首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Storage of ‘Fuji’ apple fruit in a high CO2 (3 kPa) and low O2 (1.5 kPa) controlled atmosphere (CA) reduced firmness and titratable acidity (TA) loss during long term storage. This CA environment also induced development of internal CO2-injury (brown-heart) and slowed the disappearance of watercore. The symptoms of internal CO2-injury were first detected 15 days after CA establishment and the severity increased during the first 4 months of CA-storage. Delaying establishment of CA conditions for 2–12 weeks significantly reduced the severity of CO2-injury. Delaying CO2 accumulation to 3 kPa for 1–4 months during CA (1.5 kPa O2+0.05 kPa CO2) storage also reduced development of CO2-injury symptoms. Delaying CA or CO2 accumulation resulted in lower firmness and TA compared to establishment of CA within 72 h of harvest. However, the delay treatments did result in firmness and TA that were significantly higher compared to values for fruit stored in air. The incidence and severity of senescent injuries (flesh browning and core flush) detected during the late period of storage were greater in air- than CA-stored fruit. The results indicate the susceptibility of ‘Fuji’ apples to CO2-injury is highest during the first weeks of storage after harvest. Delaying establishment of CA or exposure to elevated CO2 after harvest may be a practical strategy to reduce CO2-injury while maintaining other important quality attributes at acceptable levels.  相似文献   

2.
'Laiyang Chili’ and ‘Ya Li’ (Pyrus bertschneideri Reld) pears were treated with 3, 6, and 9% emulsions of commercial or refined (reduced -tocopherol levels) plant (soybean, corn, peanut, linseed, and cottonseed) oils at harvest an stored at 0°C for 6 months. Effects of oil treatments on ethylene production, respiration, fruit firmness, fruit color, soluble solid content (SSC), titratable acids (TA), internal browning (IB), and internal CO2, O2, and ethanol were studied. At the same concentration, oil treatments induced similar responses regardless of their sources or their -tocopherol concentrations. In both cultivars, ethylene production and respiration in fruit treated with 9% oils were lower in early storage and higher in late storage than that in the controls. Oils at 6% reduced IB, at 9% inhibited IB completely, and at 3% was not effective after 6 months at 0°C and 7 days at 20°C. Plant oil treatment maintained fruit color, firmness, SSC, and TA in a concentration-dependent manner during storage. In the first 4 months storage, 9% corn oil-treated fruit contained similar partial pressure of CO2 and O2 as the controls. After 5 months storage, oil-treated fruit contained higher partial pressure of CO2 and lower levels of O2 than the controls. When held at 20°C for 7 days, changes of internal CO2 and O2 were slower but partial pressure of CO2 were higher, and O2 were lower, in 9% corn oil-treated fruit than in the controls. Internal ethanol was not affected by oil treatment compared with control, either during storage or 7 days at 20°C. No off-flavor was detected in either oil-treated and control fruit by sensory evaluation.  相似文献   

3.
The present study was conducted to investigate the possible interactive effects of rising atmospheric CO2 concentration [CO2] and drought stress on water use of wheat. Spring wheat (Triticum aestivum cv. “Minaret”) was grown either in 1 m diameter lysimeters with 0.4 m soil depth (1998) or in the field (1999) in open-top chambers under two CO2-concentrations (ambient, ambient + 280 ppm) and two watering regimes (well-watered = WW with a plant available water content PAW > 40 mm and drought stressed = DS, 10 mm < PAW < 30 mm) beginning after first node stage. Canopy evapotranspiration (EC) was measured continuously from first the node stage until the beginning of flag leaf senescence using four open-system canopy chambers (0.78 m3). Seasonal changes of the absorption of photosynthetically active radiation (APAR) of the canopy and root growth (1999) were also measured.

