation were less for rain at pH 3.5 than at pH 5.6, but the inhibition decreased with increasing exposure of the 0 to 2 cm layer. In Panther soil, the rates of mineralization were usually not affected by the acidity of the simulated rain. In the upper layer of Sagamore soil, mineralization was not influenced by pH of the simulated rain, but the transformation was faster in the bottom layer of soil after prolonged exposure to simulated rain at pH 3.5 than at pH 5.6. The rate of nitrate formation in Panther and Woods soil amended with ammonium was inhibited by the more acid rain. Studies with 15NH4 indicated that ammonium was oxidized to nitrate even though ammonium levels did not decline or declined only slightly after prolonged exposure of Panther or Woods soil to rain at pH 3.5. The growth of orchardgrass in Panther and Woods soil was inhibited by the more acid simulated rain.  相似文献   

6.
Plant growth responses to biochar addition: an Australian soils perspective   总被引:1,自引:0,他引:1  
The use of biochar as an agricultural amendment has attracted much attention owing to its potential to improve soil condition and plant growth; however, production outcomes are often uncertain. Although soil type is a major driver of plant productivity, there are relatively few biochar studies that directly compare plant growth responses across a range of soil types. We tested the wheat growth response to biochar derived from poultry litter and from wheat straw applied at 1, 5 and 10 t ha?1 (approximately 0.13, 0.67 and 1.33 % w/w) in four soils representing major agricultural regions in Australia: an acidic arenosol (Western Australian cereal belt), an acidic rhodic ferralsol (Northern New South Wales), a neutral vertisol (Queensland cropping) and an alkaline haplic calcisol (Eyre Peninsula in South Australia). In the neutral vertisol, where plant growth was vigorous in the control treatments, biochar had little impact, whereas in the alkaline calcisol, there was a small significant increase in shoot biomass at high (10 t ha?1) application rates. Plant growth responses in the acidic soils were most evident but demonstrated a strong contrast to one another. In the acidic arenosol, negative growth impact correlated with increasing electrical conductivity, while in the acidic ferralsol a small rate-dependent increase in pH correlated with relatively large gains in biomass, possibly due to improved phosphorus nutrition and alleviated Al toxicity. Moving towards effective integration of biochar as a management tool will not only require stratification based on soil types, but wider consideration of the main plant production constraints, such as pH, pertinent to a particular system.  相似文献   

7.

Purpose

Lead (Pb) is a highly studied contaminant with no known biological function that causes harmful adverse effects on ecological and human health. We tried to evaluate how protective the current soil regulatory levels are for Pb towards safeguarding the ecological health. In order to achieve this, our study evaluated the effect of soil texture and pH on the toxicity and availability of lead to earthworms in soils varying in soil properties.

Materials and methods

The earthworm Eisenia fetida was exposed to Pb in three soils with different physico-chemical characteristics. Pb solutions were homogenously mixed with soil to obtain concentrations ranging from 0 to 10,000 mg/kg Pb dry soil. Avoidance behaviour, weight loss and mortality were measured in this study to calculate the EC50 and LC50 values.

Results and discussion

Weight loss and mortality in earthworms due to Pb toxicity were in the following order: acidic > neutral > alkaline soil. The EC50 values resulting in 50% decrease in worm weight over control for Pb in acidic, neutral and alkaline soils were 460, 3606 and 5753 mg/kg soil, respectively. Thus, the acidic soil recorded an EC50 well below the soil guideline value for Pb. Whereas, the LC50 values resulting in 50% mortality in worms over control were 1161, 4648 and 7851 mg/kg, respectively, for acidic, neutral and alkaline soils. The Pb concentrations in earthworms ranged from 0.2 to 740 mg/kg wet weight. Soils with low clay content and acidic to neutral pH values demonstrated an increased Pb toxicity in earthworms compared to the soils with alkaline pH.

