首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in egg lipids and fatty acid compositions that occur during embryonic development of spotted wolf‐fish, Anarhichas minor, were examined by monitoring individual egg batches from the time of spawning (egg stripping) until hatching. The lipids, present as 3.7±0.1% of the wet mass of the freshly stripped eggs, contained high percentages of monoenes (monounsaturated fatty acids (MUFAs), ca. 33%) and polyenes (ca. 43%) and approximately 20% saturated fatty acids (SFAs). The fatty acid profiles were dominated by a small number of fatty acids. The major SFA was 16:0 (ca. 14%), the dominant MUFA was 18:1 n‐9 (ca. 21%), and among the polyenes, the n‐3 highly unsaturated fatty acids (HUFAs) 22:6 n‐3 docosahexaenoic acid (DHA) and 20:5 n‐3 eicosapentaenoic acid (EPA) were present in the highest concentrations (EPA, ca. 16%; DHA, ca. 19%). The n‐6 HUFA 20:4 n‐6 arachidonic acid (AA) was present as ca. 1% of the total fatty acids in the freshly stripped eggs. This resulted in an AA:EPA of ca. 0.07, which is lower than reported for eggs of many other fish species. As embryonic development progressed, the percentage contribution of AA to the total fatty acids almost doubled. There were also increases in the relative proportions of SFAs (due mainly to an increase in the percentage of 16:0 to ca. 16% at hatch) and DHA (to ca. 23%), and there was a corresponding decrease in the percentage of MUFAs (mostly brought about by a decrease in the percentage of 18:1 n‐9 to ca. 18% at hatch). The most marked changes occurred towards the end of incubation. The percentage of EPA changed little during incubation. This implies that there was selective retention of DHA, 16:0 and AA, and these fatty acids were probably incorporated into cell membranes. MUFAs, particularly 18:1 n‐9, seem to have been catabolized to provide energy for the developing embryo, and some EPA also seems to have been utilized as an energy source. Survival of eggs to the eyed stage (range ca. 10–80%) and to hatch (ca. 5–75%) was negatively correlated with the %AA, %EPA and AA:DHA of the freshly stripped eggs. There was also a negative correlation between AA:EPA and egg survival, which implies that there is not a universal requirement for a high AA:EPA to ensure high rates of survival of fish eggs.  相似文献   

2.
Atlantic salmon (Salmo salar) were fed five graded levels of eicosapentaenoic acid (EPA, 20:5n‐3) and docosahexaenoic acid (DHA, 22:6n‐3), from 1.4 to 5.2% of total fatty acids (FA, 5–17 mg kg?1 feed), and grew from ~160 g to ~3000 g, with the period from 1450 g onwards conducted both at 6 °C and at 12 °C. All fish appeared healthy, and there were no diet‐related differences in haematological or plasma parameters, as well as intestinal histological or gut microbiota analysis. Fish reared at 6 °C had higher accumulation of storage lipids in the liver compared to fish reared at 12 °C. Liver lipids also increased with decreasing dietary EPA + DHA at 6 °C, while there was no such relationship at 12 °C. Gene expression of SREBP1 and 2, LXR, FAS and CPT1 could not explain the differences in liver lipid accumulation. In liver polar lipids, DHA was found to be reduced when dietary EPA + DHA was <2.7% of FAs, while the level of EPA in the membranes was not affected. In conclusion, reducing dietary EPA + DHA from 5.2 to 1.4% of total FAs had a minor impact on fish health. Temperature was the factor that most affected the liver lipid accumulation, but there was also an interaction with dietary components.  相似文献   

3.
Newly hatched phyllosoma larvae of Jasus edwardsii were on‐grown to stage V. Using triacylglycerol‐rich marine oil nutrient sources and microalgae, Artemia were enriched with the major polyunsaturated fatty acids (PUFA) to ratios similar to that of wild‐caught phyllosomata. Artemia enriched by different methods were fed to cultured phyllosomata. At each stage animals were counted, measured and sampled for lipid analyses. Survival was highest from stages II to III (62–86%), with mean total survival at 3–12%. From stages I to V larvae increased in mass (0.2–2.2 mg) and total length (2.1–5.8 mm), and decreased in total lipid. The major lipid class in all phyllosomata was polar lipid, followed by sterol, with no triacylglycerol detected. The main fatty acids were 18:1(n‐9)c, 18:2(n‐6), 16:0, 18:0, eicosapentaenoic acid [EPA; 20:5(n‐3)], 18:1(n‐7)c, arachidonic acid [AA; 20:4(n‐6)] and docosahexaenoic acid [DHA; 22:6(n‐3)]. On‐grown phyllosomata had levels of AA and EPA similar to that of wild phyllosomata, but contained markedly lower levels of DHA. Strategies for enhancement of DHA levels will be needed for culture of rock lobster phyllosomata.  相似文献   