In both growing seasons leaf area index increased in response to elevated [CO2] in both water treatments. The related effects of [CO2] on canopy radiation absorption (APAR) were, however, smaller. EC was linearily related to APAR in both growing seasons. While elevated [CO2] reduced the slope of this relation under WW conditions by ca. 20% in both growing seasons, it was not reduced (1998) and even increased (1999) under drought. Canopy conductance (GC) calculated as EC divided by vapour pressure deficit of air, showed a non-linear relationship to APAR that was best explained by saturation curves. Under WW conditions, elevated [CO2] reduced the initial slope of GC versus APAR as well as GC at saturating light conditions (ca. −30%), while under DS conditions no effect of elevated [CO2] could be detected. Under high light conditions (PAR > 400 μmol m−2 s−1) a critical “threshold value” of PAW (TPAW, ca. 40 mm) could be identified above which GC did not respond to PAW. While in 1998 GC did not respond to elevated [CO2] at PAW < TPAW, it was slightly increased at low PAW values in the field experiments of 1999. The reduction of TPAW by elevated [CO2] may be explained by enhanced root growth (1999) that would have given the plants better access to soil water resources. The present results suggest that below a critical soil water content elevated [CO2] will not reduce canopy water loss of wheat or may even enhance it.  相似文献   


4.
以酥梨为试材,研究了(0±0.5)℃条件下不同O2浓度梯度和CO2浓度梯度的气调贮藏对酥梨采后生理及果实褐变的影响。结果表明:在贮藏期内,当CO2浓度为0%时,随着O2浓度的降低,在一定程度上可以延缓酥梨果肉组织相对电导率的升高、酚类物质的下降、多酚氧化酶活性的上升及色泽的转黄;但当O2浓度为1.5%时,会对酥梨果实造成伤害,引起多酚氧化酶活性上升,果心褐变指数升高;当O2浓度为5%时,CO2浓度的升高有效保持了果实的硬度、色泽;但当CO2浓度为8%时,会导致酥梨果实相对电导率增幅加大,果心、果肉酚类物质氧化加剧,果心褐变指数升高。综上所述,酥梨适宜的气调指标阈值为CO2<2%,O2为3%~5%。  相似文献   

5.
The response of cabbage to controlled atmospheres (CA) of 1–3% O2 and 1–10% CO2; 3% O2 and 5% CO2 was studied in relation to the incidence of physiological and pathological disorders. Fungal infections, pepper spot, low oxygen injury, weight loss, colour, odour, flavour and ethanol were evaluated. The findings show that CA did not reduce Botrytis cinerea rot in comparison to low temperature storage in air. PVC film and CA, on the other hand, reduced pepper spot by over 50% with respect to the air control. In particular, pepper spot was eliminated by high CO2 (10%) levels. Low O2 (1% O2 and 1% CO2) atmospheres caused 33 and 50% injury respectively after 89 and 109 days of storage. CA and PVC film reduced weight loss to 1%, as compared with 11% in the heads in air, which had shrivelled. The combination of 3% O2/5% CO2 and PVC film delayed yellowing with respect to air control. Concentrations of 1–3% O2 and 10% CO2 resulted in off odours and flavours after 74 days of storage. This result was confirmed by a considerable increase in ethanol concentrations. The most effective concentration tested was 3%O2/5%CO2 although, in general, infection by B. cinerea limited the storage life.  相似文献   

6.
Four expansin cDNA fragments, EjEXPA1, EjEXPA2, EjEXPA3 and EjEXPA4, were isolated and characterized from loquat (Eriobotrya japonica Lindl.) fruit. EjEXPA1 mRNA accumulated consistently with the increase in fruit firmness in 0 °C storage of ‘Luoyangqing’ (LYQ) fruit, where chilling injury with increased fruit firmness due to lignification was observed. EjEXPA1 mRNA levels were lower in fruit that underwent low temperature conditioning (LTC, 6 d at 5 °C then 4 d at 0 °C), and in 1-methylcyclopropene (1-MCP) treated fruit, in both cases where chilling injury was alleviated. Fruit of the ‘Baisha’ (BS) cultivar soften after harvest rather than increase in firmness, and high expression levels of EjEXPA1 and EjEXPA4 accompanied the softening of BS fruit stored at 20 °C; such mRNA accumulation was much lower when fruit were stored at 0 °C, where softening was significantly inhibited by the low temperature. Very low expression of EjEXPA2 and EjEXPA3 was observed during storage of both LYQ and BS fruit under the different storage conditions. Our results showed that of the four genes characterized, EjEXPA1 might be associated with chilling-induced lignification while both EjEXPA1 and EjEXPA4 were closely related to softening of loquat fruit during the postharvest period.  相似文献   