Conclusions

The worm weight loss is a more sensitive parameter than the mortality. This study emphasizes that the soil regulatory levels for Pb are not protective of worms in acidic soils. Therefore, care should be taken when using the current regulatory limits to assess and predict the safety of a contaminated site with acidic soils towards the ecological health.
  相似文献   

8.
为探究铁氧化物对土壤硝化动力学的影响,以全铁含量低的酸性潮土(pH4.9)和中性潮土(pH7.2)为研究对象,通过7d的室内恒温(28℃)培养,研究了不同pH土壤在添加0(对照),0.5%,1%,3%,5%,10%(重量比)铁氧化物后的硝化动力学过程。结果表明:铁氧化物加入量超过3%,则改变中性潮土的硝化动力学过程由一级变为零级模型。不同含量铁氧化物加入后,酸性潮土的硝化过程均符合一级动力学模型。加铁处理的酸性潮土,其净矿化速率均显著高于不加铁处理。加铁量为10%处理的净矿化速率为4.12mg/(kg·d),是不加铁处理的7.82倍。随着铁氧化物加入量的增加,酸性潮土净硝化速率显著升高而中性潮土净硝化速率却显著下降。酸性潮土中铁氧化物加入量超过3%的处理,其净硝化速率极显著高于加铁量小于3%的处理。总之,铁氧化物的加入显著促进酸性潮土的净硝化速率,对中性潮土的净硝化速率却有显著抑制作用,并且加入量越大对2种土壤的作用效果越显著。3%的铁氧化物加入量是显著影响酸性潮土和中性潮土硝化作用的临界值。  相似文献   

9.
Twenty surface (0–15 cm) samples of acidic soils were analyzed for water soluble (WS), exchangeable (EX), lead displaceable (Pb-disp.), acid soluble (AS), manganese (Mn) oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline iron (Fe) oxide occluded (CFeOX) and residual (RES) fractions of Mn, and also for extractable Mn in some common soil extractants: (diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich-3 (pH 2.0), Modified Olsen, 0.005 M calcium chloride (CaCl2), 1 M magnesium chloride (MgCl2) and ion exchange resins. The WS-Mn fraction showed a significant and positive correlation with Mn extractable in DTPA (pH 5.3) and AB-DTPA (pH 7.6), while both WS-Mn and EX-Mn fractions correlated significantly and positively with Mn concentration and uptake by maize plants grown in these soils. The AB-DTPA (pH 7.6) and DTPA (pH 5.3) appeared suitable to assess the availability of Mn in acidic soils.  相似文献   

10.

Purpose

Agricultural practises impact soil properties and N transformation rate, and have a greater effect on N2O production pathways in agricultural soils compared with natural woodland soils. However, whether agricultural land use affects N2O production pathways in acidic soils in subtropical regions remains unknown.

Materials and methods

In this study, we collected natural woodland soil (WD) and three types of agricultural soils, namely upland agricultural (UA), tea plantation (TP) and bamboo plantation (BP) soils. We performed paired 15N-tracing experiment to investigate the effects of land use types on N2O production pathways in acidic soils in subtropical regions in China.

Results and discussion

The results revealed that heterotrophic nitrification is the dominant pathway of N2O production in WD, accounting for 44.6 % of N2O emissions, whereas heterotrophic nitrification contributed less than 2.7 % in all three agricultural soils, due to a lower organic C content and soil C/N ratio. In contrast, denitrification dominated N2O production in agricultural soils, accounting for 54.5, 72.8 and 77.1 % in UA, TP and BP, respectively. Nitrate (NO3 ?) predominantly affected the contribution from denitrification in soils under different land use types. Autotrophic nitrification increased after the conversion of woodland to agricultural lands, peaking at 42.8 % in UA compared with only 21.5 % in WD, and was positively correlated with soil pH. Our data suggest that pH plays a great role in controlling N2O emissions through autotrophic nitrification following conversion of woodland to agricultural lands.

