首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

2.
Early season problems with growth of corn (Zea mays L.) under cool, wet conditions prompted a study of the effects of soil and environmental conditions on mineralization and plant uptake of phosphorus (P). Our objective was to determine the effect of soil test P, temperature, and soil fumigation on soil P availability and uptake during early corn growth. Corn was grown in growth chambers at temperatures of 14°C or 25°C. Soils were a high‐P Hastings silty clay loam (fine, montmorillonitic, mesic Udic Argiustoll) and a low‐P Sharpsburg clay loam (fine, montmorillonitic, mesic Typic Argiudoll). Plants grew for up to 42 d either in soil which had been fumigated with methyl bromide to reduce microbial populations or left unfumigated. We harvested whole pots for soil and plant analysis at 1, 14, 28, and 42 d after planting. Biomass carbon (C) and biomass P were lower in fumigated soils and biomass C increased with time. Fumigation increased Bray Pl‐extractable P at all times. Phosphatase activity and mycorrhizal colonization were both reduced by fumigation. Cumulative plant P uptake was highest in Hastings at 25°C. Higher temperature and higher initial P status increased plant P uptake during early growth. Plants grown in fumigated soil did not take up more P, despite greater extractable P.  相似文献   

3.
The effects of moisture, NO3?1 concentration and C addition on changes in denitrification capacity and total microbial biomass in a clay loam soil were investigated. Denitrification capacity was evaluated with an anaerobic slurry technique. Total microbial biomass was measured by CHC13 fumigation and by extraction of microbial ATP. The results indicate that denitrification capacity and total microbial biomass were increased only by the C addition; differences in NO3?1 concentration and moisture had no effect in this agricultural soil. The increase in denitrification capacity could be attributed solely to microbial growth, since the ratio of denitrification capacity to total microbial biomass remained constant and the increased respiration from the C amendment did not increase anaerobiosis. The results also show that denitrifiers compete as effectively for added C as do other heterotrophs.  相似文献   

4.
Wheat plants were grown on two soils of different texture, a sandy soil and a silty clay loam, in an atmosphere containing 14CO2. The 14C and total C content of the shoots, roots, soil rhizosphere CO2 and soil microbial biomass were measured 21, 28, 35 and 42 days after germination. There was a pronounced effect of soil texture on the turnover of root-derived C through the microbial biomass. Turnover was relatively fast and at a constant rate in the sandy soil but slowed down in the clay soil, following an initial high assimilation of root products into the microbial biomass.Four percent of the total fixed 14C was retained in the clay loam after 6 weeks compared with a corresponding value of 1.2% for the sandy soil. The proportion of fixed 14C recovered as rhizosphere CO2 at each of the sampling times was relatively constant for the sandy soil (ca 19%) but decreased from 17% at day 28 to 11% at day 42 in the clay soil. The proportion of total fixed 14C in the soil biomass as measured by a fumigation technique increased to a maximum value of 20% after 6 weeks in the sandy soil but decreased in the clay soil from 86% at day 21 to 26% after 42 days plant growth.  相似文献   

5.
Changes in soil carbon storage could affect and be affected by rising atmospheric CO2. However, it is unlikely that soils will respond uniformly, as some soils are more sensitive to changes in the amount and chemistry of plant tissue inputs whereas others are less sensitive because of mineralogical, textural, or microbial processes. We studied soil carbon and microbial responses to a preindustrial-to-future CO2 gradient (250–500 ppm) in a grassland ecosystem in the field. The ecosystem contains three soil types with clay fractions of 15%–55%: a sandy loam Alfisol, a silty clay Mollisol, and a black clay Vertisol. Soil and microbial responses to atmospheric CO2 are plant-mediated; and aboveground plant productivity in this ecosystem increased linearly with CO2 in the sandy loam and silty clay. Although total soil organic carbon (SOC) did not change with CO2 treatment after four growing seasons, fast-cycling SOC pools increased with CO2 in the two clay soils. Microbial biomass increased 18% and microbial activity increased 30% across the CO2 gradient in the black clay (55% clay), but neither factor changed with CO2 in the sandy loam (15% clay). Similarly, size fractionation of SOC showed that coarse POM-C, the youngest and most labile fraction, increased four-fold across the CO2 gradient in the black clay, but increased by only 50% across the gradient in the sandy loam. Interestingly, mineral-associated C, the oldest and most recalcitrant fraction, declined 23% across the gradient in the third soil type, a silty clay (45% clay). Our results provide evidence for priming in this soil type, as labile C availability and decomposition rate (measured as soil respiration and soil C mineralization) also increased across the CO2 gradient in the silty clay soil. In summary, CO2 enrichment in this grassland increased the fast-cycling SOC pool as in other CO2 studies, but only in the two high-clay soils. Priming in the silty clay could limit SOC accumulation after prolonged CO2 exposure. Because soil texture varies geographically, including data on soil types could enhance predictions of soil carbon and microbial responses to future CO2 levels.  相似文献   