7.
Spring wheat cv. Minaret crop stands were grown under ambient and elevated CO2 concentrations at seven sites in Germany, Ireland, the UK, Belgium and the Netherlands. Six of the sites used open-top chambers and one used a controlled environment mimicking field conditions. The effect of elevated CO2 for a range of N application regimes, O3 concentrations, and growth temperatures on flag leaf photosynthesis was studied. Before anthesis, flag leaf photosynthesis was stimulated about 50% by 650 compared with 350 μmol mol−1 CO2 at all sites, regardless of other treatments. Furthermore, there was no evidence of a decrease in photosynthetic capacity of flag leaves due to growth at elevated CO2 before anthesis, even for low N treatments. However, photosynthetic capacity, particularly carboxylation capacity, of flag leaves was usually decreased by growth at elevated CO2 after anthesis, especially in low N treatments. Acclimation of photosynthesis to elevated CO2 therefore appears to occur only slowly, consistent with a response to changes in sink–source relationships, rather than a direct response. Effect of elevated CO2 on stomatal conductance was much more variable between sites and treatments, but on average was decreased by ˜10% at 650 compared with 350 μmol mol−1 CO2. Carboxylation capacity of flag leaves was decreased by growth at elevated O3 both before and after anthesis, regardless of CO2 concentration.  相似文献   

8.
Microbial proliferation and sensory quality aspects of sliced onions were tested at different temperatures (−2, 4 and 10 °C) and atmospheric conditions (with or without 40% CO2 + 59% N2 + 1% O2). The relationships among microorganism growth parameters (the initial cell number (N0), the maximum cell number (Nmax), the maximum specific growth rate (μmax) and lag-phase (λ)) and the microbial or sensory shelf life were determined. The microorganism growth parameters were obtained by fitting the modified Gompertz equation to the microbial counts. The results showed that color intensity (yellowness), sensory scores and microbial counts increased, and firmness decreased during storage. The total plate counts (TPC) provided the best indication of the spoilage organism growth capacity under tested temperatures and atmospheric conditions. The microbial shelf lives of the tested onions in 40% CO2 + 59% N2 + 1% O2, or at −2, 4 and 10 °C, were 12.5, 9.5, 7, 12, 9 and 6 days, respectively, and their sensory shelf lives were 12, 8, 5, 10.5, 7 and 5 days, respectively. The lag time (λ) of the TPC, coliforms, pseudomonads and yeasts correlated well with the microbial and sensory shelf life results. The correlations between microbial and sensory shelf life, and the μmax of TPC, lactic acid bacteria (LAB) and coliforms were between (−0.61 and −0.85). The initial microbial counts (N0) of the five microorganisms showed a slight correlation, and the maximum microbial counts (Nmax) of this group showed no obvious correlation with onion shelf life, apart from the LAB and yeasts.  相似文献   

9.
The role of phospholipase A2 (PLA2) activity in development of postharvest peel pitting in mature ‘Fallglo’ tangerines [Bower citrus hybrid (Citrus reticulata Blanco × C. reticulata Blanco × C. paradisi Macf.) × Temple (C. reticulata Blanco × Citrus sinensis L.)] and ‘Navel’ oranges (Citrus sinensis L. Osbeck) was investigated. Changes in RH from 30% to 90% followed by fruit waxing increased electrolyte leakage and PLA2 activity in flavedo, and induced pitting. Treatment with an aqueous dip of aristolochic acid (AT), a specific inhibitor of secretory phospholipase A2 (sPLA2) activity, immediately before transfer from 30% to 90% RH storage, markedly reduced peel pitting symptoms. Five genes encoding various phospholipase As isolated from citrus (three patatin-like and two sPLA2-like sequences) differentially accumulated in healthy areas, areas with developing lesions and necrotic lesions of disordered fruit. Other PLA2, phospholipase C, and phospholipase D inhibitors also reduced peel pitting; however, PLA2 inhibitors were the most effective in preventing the disorder. In addition, phospholipase inhibitors promoted fruit decay, suggesting that innate resistance is impacted by phospholipase action. Together, the results provide evidence for involvement of phospholipase activity in development of postharvest peel pitting symptoms in citrus fruit.  相似文献   