Conclusions

Our results demonstrate the variability in N2O production pathways in soils of different land use types. Soil pH, the quantity and quality of organic C and NO3 ? content primarily determined N2O emissions. These results will likely assist modelling and mitigation of N2O emissions from different land use types in subtropical acidic soils in China and elsewhere.
  相似文献   

11.
Ten soils were leached with a dilute solution of AICI3, and FeCl2 adjusted with HCl to pH 3.0. The effluents were analyzed for eight trace metals as well as pH, to determine the maximum contribution of the soils to the trace metal burden of the soil solution. This contribution was correlated with various soil properties to evaluate the controlling factors on the elution of certain metals. Measurable quantities of Mn, Co, Zn, Ni, Cu, and Cr were found in the soil leachates; Cd and Pb were infrequently detected. The important soil properties describing the amounts of the elements leached were the total metal originally present, the total amount of Mn, and the percentage of free iron oxides.  相似文献   

12.

Purpose

Diethyl phthalate (DEP) is one of the most commonly used plasticizers as well as a soil contaminant. Using biochar to remediate soils contaminated with DEP can potentially reduce the bioavailability of DEP and improve soil properties. Therefore, a laboratory study was conducted to evaluate the effect of biochar on soil adsorption and desorption of DEP.

Materials and methods

Two surface soils (0–20 cm) with contrasting organic carbon (OC) contents were collected from a vegetable garden. Biochars were derived from bamboo (BB) and rice straw (SB) that were pyrolyzed at 350 and 650 °C. Biochars were added to two types of soil at rates of 0.1 and 0.5 % (w/w). A batch equilibration method was used to measure DEP adsorption-desorption in biochar treated and untreated soils at 25 °C. The adsorption and desorption isotherms of DEP in the soils with or without biochar were evaluated using the Freundlich model.

Results and discussion

The biochar treatments significantly enhanced the soil adsorption of DEP. Compared to the untreated low organic matter soil, the soils treated with 0.5 % 650BB increased the adsorption by more than 19,000 times. For the straw biochar treated soils, the increase of DEP adsorption followed the order 350SB?>?650SB. However, for the bamboo biochars, the order was 650BB?>?350BB. Bamboo biochars were more effective than the straw biochars in improving soils’ adsorption capacity and reducing the desorption ability of DEP.

Conclusions

Adding biochar to soil can significantly enhance soil’s adsorption capacity on DEP. The 650BB amended soil showed the highest adsorption capacity for DEP. The native soil OC contents had significant effects on the soils’ sorption capacity treated with 650BB, whereas they had negligible effects on the other biochar treatments. The sorption capacity was affected by many factors such as the feedstock materials and pyrolysis temperature of biochars, the pH value of biochar, and the soil organic carbon levels.  相似文献   

13.
Published information, both theoretical and experimental, on As chemical behavior in soils is reviewed. Because of many emission sources, As is ubiquitous. Thermodynamic calculations revealed that As(V) species (HAsO 4 2- >H2AsO 4 - at pH 7) are more abundant in soil solutions that are oxidized more than pe+pH>9. Arsenic is expected to be in As(III) form (HAsO 2 0 =H3AsO 3 0 >AsO 2 - =H2AsO 3 - at pH 7) in relatively anoxic soil solutions with pe+pH<7. Adsorption on soil colloids is an important As scavenging mechanism. The adsorption capacity and behavior of these colloids (clay, oxides or hydroxides surfaces of Al, Fe and Mn, calcium carbonates, and/or organic matter) are dependent on ever-changing factors, such as hydration, soil pH, specific adsorption, changes in cation coordination, isomorphous replacement, crystallinity, etc. Because of the altering tendencies of soil colloids properties, adsorption of As has become a complex, empirical, ambiguous, and often a self contradicting process in soils. In general, Fe oxides/hydroxides are the most commonly involved in the adsorption of As in both acidic and alkaline soils. The surfaces of Al oxides/hydroxides and clay may play a role in As adsorption, but only in acidic soils. The carbonate minerals are expected to adsorb As in calcareous soils. The role of Mn oxides and biogenic particles in the As adsorption in soils appears to be limited to acidic soils. Kinetically, As adsorption may reach over 90% completion in terms of hours. Precipitation of a solid phase is another mechanism of As removal from soil solutions. Thermodynamic calculations showed that in the acidic oxic and suboxic soils, Fe-arsenate (Fe3(AsO4)4)2) may control As solubility, whereas in the anoxic soils, sulfides of As(III) may control the concentrations of the dissolved As in soil solutions. In alkaline acidic oxic and suboxic soils, precipitation of both Fe- and Ca-arsenate may limit As concentrations in soil solutions. Field observations suggest that direct precipitation of discrete As solid phases may not occur, except in contaminated soils. Chemisorption of As oxyanions on soil colloid surfaces, especially those of Fe oxide/hydroxides and carbonates, is believed to a common mechanisms for As solid phase formation in soils. It is suggested that As oxyanions gradually concentrate on colloid surfaces to a level high enough to precipitate a discrete or mixed As solid phase. Arsenic volatilization is another As scavenging mechanism operating in soils. Many soil organisms are capable of converting arsenate and arsenite to several reduced forms, largely methylated arsines which are volatile. These organisms may generate different or similar biochemical products. Methylation and volatilization of As can be affected by several biotic (such as type of organisms, ability of organism for methylation, etc.) and abiotic factors (soil pH, temperature, redox conditions, methyl donor, presence of other ions, etc.) factors. Information on the rate of As biotransformations in soils is limited. In comparison to the biologically assisted volatilization, the chemical volatilization of As in soils is negligible.  相似文献   