6.
Soil microbial biomass interactions influencing the mineralisation of N in biosolids‐amended agricultural soil were investigated under field conditions in two soil types, a silty clay and a sandy silt loam, with contrasting organic matter contents. Soil treatments included: dewatered raw sludge (DRAW); dewatered and thermally dried, mesophilic anaerobically digested biosolids (DMAD and TDMAD, respectively); lime‐treated unstabilised sludge cake (LC); and NH4Cl as a mineral salt control for measuring nitrification kinetics. Soil mineral N and microbial biomass N (MBN) concentrations were determined over 90 days following soil amendment. Despite its lower total and mineral N contents, TDMAD had a larger mineralisable pool of N than DMAD, and was an effective rapid release N source. Increased rates of mineralisation and nitrification of biosolids‐N were observed in the silty clay soil with larger organic matter content, implying increased microbial turnover of N in this soil type compared with the sandy silt loam, but no significant difference in microbial immobilisation of biosolids‐N was observed between the two soil types. Thus, despite initial differences observed in the rates of N mineralisation, the overall extent of N release for the different biosolids tested was similar in both soil types. Therefore, the results suggest that fertiliser guidelines probably do not need to consider the effect of soil type on the release of mineral N for crop uptake from different biosolids products applied to temperate agricultural soils.  相似文献   

7.
The purpose of this research was to compare soil chemistry, microbially mediated carbon (C) and nitrogen (N) transformations and microbial biomass in forest floors under European beech (Fagus sylvatica L.), sessile oak (Quercus petraea (Mattuschka) Lieblein), Norway spruce (Picea abies (L.) Karst) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) at four study sites. We measured soil chemical characteristics, net N mineralization, potential and relative nitrification, basal respiration, microbial and metabolic quotient and microbial biomass C and N under monoculture stands at all sites (one mixed stand). Tree species affected soil chemistry, microbial activities and biomass, but these effects varied between sites. Our results indicated that the effect of tree species on net N mineralization was likely to be mediated through their effect on soil microbial biomass, reflecting their influence on organic matter content and carbon availability. Differences in potential nitrification and relative nitrification might be related to the presence of ground vegetation through its influence on soil NH4 and labile C availability. Our findings highlight the need to study the effects of tree species on microbial activities at several sites to elucidate complex N cycle interactions between tree species, ground vegetation, soil characteristics and microbial processes.  相似文献   

8.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

9.
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate. Received: 20 September 1996  相似文献   

10.
Because soil biota is influenced by a number of factors, including land use and management techniques, changing management practices could have significant effects on the soil microbial properties and processes. An experiment was conducted to investigate differences in soil microbiological properties caused by long- and short-term management practices. Intact monolith lysimeters (0.2 m2 surface area) were taken from two sites of the same soil type that had been under long-term organic or conventional crop management and were then subjected to the same 2.5-year crop rotation [winter barley (Hordeum vulgare L.), maize (Zea mais L.), lupin (Lupinus angustifolius L.), and rape (Brassica napus L. ssp. oleifera)] and two fertilizer regimes (following common organic and conventional practices). Soil samples were taken after crop harvest and analyzed for microbial biomass C and N, microbial activity (fluorescein diacetate hydrolysis, arginine deaminase activity, and dehydrogenase activity), and total C and N. The incorporation of the green manure stimulated growth and activity of the microbial communities in soils of both management histories. Soil microbial properties did not show any differences between organically and conventionally fertilized soils, indicating that crop rotation and plant type had a larger influence on the microbial biomass and enzyme activities than fertilization. Initial differences in microbial biomass declined, while the effects of farm management history were still evident in enzyme activities and total C and N. Links between enzyme activities and microbial biomass C varied depending on treatment, indicating differences in microbial community composition.  相似文献   