10.
研究不同复合保鲜处理对‘夏黑’葡萄贮藏效果的影响,探索适合‘夏黑’葡萄的保鲜技术。以‘夏黑’葡萄为试材,用不同的保鲜剂[焦亚硫酸钠(Na2S2O5)、1-甲基环丙烯(1-MCP)]和PP透气保鲜袋对材料进行8个组合处理,每个处理重复24穗,将处理后的‘夏黑’葡萄每3穗为一箱置于低温(0±1)℃、相对湿度90%~95%的环境中贮藏。以失重率、落果率、腐烂率、可溶性固形物含量、可滴定酸含量、可溶性糖含量、MDA含量、花色苷含量和果梗中叶绿素含量等作为测定指标,分析‘夏黑’葡萄在贮藏过程中果实品质的变化。结果显示,在整个贮藏期间,随着贮藏时间的延长,果穗的失重率、落果率、腐烂率、可溶性糖和花色苷的含量不断增加,可溶性固形物含量持续下降,可滴定酸和MDA的含量先增加再降低。不同复合保鲜处理中果实内在品质的变化趋势总体一致,但处理间存在显著差异,其中PP透气保鲜袋+1-MCP+Na2S2O5的复合处理与空白对照处理之间的差异最为明显。在贮藏112天后,PP透气保鲜袋+1-MCP+Na2S2O5的复合处理的‘夏黑’葡萄可溶性固形物的含量为15.18°Brix左右,较对照处理显著提高。同时其MDA、可溶性糖及花色苷的含量优于对照,说明这种复合处理的方式既可以保持果实色泽,又可以减缓葡萄果实的受自由基伤害的程度。因此PP透气保鲜袋+1-MCP+Na2S2O5的复合配方能够在一定程度上有效保持‘夏黑’葡萄果实品质,使其在贮藏112天后仍具有商品性。  相似文献   

11.
Modified atmosphere packaging alleviates chilling injury in cucumbers   总被引:7,自引:0,他引:7  
Cucumbers (Cucumis sativus L.) packaged in perforated or sealed 31.75 μm (1.25 mil) low density polyethylene (LDPE) bags were found to have less severe chilling injury than nonwrapped fruit in storage at 5 °C and 90–95% relative humidity. The onset of chilling injury was also delayed by the LDPE packaging compared to the nonpackaged control. The concentrations of CO2 increased to 3% while O2 levels decreased to 16% in the sealed bags. Fruit in the sealed bags had the least decay. The O2 and CO2 concentrations inside the perforated bags changed very little from the ambient atmosphere. However, there was a marked difference in the weight loss between nonwrapped cucumbers and fruit from perforated or sealed bags. The weight loss of nonwrapped fruit reached 9% in 18 days while perforated and sealed samples lost less than 1% during the same period. Chilling stress induced increases in putrescine levels in all treatments but the sealed fruit had the highest levels of putrescine. Sealed fruit and perforated fruit also had higher content of spermidine than non-wrapped fruit. These high levels of polyamines may have contributed to the increase of chilling tolerance in fruit from perforated and sealed packages.  相似文献   

12.
One of the major goals of the European Stress Physiology and Climate Experiment (ESPACE-wheat) was to investigate the sensitivity of wheat growth and productivity to the combined effects of changes in CO2 concentration, ozone and other physiological stresses. Experiments were performed at different sites throughout Europe, over three consecutive growing-seasons using open-top chambers. This paper summarizes the main experimental findings of the effects of CO2 enrichment and other factors i.e. ozone (O3), drought stress or nitrogen supply on the biomass and yield of spring wheat (Triticum aestivum cv. Minaret). Final harvest data from different sites and seasons were statistically analysed: (1) to identify main effects and interactions between experimentally controlled factors; and (2) to evaluate quantitative relationships between environmental variables and biological responses. Generally, ‘Minaret’ wheat did not respond significantly to O3, suggesting that this cultivar is relatively tolerant to the O3 levels applied. The main effect of CO2 was a significant enhancement of grain yield and above-ground biomass in almost all experiments. Significant interactions between CO2 and other factors were not common, although modifications in different N- and water supplies also led to significant effects on grain yield and biomass. In addition, climatic factors (in particular: mean air temperature and global radiation) were identified as important co-variables affecting grain yield or biomass, repectively. On average, the yield increase as a result of a doubling of [CO2] was 35% compared with that observed at ambient CO2 concentrations. However, linear regressions of grain yield or above-ground biomass for individual experiments revealed a large variability in the quantitative responses of ‘Minaret’ wheat to CO2 enrichment (yield increase ranging from 11 to 121%). Hence, CO2 responsiveness was shown to differ considerably when the same cultivar of wheat was grown at different European locations. Multiple regression analyses perfomed to evaluate the relative importance of the measured environmental parameters on grain yield indicated that although yield was significantly related to five independent variables (24 h mean CO2 concentration, 12 h mean O3 concentration, temperature, radiation, and drought stress), a large proportion of the observed variability remained unexplained.  相似文献   