4.
5.
The dietary requirements of Penaeus monodon for eicosapentaenoic (20:5n‐3; EPA) and docosahexaenoic (22:6n‐3; DHA) acids were examined. These requirements were examined when dietary levels of linoleic (18:2n‐6; LOA) and linolenic acids (18:3n‐3; LNA) were also provided at previously established optimal levels of 14 and 21% respectively of the total lipid fatty acids. A 5 × 5 factorial design was used with incremental amounts (0, 4, 8, 12 and 16% of total fatty acids) of EPA and/or DHA. An additional diet containing cod‐liver oil was provided as a reference diet. The total lipid content of all of the 25 treatments and reference diets was maintained at the same level of 75 g kg?1. Growth of prawns fed with the reference diet after 50 days was 244 ± 21%. The greatest response to singular additions of EPA or DHA was with a 12% inclusion of either fatty acid, resulting in 287 ± 21 and 293 ± 18% weight gain, respectively. Growth was generally better when combinations of EPA and DHA were used, the optimal combination being EPA 4% and DHA 4%, resulting in 335 ± 25% weight gain. Addition of high levels of either of the highly unsaturated fatty acids (HUFA) in the diet had a negative effect on growth. Digestibilities of the total neutral lipid and specific fatty acids were examined during the growth trials. The digestibility of total neutral lipid was usually higher when either or both HUFA were present, however there were few significant differences between treatments that contained either or both HUFA. Following the growth trials, digestive glands (DG) of prawns fed with the various diets were analysed to determine the total lipid content and fatty acid composition. Total lipid in the digestive gland increased with the inclusion of DHA, but was not significantly affected by the addition of EPA. The fatty acid composition of the digestive gland lipid generally reflected that of the diet. However, the maximum retention of EPA (11.1% of total DG fatty acids) and DHA (10.7% of total DG fatty acids), was not directly proportional to the amount of either fatty acid present in the diet. These results demonstrate that both EPA and DHA have considerable growth promoting capacity. This growth promoting capacity is enhanced when an optimal balance of both fatty acids are incorporated into the diet.  相似文献   

6.
The contents of three essential fatty acids, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), from wild Penaeus monodon broodstock were evaluated in comparison with natural diet fed P. monodon. Spermatophores of wild male broodstock contained higher levels of AA than those of artificial diet fed males. Polychaetes had higher proportion of AA to EPA and DHA at 5.8:5.5:1 in mud polychaetes followed by 12:7:1 in sand polychaetes, while DHA was a preferential n‐3 highly unsaturated fatty acid (HUFA) in squids and fish. The experimental feed was constructed to simulate the HUFA profile of polychaetes (AA:EPA:DHA as 5:1:1) and then fed to farmed male black tiger prawn broodstock for 1 month. The results exhibited comparable reproductive characteristics to wild male suggesting the possibility of replacing wild males with pond‐reared males. Rearing farmed males in a test unit for a month did not reduce the quality of prawn sperm. Reproductive performance indices (sperm sac weight, total number of sperm, percentage of live sperm, percentage of abnormal sperm) from the males of all treatments were not statistically different except in males fed with pellets. Control (live feeds) and combined diet provided better reproductive performance in pond‐reared males. Analysis of AA, EPA and DHA in reproductive tissues, hepatopancreas and muscle of treated animals in each treatment revealed an accumulation of dietary HUFA into reproductive tissues. No evidence of transfer of HUFA from hepatopancreas or muscle to spermatophore was found.  相似文献   

7.
A strain of the lineage Brachionus ‘Nevada’ was batch cultured with two diets, differing in biochemical composition: baker's yeast (treatment 1), which has higher protein:lipid ratio compared with CULTURE SELCO (treatment 2). The biochemical composition (DNA, RNA, lipid, protein content) and fatty acid profile of rotifers of both treatments was analysed and related to previously published population structure data. CULTURE SELCO‐fed rotifers showed higher DNA, RNA, lipid, n‐3 highly unsaturated fatty acids (HUFA) average content, compared with yeast‐fed rotifers, which had higher protein content. Rotifer lipid content showed significant diurnal variation in yeast‐fed rotifers. Rotifer lipid and n‐3 HUFA content was associated with reproductive output. DNA and RNA content was related to embryonic development while protein content, to somatic growth and mixis. The saturated and monounsaturated fatty acid rotifer content was stable irrespective of feed, in contrast to eicosapentanoic acid (EPA) and DHA. The levels of AA were similar in both rotifer populations, but those of EPA and docosahexaenoic acid (DHA) were about half in yeast‐fed compared with CULTURE SELCO‐fed rotifers. CULTURE SELCO resulted in a temporally stable rotifer lipid profile and a better enriched parthenogenetic population.  相似文献   