11.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

12.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

13.
Many biotic and abiotic factors influence recovery of soil communities following prolonged disturbance. We investigated the role of soil texture in the recovery of soil microbial community structure and changes in microbial stress, as indexed by phospholipid fatty acid (PLFA) profiles, using two chronosequences of grasslands restored from 0 to 19 years on silty clay loam and loamy fine sand soils in Nebraska, USA. All restorations were formerly cultivated fields seeded to native warm-season grasses through the USDA’s Conservation Reserve Program. Increases in many PLFA concentrations occurred across the silty clay loam chronosequence including total PLFA biomass, richness, fungi, arbuscular mycorrhizal fungi, Gram-positive bacteria, Gram-negative bacteria, and actinomycetes. Ratios of saturated:monounsaturated and iso:anteiso PLFAs decreased across the silty clay loam chronosequence indicating reduction in nutrient stress of the microbial community as grassland established. Multivariate analysis of entire PLFA profiles across the silty clay loam chronosequence showed recovery of microbial community structure on the trajectory toward native prairie. Conversely, no microbial groups exhibited a directional change across the loamy fine sand chronosequence. Changes in soil structure were also only observed across the silty clay loam chronosequence. Aggregate mean weighted diameter (MWD) exhibited an exponential rise to maximum resulting from an exponential rise to maximum in the proportion of large macroaggregates (>2000 μm) and exponential decay in microaggregates (<250 μm and >53 μm) and the silt and clay fraction (<53 μm). Across both chronosequences, MWD was highly correlated with total PLFA biomass and the biomass of many microbial groups. Strong correlations between many PLFA groups and the MWD of aggregates underscore the interdependence between the recovery of soil microbial communities and soil structure that may explain more variation than time for some soils (i.e., loamy fine sand). This study demonstrates that soil microbial responses to grassland restoration are modulated by soil texture with implications for estimating the true capacity of restoration efforts to rehabilitate ecosystem functions.  相似文献   

14.
Little information is available about the factors controlling soil C and N transformations in natural tropical forests and tree-based cropping systems. The aim of this work was to study the effects of single trees on soil microbiological activities from plantations of timber and non-timber species as well as species of primary and secondary forests in the Central Amazon. Soil samples were taken in the primary forest under Oenocarpus bacaba and Eschweilera spp., in secondary regrowth with Vismia spp., under two non-timber tree species ( Bixa orellana L. and Theobroma grandiflorum Willd.), and two species planted for wood production ( Carapa guianensis Aubl. and Ceiba pentandra). In these soils, net N mineralization, net nitrification, denitrification potential, basal and substrate-induced respiration rates were studied under standardized soil moisture and temperature conditions. Individual tree species more strongly affected N transformations, particularly net nitrification, than C respiration. Our results suggest that soil C respiration can be affected by tree species if inorganic N becomes a limiting factor. We found a strong correlation among almost all microbiological processes suggesting close inter-relationship between C and N transformations in the studied soils. Correlation analysis between soil chemical properties and microbiological activities suggest that such strong inter-relationships are likely due to competition between the denitrifying and C-mineralizing communities for NO 3 -, which might be an important N source for the microbial population in the studied soils.  相似文献   

15.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

16.
Abstract

Field studies were conducted for four to seven years on two soils, Tangi silt loam (Typic Fragiudalf, fine‐silty, mixed, thermic) and Dexter loam (Ultic Hapludalf, fine‐silty, mixed, thermic), to determine the effects of phosphorus (P) applications on growth and nitrogen (N) content of white clover (Trifolium repens L.) and subterranean clover (Trifolium subterranum L.) and on ammonium (NH4 +)‐ and nitrate (NO3 )‐N, total N, and organic carbon (C) levels in the soils at the end of the study. Phosphorus applications consistently and significantly increased forage yields and led to significantly higher N yields by the clovers. Increases in plant yields and N2‐fixation, however, were not reflected in higher soil N and C levels. On Tangi soil, NH4 +‐ and NO3 ‐N levels were lowest where no P was applied but no statistically significant differences (P < 0.05) were found among P rates above 20 kg/ha. On the Dexter soils, no significant differences were found at any P application level. Significant differences due to higher clover yields at increasing P rates were not found in total N or organic C . levels in either soil. Greenhouse evaluations showed no differences in bermuda‐grass yield, N concentration, or total N recovery despite increasing subclover yields in the field during the previous seven years. Harvesting nearly all above ground clover growth caused plant roots to be the major N and C contributor to the soil. It is possible that root production was not increased in proportion to forage production as P applications increased. Perhaps increased microbial activities and some leaching losses also minimized accumulations of N and C released by clover roots.  相似文献   

