首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Measurements of midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) were taken over a 4-year period in early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar) grafted on GF-677 rootstock. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that seasonal reference equations can be obtained for MDS and Ψstem using crop reference evapotranspiration (ETo), daily mean vapour pressure deficit (VPDm) and mean daily air temperature (Tm) in the case of MDS, and ETo and VPDm in the case of Ψstem. In this way, VPDm was seen to be the best predictor of MDS and Ψstem, without both were influenced significantly by yield or crop load variations between years. When the postharvest regression between MDS or Ψstem and the meteorological parameters mentioned were broken down into early and late postharvest periods, the correlation coefficients improved and were closely related to the presence or absence of sugar-demanding sinks, such as active root growth. A negative linear relationship between MDS and Ψstem was found, pointing to unchanging radial hydraulic conductivity in the bark tissues and suggesting that MDS depends to a great extent of the water potential.  相似文献   

2.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

3.
The response of adult Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.) to an irrigation schedule based exclusively on maximum daily trunk shrinkage (MDS) measurements was studied during the 2005-2006 and 2006-2007 seasons. Plants irrigated above their crop water requirements (T0 treatment) were compared with plants under deficit irrigation, whereby the MDS signal intensity (actual MDS/reference MDS) threshold values were maintained at around 1.15 (T1 treatment), 1.25 (T2 treatment) and 1.35 (T3 treatment). Cumulative crop evapotranspiration (ETc) values reached 536.9 and 719.4 mm during the first and the second season, respectively, and the cumulative amounts of applied water in the deficit irrigation treatments were 662.4 mm (T1, 2006-2007 season), 396.3 mm (T2, 2005-2006 season), 554.0 mm (T2, 2006-2007 season) and 220.3 mm (T3, 2005-2006 season), which generated mild, moderate and severe water stress in T1, T2 and T3 plants, respectively. Results indicated that measurements of MDS are suitable for scheduling irrigation, except for rainy periods of low evaporative demand. Therefore, to improve the precision of irrigation management, some changes in the irrigation protocol should be introduced, for instance, using higher MDS signal intensity threshold values and/or a lower irrigation frequency. According to market demand, lemon fruits were harvested on two occasions, showing no effect of irrigation treatment on total yield and total number of fruits per tree. T2 and T3 treatments resulted in a lower yield and number of fruits per tree at the first harvest and modified fruit characteristics. In contrast, the yield at first harvest and number of fruits per tree was not affected in T1 (92% ETc) plants and fruit characteristics were hardly impaired.  相似文献   

4.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

5.
The feasibility of scheduling deficit irrigation using maximum daily trunk shrinkage (MDS) was evaluated during two consecutive seasons in a citrus orchard planted with mature ‘Clementina de Nules’ trees, in Valencia, Spain. Results showed that MDS in well irrigated trees varied largely according to the environmental conditions (higher correlation was obtained with global radiation), and therefore, the absolute values of MDS cannot be employed as the only variable to schedule irrigation. To avoid the effects of the climatic conditions we scheduled deficit irrigation using the MDS ratio, which is the MDS of any treatment related to the MDS of a control, well irrigated, treatment located in the same plot. We explored the feasibility of scheduling irrigation based on the MDS ratio in a deficit irrigated treatment, where water was applied as necessary, from July until mid October, in order to maintain the MDS values at 125% of that of the control treatment. Despite the large variability observed in the MDS measurements in both years no significant reduction in yield and fruit weight was observed in the deficit irrigated treatment compared with the control, allowing seasonal water saving between 18 and 12%.  相似文献   

6.
Trunk diameter fluctuations (TDFs) have been suggested as an irrigation-scheduling tool for several fruit trees, but the works in olive trees has not obtained successful results with any of the indicators (maximum daily shrinkage (MDS) and trunk growth rate (TGR)) that are calculated from the daily TDF curves. No studies of olive trees have ever used reference trees to reduce the influence of the environment, as in work for other fruit trees. In this work, we compare different continuous and discrete water status measurements in a drought cycle. We suggest the calculation of a new and related indicator (DTGR), the difference between the TGR of stressed trees, and the TGR of reference trees. Negative DTGR values always indicate water stress conditions. The current work describes the variations of this new indicator (DTGR) in relation to water stress, and compares DTRG to the midday stem water potential, maximum leaf conductance and to the MDS. The midday stem water potential and the maximum leaf conductance describe the stress cycle clearer than the trunk diameter fluctuation indicators. No significant differences were found in the values of MDS between stressed and reference trees. On the other hand, the DTGR pattern values were near that of the stem water potential, though positive values were recorded in some dates during the water stress cycle. These variations indicate that DTGR is not a cumulative water stress indicators, as is water potential. Therefore, according to our data, water potential is a better indicator than the TDF parameters when no deficit irrigation scheduling is performed in olive trees. DTGR seems to be a good indicator of water stress from a threshold value around −1.4 MPa in olive trees. In addition, higher variability of DTGR than stem water potential may also be reduced with the increase in the number of sensors.  相似文献   