8.
Western rock lobster, Panulirus cygnus, phyllosoma were grown from hatching to stage IV. Larvae were fed with Artemia enriched with a (i) base enrichment (Base) containing 520 g kg?1 squid oil or tailor made enrichments in which oils high in polyunsaturated fatty acid (PUFA) have been added at the expense of squid oil. These treatments were (ii) base enrichment supplemented with docosahexaenoic acid (DHA) rich oil, (iii) base enrichment supplemented with arachidonic acid (AA) rich oil, or (iv) base enrichment supplemented with DHA and AA (D + A) rich oils. Total survival of phyllosoma to stage IV was high, with no significant difference between treatments (range 12.3–17.5%). By stage IV, the larvae fed the DHA or AA enriched Artemia were significantly larger (3.33 mm length) than larvae fed the Base or D + A enriched Artemia (3.18–3.24 mm length). Phyllosoma were sampled at stages II and III for biochemical analysis. The major lipid class (LC) in all phyllosoma was polar lipid (PL) (88.9–92.4%), followed by sterol (ST) (6.2–9.7%). Triacylglycerol (TAG), free fatty acid (FFA) and hydrocarbon/wax ester were minor components (≤1%) in all phyllosoma samples. In contrast, the major LC in all enrichments and enriched Artemia was TAG (76.3–85.1% and 53.4–60.2%, respectively), followed by PL (11.4–14.8% and 30.6–38.1% respectively). The main fatty acids (FA) in phyllosoma were 16:0, 18:1n‐9, 18:1n‐7, 18:0, AA, eicosapentaenoic acid (EPA) and DHA. Addition of AA, and to a lesser extent DHA, to enrichments resulted in increased levels of those FA in Artemia and phyllosoma compared with the Base enrichment. This was particularly evident for stage III larvae. Comparatively, elevated growth for phyllosoma to stage IV was achieved with DHA and AA enriched diets. Our findings highlight the importance of lipids and in particular essential long‐chain PUFA, as nutritional components for phyllosoma diets.  相似文献   

9.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

10.
Five diets that contained fresh squid meat as the basic constituent and were supplemented with different amounts of highly unsaturated fatty acids (HUFA) and astaxanthin were fed to pond‐reared Penaeus monodon broodstock. Diet A was sole squid meat. Diets B and C were supplemented with astaxanthin 50 and 100 mg kg?1 respectively. Diets D and E were supplemented with HUFA 5 and 10 g kg?1 and astaxanthin 50 mg kg?1 respectively. The result showed that the group fed diet E had the best reproductive performance in all experimental groups. It had a higher proportion of spawns (71.5%), spawning rate (0.047), a shorter latency period (7.7±0.3 d), higher absolute fecundity (× 103) (361.6±5.5) and egg production/female (× 103) (597.0±18.0) than all the other experimental groups. The fatty acid composition in broodstock diets strongly affected the tissue and fecundity of broodstock. Good correlations between the content of 20:4n‐6 in eggs and the fecundity (r2=0.6109) and egg production (r2=0.9876) of broodstock were found. On the other hand, 22:6n‐3 and DHA/EPA ratio was negatively correlated with the fecundity of broodstock (r2=0.5362, 0.8702 respectively). The result also showed that the balance between n‐3 and n‐6 fatty acid families, total polyunsaturated fatty acids and total saturated fatty acid and 20:5n‐3 (EPA) and 22:6n‐3 (DHA) may play vital roles in maturation and reproductive performance of P. monodon broodstock.  相似文献   