17.
pH regulation of carbon and nitrogen dynamics in two agricultural soils   总被引:1,自引:0,他引:1  
Soil pH is often hypothesized to be a major factor regulating organic matter turnover and inorganic nitrogen production in agricultural soils. The aim of this study was to critically test the relationship between soil pH and rates of C and N cycling, and dissolved organic nitrogen (DON), in two long-term field experiments in which pH had been manipulated (Rothamsted silty clay loam, pH 3.5-6.8; Woburn sandy loam, pH 3.4-6.3). While alteration of pH for 37 years significantly affected crop production, it had no significant effect on total soil C and N or indigenous mineral N levels. This implies that at steady state, increased organic matter inputs to the soil are balanced by increased outputs of CO2. This is supported by the positive correlation between both plant productivity and intrinsic microbial respiration with soil pH. In addition, soil microbial biomass C and N, and nitrification were also significantly positively correlated with soil pH. Measurements of respiration following addition of urea and amino acids showed a significant decline in CO2 evolution with increasing soil acidity, whilst glucose mineralization showed no response to pH. In conclusion, it appears that changes in soil pH significantly affect soil microbial activity and the rate of soil C and N cycling. The evidence suggests that this response is partially indirect, being primarily linked to pH induced changes in net primary production and the availability of substrates. In addition, enhanced soil acidity may also act directly on the functioning of the microbial community itself.  相似文献   

18.
Methane (CH4) oxidation potential of soils decreases with cultivation, but limited information is available regarding the restoration of that capacity with implementation of reduced tillage practices. A study was conducted to assess the impact of tillage intensity on CH4 oxidation and several C-cycling indices including total and active microbial biomass C (t-MBC, a-MBC), mineralizable C (Cmin) and N (Nmin), and aggregate-protected C. Intact cores and disturbed soil samples (0–5 and 5–15 cm) were collected from a corn (Zea mays L.)–soybean (Glycine max L. Merr.) rotation under moldboard-plow (MP), chisel-plow (CP) and no-till (NT) for 8 years. An adjacent pasture (<25 years) and secondary growth forest (>60 years) soils were also sampled as references. At all sites, soil was a Kokomo silty clay loam (mesic Typic Argiaquolls). Significant tillage effects on t-MBC and protected C were found in the 0–5 cm depth. Protected C, a measure of C retained within macro-aggregates and defined as the difference in Cmin (CO2 evolved in a 56 days incubation) between intact and sieved (<2 mm) soil samples, amounted to 516, 162 and 121 mg C kg−1 soil in the 0–5 cm layer of the forest, pasture and NT soils, respectively. Protected C was negligible in the CP and MP soils. Methane uptake rate (μg CH4-C kg−1 soil per day, under ambient CH4) was higher in forest (2.70) than in pasture (1.22) and cropland (0.61) soils. No significant tillage effect on CH4 oxidation rate was detected (MP: 0.82; CP: 0.41; NT: 0.61). These results underscore the slow recovery of the CH4 uptake capacity of soils and suggest that, to have an impact, tillage reduction may need to be implemented for several decades.  相似文献   

19.
In a greenhouse pot study, we examined the availability of N to grain sorghum from organic and inorganic N sources. The treatments were15N-labeled clover residues, wheat residues, and fertilizer placed on a sandy clay loam and loamy sand soil surface for an 8-week period. Soil aggregates formed under each soil texture were measured after 8 weeks for each treatment. Significantly greater 15N was taken up and recovered by grain sorghum in sandy clay loam pots compared with loamy sand pots. Greater 15N recovery was consistently observed with the inorganic source than the organic sources regardless of soil texture or time. Microbial biomass C and N were significantly greater for sandy clay loam soil compared with the loamy sand. Microbial biomass 15N was also significantly greater in the sandy clay loam treatment compared to the loamy sand. The fertilizer treatment initially had the greatest pool of microbial biomass 15N but decreased with time. The crop residue treatments generally had less microbial biomass 15N with time. The crop residues and soil texture had a significant effect on the water-stable aggregates formed after 8 weeks of treatments. Significantly greater water-stable aggregates were formed in the sandy clay loam than the loamy sand. Approximately 20% greater water-stable aggregates were formed under the crop residue treatments compared to the fertilizer only treatment. Soil texture seemed to be one of the most important factors affecting the availability of N from organic or inorganic N sources in these soils.Contribution from the MissouriAgricultural Experiment Station, Journal Series No.12131  相似文献   

20.
The aim of this study was to assess the potential harmful effects of novaluron on soil microbiological parameters in clay loam alluvial soil (Typic udifluvent) and coastal saline soil (Typic endoaquept) under controlled laboratory tests. The applications of novaluron were made at or above the recommended rates, which includes field rate (FR), two times (2FR), and ten times (10FR) the FR. The laboratory incubation study was carried out at 60% of maximum water holding capacity of soils and at 30°C. Novaluron application rate even up to 10FR resulted in a short-lived and transitory toxic effect on soil microbial biomass C and fluorescein diacetate-hydrolyzing activity. Microbial metabolic quotient changed but for a short period. It can be concluded that novaluron had a transient and negligible harmful effect on the soil microbiological parameters studied at higher rates than those usually used in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号