13.
The aim of this study was to determine the effects of 1-methylcyclopropene, 1-MCP (1 μL L−1 for 24 h at 5 °C) on quality attributes and shelf life of fresh-cut strawberries. The 1-MCP was applied before (whole product) and/or after cutting (wedges), followed by storage in a continuous flow of air or air +1 μL L−1 C2H4. The combined effects of 1-MCP and CaCl2 dips (1% for 2 min) and/or CA (3 kPa O2 + 10 kPa CO2) were also examined. The application of only 1-MCP before and/or after cutting did not have a significant effect on firmness and appearance quality during storage for up to 12 days at 5 °C. The exposure to a continuous flow of 1 μL L−1 C2H4 in air during storage did not increase the softening rate. 1-MCP applied before cutting or both before and after cutting of the strawberries increased respiration rates but reduced C2H4 production rates. Exposure to 1-MCP had a synergistic effect when combined with CaCl2 plus CA. The combined treatment of 1-MCP + CaCl2 + CA slowed down softening, deterioration rates, TA and microbial growth. Compared to the control, which had a 6-day shelf life, the shelf life of fresh-cut strawberries subjected to the combination treatment was extended to 9 days at 5 °C.  相似文献   

14.
Spring wheat cv. Minaret was grown in open-top chambers at four sites across Europe. The effect of different treatments (CO2 enrichment, O3 fumigation, drought stress and temperature) on the chlorophyll content of the flag leaf was investigated using the MINOLTA SPAD-502 meter. Under optimum growth conditions the maximum chlorophyll content, which was reached at anthesis, was consistent among the sites ranging from 460 to 500 mg chlorophyll m−2. No significant effect of elevated CO2 or O3 was observed at anthesis. Leaf senescence, indicated by the chlorophyll breakdown after anthesis, was relatively constant in the control chambers. Under control conditions, thermal time until 50% chlorophyll loss was reached was 600°C day. Elevated CO2 caused a faster decline in chlorophyll content (thermal time until 50% chlorophyll loss was reduced to 500–580°C day) indicating a faster rate of plant development at two experimental sites. The effect of ozone on chlorophyll content depended on the time and dose of O3 exposure. During grain filling, high O3 concentrations induced premature senescence of the flag leaves (up to −130°C day). This deleterious effect was mitigated by elevated CO2. Drought stress led to faster chlorophyll breakdown irrespective of CO2 treatment.  相似文献   

15.
Potato cv. Bintje was grown in open-top-chambers and free-air-CO2-enrichment systems at 7 sites across Europe for 2 years (1998–99). The effect of different treatments (CO2 enrichment and O3 fumigation) on the chlorophyll content of fully expanded upper and lower canopy leaves was investigated collecting Minolta SPAD-502 meter readings. In both CO2 treated and O3 fumigated plants, leaves had lower chlorophyll content than those in ambient air controls; season-long chlorophyll averages were 9.3% lower in the ‘CO2’ treatments, 9.1% lower in ‘O3’ treatments and 12.3% lower in ‘CO2+O3’ treatments. The analysis of chlorophyll content in three different growth phases (Emergence–Tuber Initiation; Tuber Initiation–Maximum Leaf Area; Maximum Leaf Area–Harvest) showed that in the early growth period, i.e. before tuber initiation there was a slight indication for an higher chlorophyll content at elevated CO2 (+3.8%) or O3 (+1.7%). However, from tuber initiation onwards the leaves of plants grown under elevated CO2 or O3 showed a progressively lower chlorophyll content (−4.8% for CO2 treatments and −2.6% for O3 treatments) indicating a faster senescence of leaves that increased during the late growth period (−12.8% for CO2 treatments and −12.7% for O3 treatments) and that was enhanced by CO2–O3 interaction (−17.8%).  相似文献   