7.
Adult Fino lemon trees (Citrus limon L. Burm. fil.) grafted on sour orange (Citrus aurantium L.) and irrigated above their crop water requirements (T0 treatment) were compared with plants where water was applied according to maximum daily trunk shrinkage (MDS) (T1 treatment), in order to maintain MDS signal intensity [actual (T1) MDS/control (T0) MDS] threshold values close to unity. When MDS signal intensity on at least 2 of 3 consecutive days did not exceed the signal intensity threshold value, irrigation was reduced by 10%. In contrast, when the MDS signal intensity on at least 2 of 3 consecutive days exceeded the threshold value, the irrigation rate was increased by 10%. The results indicated that lemon tree irrigation scheduling can be based on MDS measurements, avoiding the appearance of any plant water stress situation without affecting yield or fruit quality. Also, the cumulative amounts of applied water in T1 plants can be considered as an estimate of lemon tree water requirements, because they were only 9% above the estimated crop evapotranspiration (ETc) and drainage did not occur. Nevertheless, to improve the precision of irrigation management, some changes in the irrigation protocol for periods of variable evaporative demand were proposed: for instance, increasing the irrigation scheduling frequency and/or using changes in the daily irrigation rate higher than those proposed in the protocol.  相似文献   

8.
Available water holding capacity (AWC) and field capacity (FC) maps have been produced using regression models of high resolution apparent electrical conductivity (ECa) data against AWC (adj. R2 = 0.76) and FC (adj. R2 = 0.77). A daily time step has been added to field capacity maps to spatially predict soil water status on any day using data obtained from a wireless soil moisture sensing network which transmitted hourly logged data from embedded time domain transmission (TDT) sensors in ECa-defined management zones. In addition, regular time domain reflectometry (TDR) monitoring of 50 positions in the study area was used to assess spatial variability within each zone and overall temporal stability of soil moisture patterns. Spatial variability of soil moisture within each zone at any one time was significant (coefficient of variation [% CV] of volumetric soil moisture content (θ) = 3-16%), while temporal stability of this pattern was moderate to strong (bivariate correlation, R = 0.52-0.95), suggesting an intrinsic soil and topographic control. Therefore, predictive ability of this method for spatial characterisation of soil water status, at this site, was limited by the ability of the sensor network to account for the spatial variability of the soil moisture pattern within each zone. Significant variability of soil moisture within each ECa-defined zone is thought to be due to the variable nature of the young alluvial soils at this site, as well as micro-topographic effects on water movement, such as low-lying ponding areas. In summary, this paper develops a method for predicting daily soil water status in ECa-defined zones; digital information available for uploading to a software-controlled automated variable rate irrigation system with the aim of improved water use efficiency. Accuracy of prediction is determined by the extent to which spatial variability is predicted within as well as between ECa-defined zones.  相似文献   

9.
Persimmon tree (Diospyros kaki L.f.) is a deciduous fruit tree included in the so-called group of minor fruit tree species. Worldwide, it is not widely grown but, nowadays, Kaki culture is of some importance in the south-east of Spain because of the high fruit commercial value. Currently, neither it is known about Kaki trees water needs, nor crop responses to the irrigation regime. The objective of the present research was to assess the feasibility of using maximum diurnal trunk shrinkage (MDS) as a plant water stress indicator for Kaki trees. During two drought cycles, in trees under either full or deficit irrigation, the MDS obtained by means of LVDT sensors was compared with a reference indicator of fruit trees water status, the midday stem water potential (Ψstem). In addition, stomatal conductance and fruit diameter variations were also followed. As water restrictions began, there was an immediate increase in MDS, in correspondence with a decrease in Ψstem. Pooling data from both drought cycles and irrigation regimes, MDS and Ψstem were linearly correlated (r2 = 0.77***). The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was three times higher than for Ψstem; average coefficient of variation of 14% and 38% for Ψstem and MDS, respectively. Overall, results reported indicated that MDS is a sensitive indicator of Kaki water status and it can be further used as an irrigation scheduling indicator for optimum irrigation management of this crop. However, the large MDS tree-to-tree variability should be taken into account when selecting the number of trees to monitor within an orchard.  相似文献   