14.

Purpose

As micronutrients are essential for all living organisms, their availability in forest soils is important to the forest ecosystem. Studying the effect of global warming on the availability of mineral elements is more significant for forest management, but the scarcity of these elements is a concern. This study aims to investigate the responses of soil micronutrient availability to experimental warming in two contrasting forest ecosystems in the Eastern Tibetan Plateau of China.

Materials and methods

Using the open-top chamber (OTC) method simulates the global warming and chemical extractants extract soil micronutrients (CaCl2 and Mehlich-3 extractant for Fe, Mn, Cu, Zn, and with boiling hot water for extracting B) to study the availability of these micronutrients in two contrasting forest ecosystems (a dragon spruce plantation and a natural forest) under experimental warming.

Results and discussion

The results showed that soil temperature in the OTCs was increased by 0.56 and by 0.55 °C in the plantation and the natural forest, respectively. The total and Mehlich-3-extractable Cu, Fe, Mn, and Zn were increased by warming in the plantation (except Mehlich-3-extractable Fe, which decreased slightly) but decreased by warming in the natural forest. The CaCl2-extractable micronutrients were not significantly affected by warming. The retained total B in both the plantation and natural forest was decreased by experimental warming. Either the effect of warming or forest type on these micronutrients varied due to their different associations with soil properties. What is more, the relative impact of forest type was stronger than warming on the soil properties with exception of the soil pH and total B concentration.

Conclusions

Reforestation would generate greater influences on soil environment although it is an important effective action to remain ecologic balance usually. The responses of the total soil micronutrients and their availability to warming depended on the forest type, as their concentration was significantly correlated with the soil water and pH. It was implied that the soil pH and water content are important to the availability of micronutrients in soil and provide managers with important information to better manipulate their forests for tree growth and as wildlife habitats.  相似文献   

15.
The effects of mineral acid deposition on chemical properties of leachates of three granitic forest soils and pine O1-litter were investigated under controlled laboratory conditions. Of the array of organic acids released from litter and SOM as detected by HPLC analysis, nine compounds were identified and six compounds have been quantified. Organic acids possessing certain functional group arrangements, such as di- and tri-carboxylic acids containing β-hydroxyl groups, and phenolic acids with ortho-hydroxyls were about three to ten times faster in dissolving Al than similar organics with other functional group combinations or mineral acids at comparable pH and concentration levels. There was little correlation between the initial pH of chelating organic acid input solution and rate of metal dissolution. On a mole metal-leached per gram basis, dissolution of metals from Shaver soil followed the order Al>Mn>Fe in both organic and mineral acids.  相似文献   

16.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

17.