11.
Fatty acid analyses were conducted on newly hatched and 8‐day‐old‐starved and fed Stage I phyllosoma larvae of the spiny lobster, Jasus edwardsii. Fed animals were offered excess 1.5 mm juvenile Artemia (enriched using the alga Isochrysis galbana, Tahitian isolate, T. iso.). After 8 days, there were significant increases in larval dry weight and the proportion of lipid in fed phyllosoma, whereas these parameters decreased in starved phyllosoma. The abundance of the saturated fatty acids 16 : 0 and 18 : 0 increased in both starved and fed phyllosoma, whereas the main monounsaturated fatty acids 16 : 1n‐7, 18 : 1n‐9 and 18 : 1n‐7 increased with feeding but decreased with starvation. There were no significant differences in the relative proportions of the highly unsaturated fatty acids (HUFAs) arachidonic (AA, 20 : 4n‐6), eicosapentaenoic (EPA, 20 : 5n‐3) and docosahexanoic (DHA, 22 : 6n‐3) acids between newly hatched and starved animals, whereas quantitatively DHA decreased with starvation and feeding. The DHA/EPA ratio was significantly lower in the starved and fed phyllosoma (0.5) compared with that found in the newly hatched phyllosoma (0.9). The lipid profiles of the newly hatched, starved and fed phyllosoma contained large amounts of n‐6 fatty acids resulting in low n‐3 : n‐6 ratios (2.8, 2.7 and 1.6 respectively). The importance of these results and the ability of enriched Artemia to provide a suitable fatty acid profile for this species are discussed.  相似文献   

12.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

13.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

14.
A minor stabilization effect was found for the content of total lipids, total fatty acids and docosahexaenoic acid (DHA) when Artemia franciscana was maintained at high concentrations of Isochrysis galbana for 72 h at 12 °C, both in 3‐ and 4‐day‐old individuals. The eicosapentaenoic (EPA) level was only stabilized at higher algal concentrations in the 4‐day‐old A. franciscana. In the 3‐day‐old A. franciscana, the EPA content increased at all algal concentrations during the first 24 h of post enrichment, presumably as an effect of DHA catabolism. Apparently, the 4‐day‐old A. franciscana metabolized DHA, and other lipids, faster than the 3‐day‐old A. franciscana did. During the 72 h incubation with I. galbana, the content of ascorbic acid (AA) in A. franciscana increased approximately to 1000–1200 μg g–1 dry weight (DW) at algal concentrations above 3 mg C L–1, close to AA content of the algae. The vitamin B6 content in A. franciscana decreased from approximately 20 to 4–11 μg g–1 DW, with highest loss rates at the higher algal concentrations. The thiamin content of A. franciscana was independent of algal concentration and remained at 20–30 μg g–1 DW. The nutritional effects of the algal incubation on the 3‐ and 4‐day‐old A. franciscana at algal concentrations which can be used during the cultivation of Atlantic‐halibut larvae (<2 mg C L–1) was insignificant, except for the small enrichment effect of AA already at 1 mg C L–1. Other beneficial effects of the algae should not be ruled out, like possible effects on the microflora of A. franciscana even at algal concentrations less than 2 mg C L–1.  相似文献   

15.
A 120‐day feeding trial was conducted to examine the effects of the ratio of dietary linoleic acid (LA, 18:2n‐6) to eicosapentaenoic acid (EPA, 20:5n‐3) on the growth and fatty acid composition of juvenile Haliotis discus hannai (initial shell length 10.23 ± 1.48 mm; initial body weight 0.13 ± 0.05 g) in a recirculation water system. Five semipurified diets with 35 g kg?1 total lipid were formulated to contain graded LA/EPA ratios (1 : 0, 0.75 : 0.25, 0.5 : 0.5, 0.25 : 0.75, and 0 : 1, respectively). Twenty‐five juveniles were stocked in a rearing unit, a plastic basket (20 × 20 × 10 cm), as a replicate, and there were three replicates for each dietary treatment. The results showed that abalone survival rates were generally high (90.1–98.3%) and independent of the dietary treatments. However, abalone growth was significantly affected by LA/EPA ratio (P < 0.05). The LA/EPA ratio of 0.25 : 0.75 (Diet 4) produced the highest weight gain rate (WGR, 416.3%), closely followed by the ratio of 0 : 1 (Diet 5, 412.9%), the ratio of 0.5 : 0.5 (Diet 3, 399.7%) and the ratio of 0.75 : 0.25 (Diet 2, 372.1%), but no significant differences were observed among these treatments. The abalone fed the diet without 20:5n‐3 (Diet 1) had the lowest WGR (Diet 1, 363.8%), which was significantly lower than that of Diet 4. Fatty acid profiles in abalone body reflected those of dietary lipids, especially for the polyunsaturated fatty acids. The contents of arachidonic acid (AA; 20:4n‐6) in abalone tissues were positively correlated with dietary level of 18:2n‐6 (P < 0.05). Similar correlation was also observed between the level of docosahexaenoic acid (DHA, 22:6n‐3) in abalone tissues and the level of dietary EPA. It is suggested that abalone, H. discus hannai, have the capacity to synthesize 20:4n‐6 from 18:2n‐6, and maybe 22:6n‐3 from 20:5n‐3.  相似文献   

