首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ESCRT (endosomal sorting complex required for transport) machinery is required for the scission of membrane necks in processes including the budding of HIV-1 and cytokinesis. An essential step in cytokinesis is recruitment of the ESCRT-I complex and the ESCRT-associated protein ALIX to the midbody (the structure that tethers two daughter cells) by the protein CEP55. Biochemical experiments show that peptides from ALIX and the ESCRT-I subunit TSG101 compete for binding to the ESCRT and ALIX-binding region (EABR) of CEP55. We solved the crystal structure of EABR bound to an ALIX peptide at a resolution of 2.0 angstroms. The structure shows that EABR forms an aberrant dimeric parallel coiled coil. Bulky and charged residues at the interface of the two central heptad repeats create asymmetry and a single binding site for an ALIX or TSG101 peptide. Both ALIX and ESCRT-I are required for cytokinesis, which suggests that multiple CEP55 dimers are required for function.  相似文献   

2.
During cytokinesis, furrow ingression and plasma membrane fission irreversibly separate daughter cells. How actomyosin ring assembly and contraction, vesicle fusion, and abscission are spatially coordinated was unknown. We found that during cytokinesis septin rings, located on both sides of the actomyosin ring, acted as barriers to compartmentalize the cortex around the cleavage site. Compartmentalization maintained diffusible cortical factors, such as the exocyst and the polarizome, to the site of cleavage. In turn, such factors were required for actomyosin ring function and membrane abscission. Thus, a specialized cortical compartment ensures the spatial coordination of cytokinetic events.  相似文献   

3.
The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily conserved role in cytokinetic abscission, the final step of cell division where daughter cells are physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C), a human ESCRT-III subunit, is involved in abscission timing. This function correlated with its differential spatiotemporal distribution during late stages of cytokinesis. Accordingly, CHMP4C functioned in the Aurora B-dependent abscission checkpoint to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. CHMP4C engaged the chromosomal passenger complex (CPC) via interaction with Borealin, which suggested a model whereby CHMP4C inhibits abscission upon phosphorylation by Aurora B. Thus, the ESCRT machinery may protect against genetic damage by coordinating midbody resolution with the abscission checkpoint.  相似文献   

4.
Cytokinesis is the essential process that partitions cellular contents into daughter cells. To identify and characterize cytokinesis proteins rapidly, we used a functional proteomic and comparative genomic strategy. Midbodies were isolated from mammalian cells, proteins were identified by multidimensional protein identification technology (MudPIT), and protein function was assessed in Caenorhabditis elegans. Of 172 homologs disrupted by RNA interference, 58% displayed defects in cleavage furrow formation or completion, or germline cytokinesis. Functional dissection of the midbody demonstrated the importance of lipid rafts and vesicle trafficking pathways in cytokinesis, and the utilization of common membrane cytoskeletal components in diverse morphogenetic events in the cleavage furrow, the germline, and neurons.  相似文献   

5.
Helical structures of ESCRT-III are disassembled by VPS4   总被引:1,自引:0,他引:1  
During intracellular membrane trafficking and remodeling, protein complexes known as the ESCRTs (endosomal sorting complexes required for transport) interact with membranes and are required for budding processes directed away from the cytosol, including the budding of intralumenal vesicles to form multivesicular bodies; for the budding of some enveloped viruses; and for daughter cell scission in cytokinesis. We found that the ESCRT-III proteins CHMP2A and CHMP3 (charged multivesicular body proteins 2A and 3) could assemble in vitro into helical tubular structures that expose their membrane interaction sites on the outside of the tubule, whereas the AAA-type adenosine triphosphatase VPS4 could bind on the inside of the tubule and disassemble the tubes upon adenosine triphosphate hydrolysis. CHMP2A and CHMP3 copolymerized in solution, and their membrane targeting was cooperatively enhanced on planar lipid bilayers. Such helical CHMP structures could thus assemble within the neck of an inwardly budding vesicle, catalyzing late steps in budding under the control of VPS4.  相似文献   

6.
As an organelle coupling nuclear and cytoplasmic divisions, the centrosome is essential to mitotic fidelity, and its inheritance could be critical to understanding cell transformation. Investigating the behavior of the centrosome in living mitotic cells, we documented a transient and remarkable postanaphase repositioning of this organelle, which apparently controls the release of central microtubules from the midbody and the completion of cell division. We also observed that the absence of the centrosome leads to defects in cytokinesis. Together with recent results in yeasts, our data point to a conserved centrosome-dependent pathway that integrates spatial controls into the decision of completing cell division, which requires the repositioning of the centrosome organelle.  相似文献   