Purpose

Crop straws and animal manure have the potential to ameliorate acidic soils, but their effectiveness and the mechanisms involved are not fully understood. The aim of this study was to evaluate the effectiveness of two crop (maize and soybean) straws, swine manure, and their application rates on acidity changes in acidic red soils (Ferralic Cambisol) differing in initial pH.

Materials and methods

Two red soils were collected after 21 years of the (1) no fertilization history (CK soil, pH 5.46) and (2) receiving annual chemical nitrogen (N) fertilization (N soil, pH 4.18). The soils were incubated for 105 days at 25 °C after amending the crop straws or manure at 0, 5, 10, 20, and 40 g kg?1 (w/w), and examined for changes in pH, exchangeable acidity, N mineralization, and speciation in 2 M KCl extract as ammonium (NH4+) and nitrate plus nitrite (NO3??+?NO2?).

Results and discussion

All three organic materials significantly decreased soil acidity (dominated by aluminum) as the application rate increased. Soybean straw was as effective (sometimes more effective) as swine manure in raising pH in both soils. Soybean straw and swine manure both significantly reduced exchangeable acidity at amendment rate as low as 10 g kg?1 in the highly acidic N soil, but swine manure was more effective in reducing the total acidity especially exchangeable aluminum (e.g., in the N soil from initial 5.79 to 0.50 cmol(+) kg?1 compared to 2.82 and 4.19 cmol(+) kg?1 by soybean straw and maize straw, respectively). Maize straw was less effective than soybean straw in affecting soil pH and the acidity. The exchangeable aluminum decreased at a rate of 4.48 cmol(+) kg?1 per pH unit increase for both straws compared to 6.25 cmol(+) kg?1 per pH unit from the manure. The NO3??+?NO2? concentration in soil increased significantly for swine manure amendment, but decreased markedly for straw treatments. The high C/N ratio in the straws led to N immobilization and pH increase.

Conclusions

While swine manure continues to be effective for ameliorating soil acidity, crop straw amendment has also shown a good potential to ameliorate the acidity of the red soil. Thus, after harvest, straws should preferably not be removed from the field, but mixed with the soil to decelerate acidification. The long-term effect of straw return on soil acidity management warrants further determination under field conditions.
  相似文献   

18.

Purpose

The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils.

Materials and methods

A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid–base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0–7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined.

Results and discussion

pH buffering capacity had a range of 9.1–32.1 mmol kg–1 pH–1 for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R 2?=?0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha?1 increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation/deprotonation of oxygen-containing functional groups of biochars was the main mechanism for the increase of pH buffering capacity of acid soils with the incorporation of biochars.

Conclusions

CEC was a key factor determining pH buffering capacity of acid soils from tropical and subtropical regions of China. Decreased CEC and content of 2:1-type clay minerals during evolution of tropical soils led to decreased pH buffering capacity. Incorporation of biochars generated from crop straws did not only ameliorate soil acidity, but also increased soil pH buffering capacity.
  相似文献   

19.
Survival of adultDendrobaena rubida, cocoon production, cocoon viability, and growth of juveniles were examined in laboratory experiments when the worms were reared in acidified and metal polluted soils. Solutions of Cu, Cd and Pb were added to give total concentrations of 10, 100 and 500 μg g?1 in soils with a pH of 4.5, 5.5 and 6.5. Adult tissues, hatchlings and cocoons were analyzed for metals. D. rubida survived poorly in soils with low pH, especially in combination with Pb or Cu, which accumulated in seminal vesicles and cerebral ganglion. Cocoon production was halved when pH was lowered from 6.5 to 4.5 and metals reduced the cocoon number even more in the most acid soils. Hatching success was lower than 20 % in acidified soils. In contrast, the number of hatchlings increased when pH decreased and peaked in soils polluted with Cd. While low pH reduced the embryonic development time, metals prolonged it. Juveniles grew slowly and died early at low pH.  相似文献   

20.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号