16.
Two experiments were carried out to investigate the effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) levels in rotifers (Brachionus plicatilis) and Artemia on the survival, development and metamorphosis of mud crab Scylla paramamosain larvae. Five different lipid emulsions, varying in the level of total n‐3 and n‐6 highly unsaturated fatty acids (HUFA), DHA, EPA and ARA were used to manipulate the fatty acid profile of the live food. Fatty acid profiles of the live food and crab larvae at zoea one, three and five stages were analysed to study the HUFA uptake by the larvae. The fatty acid content of the live food affected the fatty acid profiles of the crab larvae. In both experiments, the survival rate in the zoeal stages was not statistically different among treatments. However, larval development rate and metamorphosis success were affected by the dietary treatments. In this respect, the DHA/EPA ratio in the live food seems to be a key factor. Enrichment emulsions with a very high (50%) total HUFA content but a low DHA/EPA ratio (0.6), or zero total HUFA content caused developmental retardation and/or metamorphosis failure. An emulsion with a moderate total HUFA (30%) and a high DHA/EPA ratio (4) was the best in terms of larval development during the zoeal stages and resulted in improved metamorphosis. Dietary ARA seemed to improve first metamorphosis, but its exact role needs further clarification. For the larval rearing of S. paramamosain, an enrichment medium containing about 30% total n‐3 HUFA with a minimum DHA/EPA ratio of 1 is recommended. Further investigation is needed on the total HUFA and optimum DHA/EPA ratio requirements for each crab larval stage.  相似文献   

17.
The role of dietary ratios of docosahexaenoic acid (DHA, 22:6n−3), eicosapentaenoic acid (EPA, 20:5n−3) and arachidonic acid (AA, 20:4n−6) on early growth, survival, lipid composition, and pigmentation of yellowtail flounder was studied. Rotifers were enriched with lipid emulsions containing high DHA (43.3% of total fatty acids), DHA+EPA (37.4% and 14.2%, respectively), DHA+AA (36.0% and 8.9%), or a control emulsion containing only olive oil (no DHA, EPA, or AA). Larvae were fed differently enriched rotifers for 4 weeks post-hatch. At week 4, yellowtail larvae fed the high DHA diet were significantly larger (9.7±0.2 mm, P<0.05) and had higher survival (22.1±0.4%), while larvae fed the control diet were significantly smaller (7.3±0.2 mm, P<0.05) and showed lower survival (5.2±1.9%). Larval lipid class and fatty acid profiles differed significantly among treatments with larvae fed high polyunsaturated fatty acid (PUFA) diets having higher relative amounts of triacylglycerols (18–21% of total lipid) than larvae in the control diet (11%). Larval fatty acids reflected dietary levels of DHA, EPA and AA while larvae fed the control diet had reduced amounts of monounsaturated fatty acids (MUFA) and increased levels of PUFA relative to dietary levels. A strong relationship was observed between the DHA/EPA ratio in the diet and larval size (r2=0.75, P=0.005) and survival (r2=0.86, P=0.001). Following metamorphosis, the incidence of malpigmentation was higher in the DHA+AA diet (92%) than in all other treatments (50%). Results suggest that yellowtail larvae require a high level of dietary DHA for maximal growth and survival while diets containing elevated AA exert negative effects on larval pigmentation.  相似文献   

18.
To determine the potential for improving the conversion and deposition of the omega‐3 fatty acids docosahexaenoic acid (DHA; 22:6n‐3) and eicosapentaenoic acid (EPA; 20:5n‐3) in fish, 44 families of rainbow trout were fed a diet low in these components and then evaluated for their ability to convert and store plant oils that did not contain DHA and EPA in their muscle tissue. The range for EPA and DHA detected in the tissues of different families varied between 1.2 and 2.9%, and 3.8 and 7.1% total fatty acid, respectively. After adjusting for covariates, an averaged heritability of 0.78 ± 0.11 for DHA and 0.61 ± 0.17 for EPA was calculated. Expression analysis of genes related to the elongation and conversion of lipids were also analyzed, and significant differences were found in the expression of some genes between groups of families that were delineated as having relative high, medium, and low capabilities of depositing EPA and DHA in their muscle tissue after being reared on the mainly soy/flax oil containing diet. However, none of these genes showed a positive correlation with the high conversion/deposition group .  相似文献   

19.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

20.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号