10.
Plant indicators for scheduling irrigation of young olive trees   总被引:2,自引:2,他引:2  
The sensitivity of several water status indicators was determined in irrigated young olive trees subjected to two drought periods at Cordoba, Spain. Trunk diameter fluctuations (TDF) were monitored continuously and stem water potential (N), leaf photosynthesis (Pn) and conductance (gl) were measured periodically on trees where irrigation was interrupted or which were fully irrigated. During the first period of water deprivation in late spring, only some of the TDF-derived parameters were able to detect significant differences caused by water deficits, while there were no differences in stem N, Pn and gl. All water stress indicators responded during the second drought period in midsummer. However, differences in maximum trunk diameter were detected several days before significant stem N differences of about 0.2 MPa were established between treatments. Stem N differences declined further to 0.6 MPa before differences in leaf Pn and gl became significant. Of all TDF-derived indices, trunk growth rate was the most sensitive to water deficits while treatment differences in maximum daily shrinkage were insignificant in the young trees. It is concluded that continuous monitoring of trunk diameter provides the most sensitive indicator for accurate, automated irrigation scheduling of young olive trees under intensive production.  相似文献   

11.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees.  相似文献   

12.
This study was conducted to assess crop water stress index (CWSI) of bermudagrass used widely on the recreational sites of the Mediterranean Region and to study the possibilities of utilization of infrared thermometry to schedule irrigation of bermudagrass. Four different irrigation treatments were examined: 100% (I1), 75% (I2), 50% (I3), and 25% (I4) of the evaporation measured in a Class A pan. In addition, a non-irrigated treatment was set up to determine CWSI values. The status of soil water content and pressure was monitored using a neutron probe and tensiometers. Meanwhile the canopy temperature of bermudagrass was measured with the infrared thermometry. The empirical method was used to compute the CWSI values. In this study, the visual quality of bermudagrass was monitored seasonally using a color scale. The best visual quality was obtained from I1 and I2 treatments. Average seasonal CWSI values were determined as 0.086, 0.102, 0.165, and 0.394 for I1, I2, I3, and I4 irrigation treatments, respectively, and 0.899 for non-irrigated plot. An empirical non-linear equation, Qave=1+⌊6[1+(4.853 CWSIave)2.27]−0.559Qave=1+6[1+(4.853 CWSIave)2.27]0.559, was deduced by fitting to measured data to find a relation between quality and average seasonal CWSI values. It was concluded that the CWSI could be used as a criterion for irrigation timing of bermudagrass. An acceptable color quality could be sustained seasonally if the CWSI value can be kept about 0.10.  相似文献   

13.
Olive is one of the fruit tree species for which measurements of the trunk diameter variation (TDV) has shown a lower potential both for monitoring water stress and for scheduling irrigation. This is particularly true in the case of old, big olive trees with heavy fruit load. Fernández et al. (2011, J. Environ. Exp. Bot. 72, 330-338) observed that the daily difference for maximum trunk diameter between deficit irrigated ‘Manzanilla’ olive trees and control trees growing under non-limiting soil water conditions, termed DMXTD, is more sensitive and reliable for detecting the water stress of the trees than other widely used TDV-derived indices. However, they considered their results as preliminary because of the lack of replications. The aim of this work was to evaluate the usefulness of the DMXTD index for detecting plant water stress in an orchard with 12-year-old ‘Arbequina’ olive trees with heavy fruit load. The performance of DMXTD for detecting water stress of the trees was compared to that of the signal intensity for the maximum daily shrinkage (SI-MDS) derived from the same TDV records. Results showed that SI-MDS was not useful for indicating the water stress of the trees. On the other hand, the dynamics of DMXTD mimicked those of the soil and plant water status. Four instrumented trees per treatment (replicates) were enough to reduce the uncertainty of the TDV measurements to a reasonable level. Our results show that DMXTD is a useful index to detect the onset, and severity, of water stress in mature ‘Arbequina’ olive trees with heavy fruit load. They also suggest a potential of DMXTD for scheduling low frequency deficit irrigation strategies.  相似文献   