7.
Glotzer M 《Science (New York, N.Y.)》2005,307(5716):1735-1739
After anaphase onset, animal cells build an actomyosin contractile ring that constricts the plasma membrane to generate two daughter cells connected by a cytoplasmic bridge. The bridge is ultimately severed to complete cytokinesis. Myriad techniques have been used to identify proteins that participate in cytokinesis in vertebrates, insects, and nematodes. A conserved core of about 20 proteins are individually involved with cytokinesis in most animal cells. These components are found in the contractile ring, on the central spindle, within the RhoA pathway, and on vesicles that expand the membrane and sever the bridge. Cytokinesis involves additional proteins, but they, or their requirement in cytokinesis, are not conserved among animal cells.  相似文献   

8.
Carbonylated proteins were visualized in single cells of the budding yeast Saccharomyces cerevisiae, revealing that they accumulate with replicative age. Furthermore, carbonylated proteins were not inherited by daughter cells during cytokinesis. Mother cells of a yeast strain lacking the sir2 gene, a life-span determinant, failed to retain oxidatively damaged proteins during cytokinesis. These findings suggest that a genetically determined, Sir2p-dependent asymmetric inheritance of oxidatively damaged proteins may contribute to free-radical defense and the fitness of newborn cells.  相似文献   

9.
After partitioning of cytoplasmic contents by cleavage furrow ingression, animal cells remain connected by an intercellular bridge, which subsequently splits by abscission. Here, we examined intermediate stages of abscission in human cells by using live imaging, three-dimensional structured illumination microscopy, and electron tomography. We identified helices of 17-nanometer-diameter filaments, which narrowed the cortex of the intercellular bridge to a single stalk. The endosomal sorting complex required for transport (ESCRT)-III co-localized with constriction zones and was required for assembly of 17-nanometer-diameter filaments. Simultaneous spastin-mediated removal of underlying microtubules enabled full constriction at the abscission site. The identification of contractile filament helices at the intercellular bridge has broad implications for the understanding of cell division and of ESCRT-III-mediated fission of large membrane structures.  相似文献   

10.
Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We used fluorescence microscopy of live fission yeast cells to observe that membrane-bound nodes containing myosin were broadly distributed around the cell equator and assembled into a contractile ring through stochastic motions, after a meshwork of dynamic actin filaments appeared. Analysis of node motions and numerical simulations supported a mechanism whereby transient connections are established when myosins in one node capture and exert force on actin filaments growing from other nodes.  相似文献   

11.
Pardo M  Nurse P 《Science (New York, N.Y.)》2003,300(5625):1569-1574
In most eukaryotes cytokinesis is brought about by a contractile actin ring located at the division plane. Here, in fission yeast the actin ring was found to be required to generate late-mitotic microtubular structures located at the division plane, and these in turn maintained the medial position of the actin ring. When these microtubular structures were disrupted, the actin ring migrated away from the cell middle in a membrane traffic-dependent manner, resulting in asymmetrical cell divisions that led to genomic instability. We propose that these microtubular structures contribute to a checkpoint control that retains the equatorial position of the ring when progression through cytokinesis is delayed.  相似文献   

12.
The centrosome in cells and organisms   总被引:1,自引:0,他引:1  
The centrosome acts as the main microtubule-nucleating organelle in animal cells and plays a critical role in mitotic spindle orientation and in genome stability. Yet, despite its central role in cell biology, the centrosome is not present in all multicellular organisms or in all cells of a given organism. The main outcome of centrosome reproduction is the transmission of polarity to daughter cells and, in most animal species, the sperm-donated centrosome defines embryo polarity. Here I will discuss the role of the centrosome in cell polarity, resulting from its ability to position the nucleus at the cell center, and discuss how centrosome innovation might have been critical during metazoan evolution.  相似文献   

13.
Germ-line mutations inactivating BRCA2 predispose to cancer. BRCA2-deficient cells exhibit alterations in chromosome number (aneuploidy), as well as structurally aberrant chromosomes. Here, we show that BRCA2 deficiency impairs the completion of cell division by cytokinesis. BRCA2 inactivation in murine embryo fibroblasts (MEFs) and HeLa cells by targeted gene disruption or RNA interference delays and prevents cell cleavage. Impeded cell separation is accompanied by abnormalities in myosin II organization during the late stages in cytokinesis. BRCA2 may have a role in regulating these events, as it localizes to the cytokinetic midbody. Our findings thus link cytokinetic abnormalities to a hereditary cancer syndrome characterized by chromosomal instability and may help to explain why BRCA2-deficient tumors are frequently aneuploid.  相似文献   

14.
Origin recognition complex (ORC) proteins serve as a landing pad for the assembly of a multiprotein prereplicative complex, which is required to initiate DNA replication. During mitosis, the smallest subunit of human ORC, Orc6, localizes to kinetochores and to a reticular-like structure around the cell periphery. As chromosomes segregate during anaphase, the reticular structures align along the plane of cell division and some Orc6 localizes to the midbody before cells separate. Silencing of Orc6 expression by small interfering RNA (siRNA) resulted in cells with multipolar spindles, aberrant mitosis, formation of multinucleated cells, and decreased DNA replication. Prolonged periods of Orc6 depletion caused a decrease in cell proliferation and increased cell death. These results implicate Orc6 as an essential gene that coordinates chromosome replication and segregation with cytokinesis.  相似文献   