14.
15.
Shortage of water is the most important limiting factor for crop production in the arid and semi-arid regions in Iran. More land can become productive by using partial irrigation at strategic times during the growing season. This may be accomplished if a proper index of crop sensitivity to water deficit at various growth stages is used. A theoretical procedure was applied to determine the savings in water and the economic benefit derived from partial irrigation, using a water stress sensitivity index for winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) in a dry region of Fars province in Iran. The results indicated that some water reduction is possible. In general, the suggested maximum allowable water reduction was unreasonably high for the sensitivity index (λ i ) proposed by Nairizi and Rydzewski. Their index is not applicable in arid and semi-arid areas. However, the field-derived λ i of Aryan resulted in a reasonable water reduction close to the field-applied water reduction to achieve a corresponding relative yield. Therefore, appropriate values of λ i for different climatic conditions should be used to calculate rational water reductions. The maximum allowable water reduction for spring barley was higher than that for winter wheat. The reduction increased as the benefit to cost ratio (B/C) was increased. Water reductions of 7 and 26% were allowed for winter wheat and spring barley, respectively, at a B/C ratio of 1.5. This corresponded to an 8 and 35% increase in cultivated area, respectively. These results need to be validated in more extensive field experimentation. Received: 9 December 1994  相似文献   

16.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

17.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

18.
Water saving in irrigation is a key concern in the Yellow River basin. Excessive water diversions for irrigation waste water and produce waterlogging problems during the crop season and soil salinization in low lands. Supply control and inadequate functionality of the drainage system were identified as main factors for poor water management at farm level. Their improvement condition the adoption of water saving and salinity control practices. Focusing on the farm scale, studies to assess the potential for water savings included: (a) field evaluation of current basin irrigation practices and further use of the simulation models SRFR and SIRMOD to generate alternative improvements for the surface irrigation systems and (b) the use of the ISAREG model to simulate the present and improved irrigation scheduling alternatives taking into consideration salinity control. Models were used interactively to define alternatives for the irrigation systems and scheduling that would minimize percolation and produce water savings. Foreseen improvements refer to basin inflow discharges, land leveling and irrigation scheduling that could result in water savings of 33% relative to actual demand. These improvements would also reduce percolation and maintain water table depths below 1 m thereby reducing soil salinization.  相似文献   

19.
Summary Irrigation is essential for economic production of some crops in semiarid climates. Benefits from irrigation may be partially offset by detrimental effects of rising water tables and salinization. Drainage systems are usually installed when the water table rises to the root zone, but installation of a drainage system and safe disposal of drainage water are expensive. The long-term consequences of a high saline water table on crop production, particularly as related to irrigation scheduling, has not been firmly established. A multiseasonal transient state model, known as the modified van Genuchten-Hanks model, was used to simulate cotton (Gossypium hirsutum L.) production using a three or four in-season irrigation schedule (3irr or 4irr) under both free drainage and water table conditions. Under drainage conditions, irrigation scheduling to avoid applying more water than the soil water-holding capacity during any irrigation event is important, whereas this factor is less important under water table conditions. Excess water during an irrigation causes a rise in the water table, but this water remains available for later crop use which lowers the water table. In the presence of a water table the simulations indicate, (1) higher yields are achieved by applying less irrigation during the crop season and more during the preirrigation for salt leaching purposes, (2) annual applied water must equal evapotranspiration to avoid long-term water table rise or depletion, and (3) high cotton yields can be achieved for several years even if the water table is saline and no drainage occurs if the irrigation water is low in salinity.  相似文献   

20.
This study was conducted to develop the relationship between canopy-air temperature difference and vapour pressure deficit for no stress condition of wheat crop (baseline equations), which was used to quantify crop water stress index (CWSI) to schedule irrigation in winter wheat crop (Triticum aestivum L.). The randomized block design (RBD) was used to design the experimental layout with five levels of irrigation treatments based on the percentage depletion of available soil water (ASW) in the root zone. The maximum allowable depletion (MAD) of the available soil water (ASW) of 10, 40 and 60 per cent, fully wetted (no stress) and no irrigation (fully stressed) were maintained in the crop experiments. The lower (non-stressed) and upper (fully stressed) baselines were determined empirically from the canopy and ambient air temperature data obtained using infrared thermometry and vapour pressure deficit (VPD) under fully watered and maximum water stress crop, respectively. The canopy-air temperature difference and VPD resulted linear relationships and the slope (m) and intercept (c) for lower baseline of pre-heading and post-heading stages of wheat crop were found m = −1.7466, c = −1.2646 and m = −1.1141, c = −2.0827, respectively. The CWSI was determined by using the developed empirical equations for three irrigation schedules of different MAD of ASW. The established CWSI values can be used for monitoring plant water status and planning irrigation scheduling for wheat crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号