15.
Adult stem cells often divide asymmetrically to produce one self-renewed stem cell and one differentiating cell, thus maintaining both populations. The asymmetric outcome of stem cell divisions can be specified by an oriented spindle and local self-renewal signals from the stem cell niche. Here we show that developmentally programmed asymmetric behavior and inheritance of mother and daughter centrosomes underlies the stereotyped spindle orientation and asymmetric outcome of stem cell divisions in the Drosophila male germ line. The mother centrosome remains anchored near the niche while the daughter centrosome migrates to the opposite side of the cell before spindle formation.  相似文献   

16.
In view of the current interest in in vivo murine models for acquired immunodeficiency syndrome (AIDS), the interaction between human immunodeficiency virus type 1 (HIV-1) and endogenous murine leukemia virus (MuLV)-related retroviruses was investigated with a human leukemic T cell line (PF-382x) that acquired xenotropic MuLV (X-MuLV) after in vivo passage in immunosuppressed mice. Despite similar levels of membrane CD4 expression and HIV-1 125I-labeled gp 120 binding, a dramatic acceleration in the time course of HIV-1 infection was observed in PF-382x compared to its X-MuLV-negative counterpart (PF-382). Moreover, PF-382 cells coinfected by X-MuLV and HIV-1 generated a progeny of phenotypically mixed viral particles, enabling HIV-1 to productively infect a panel of CD4- human cells, including B lymphoid cells and purified normal peripheral blood CD4-/CD8+ T lymphocytes. Mixed viral phenotypes were also produced by human CD4+ T cells coinfected with an amphotropic MuLV-related retrovirus (A-MuLV) and HIV-1. These data show that endogenous MuLV acquired by human cells transplanted into mice can significantly interact with HIV-1, thereby inducing important alterations of HIV-1 biological properties.  相似文献   

17.
Various types of chromosomal aberrations, including numerical (aneuploidy) and structural (e.g., translocations, deletions), are commonly found in human tumors and are linked to tumorigenesis. Aneuploidy is a direct consequence of chromosome segregation errors in mitosis, whereas structural aberrations are caused by improperly repaired DNA breaks. Here, we demonstrate that chromosome segregation errors can also result in structural chromosome aberrations. Chromosomes that missegregate are frequently damaged during cytokinesis, triggering a DNA double-strand break response in the respective daughter cells involving ATM, Chk2, and p53. We show that these double-strand breaks can lead to unbalanced translocations in the daughter cells. Our data show that segregation errors can cause translocations and provide insights into the role of whole-chromosome instability in tumorigenesis.  相似文献   

18.
Organelle inheritance is an essential feature of all eukaryotic cells. As with other organelles, the Golgi complex partitions between daughter cells through the fission of its membranes into numerous tubulovesicular fragments. We found that the protein CtBP3/BARS (BARS) was responsible for driving the fission of Golgi membranes during mitosis in vivo. Moreover, by in vitro analysis, we identified two stages of this Golgi fragmentation process: disassembly of the Golgi stacks into a tubular network, and BARS-dependent fission of these tubules. Finally, this BARS-induced fission of Golgi membranes controlled the G2-to-prophase transition of the cell cycle, and hence cell division.  相似文献   

19.
A synthetic peptidemimetic substrate of the human immunodeficiency virus 1 (HIV-1) protease with a nonhydrolyzable pseudodipeptidyl insert at the protease cleavage site was prepared. The peptide U-81749 inhibited recombinant HIV-1 protease in vitro (inhibition constant Ki of 70 nanomolar) and HIV-1 replication in human peripheral blood lymphocytes (inhibitory concentration IC50 of 0.1 to 1 micromolar). Moreover, 10 micromolar concentrations of U-81749 significantly inhibited proteolysis of the HIV-1 gag polyprotein (p55) to the mature viral structural proteins p24 and p17 in cells infected with a recombinant vaccinia virus expressing the HIV-1 gag-pol genes. The HIV-1 like particles released from inhibitor-treated cells contained almost exclusively p55 and other gag precursors, but not p24. Incubation of HIV-like particles recovered from drug-treated cultures in drug-free medium indicated that inhibition of p55 proteolysis was at least partially reversible, suggesting that U-81749 was present within the particles.  相似文献   

20.
What are the components that control the assembly of subcellular organelles in eukaryotic cells? Although membranes can clearly be distorted by cytosolic factors, very little is known about the intrinsic mechanisms that control the biogenesis, shape, and organization of organellar membranes. Here, we found that the unconventional phospholipid lysobisphosphatidic acid (LBPA) could induce the formation of multivesicular liposomes that resembled the multivesicular endosomes that exist where this lipid is found in vivo. This process depended on the same pH gradient that exists across endosome membranes in vivo and was selectively controlled by Alix. In turn, Alix regulated the organization of LBPA-containing endosomes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号