16.
A major objective of the ESPACE—wheat programme was to perform by means of open-top chambers (OTCs) ‘standardised’ experimental investigations of spring wheat responses to increased atmospheric CO2 and O3 concentrations and to other environmental stresses at different locations in Europe, representing a broad range of different climatic conditions. From 1994 to 1996 a total number of 25 OTC experiments were carried out. In addition, four growth chamber experiments focusing on key physiological processes of wheat growth in CO2-enriched air were performed. According to the specific needs for subsequent modelling purposes, environmental data were collected during experiments, i.e. air temperature, global radiation, humidity and trace gas concentrations. In the present paper results of these measurements are summarised. It was shown, that the OTC-experiments covered a considerable range of growing season mean-air-temperatures (13.0–23.4°C) and global irradiances (10.8–18.1 MJ m−2 d−1), the most important driving variables for crop growth simulation models. Mean concentrations of CO2 and O3 in ambient air and in different treatments illustrated the observed variability of trace gas exposures between different experiments. Implications for subsequent analyses of biological response data are discussed.  相似文献   

17.
为阐明大气CO2浓度升高和不同氮素水平对湿地植物光合生理特性和生长的影响,本研究以三江平原湿地优势植物小叶章(Calamagrostis angustifolia)为研究对象,通过野外原位控制试验,利用开顶式气室(OTC)模拟环境大气CO2浓度变化,设置E0(380 ±20 µmol/mol)、E1(550 ±20 μmol/mol)和E2(700 ± 20 μmol/mol)3个CO2浓度;在每个OTC内设置 N0(0 g N/m2)、N1(4 g N/m2)和N2(8 g N/m2)3个氮素水平。结果表明,N0条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率分别降低11%和12%(P<0.05),其叶片可溶性蛋白含量、氮素含量(CO2熏蒸72 天)、小叶章株高(CO2熏蒸86 天)均显著低于E0处理(P<0.05);N1条件下,与E0处理相比,E1和E2处理(72 天)后小叶章叶片净光合速率降低5%(P>0.05)和10%(P<0.05),其叶片氮素含量(P<0.05)、小叶章株高均低于E0处理;N2条件下,E1和E2处理(72 天)小叶章净光合速率均呈稍增加的趋势(P>0.05),其叶片可溶性蛋白含量显著增加(P<0.05),氮素含量和小叶章株高无显著变化(P>0.05)。N0、N1和N2条件下,CO2浓度升高均显著增加了小叶章叶片可溶性糖含量。本研究表明长期CO2浓度升高可能通过降低小叶章叶片光合酶活性,进而降低了其净光合速率,而施加高浓度的氮肥可以缓解长期高CO2浓度对湿地植物光合及生长的负面影响。  相似文献   

18.
In this study, we have analyzed the profiles of individual anthocyanins in the skin of Cardinal table grapes and their contribution to the total antioxidant capacity (TAC) in response to low temperature (0 °C) and high CO2 levels (20% for 3 days). An analysis of the representative colour parameters of this red-violet variety was also determined. The anthocyanin composition was determined using high-performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC–DAD–MS). The contribution of individual anthocyanins to the TAC value of table grapes was calculated on the basis of their concentration and antioxidant capacity measured as the TEAC value (slope of the anthocyanin/slope of Trolox). Chromatographic analysis identified six anthocyanins, including pelargonidin 3-glucoside (Pg-3-G), in the skin of Cardinal table grapes. Short-term storage at 0 °C in air had an increasing effect on the concentration of each of the identified anthocyanins. After 3 days at 0 °C, untreated grapes had the highest anthocyanin content (27.55 mg/100 g FW) and displayed the largest TAC value (52.45 mM TE/100 g FW). Peonidin 3-glucoside (Pn-3-G) was the predominant anthocyanin, and it was mainly responsible for the rise in the calculated TAC value in untreated grapes. Pn-3-G had a low average TEAC value (1.73 mM), but its contribution could be explained by the sharp increase in the content of this anthocyanin the first days of storage at 0 °C. In contrast, the Pn-3-G content in grapes at the end of the 3-day CO2 treatment did not change, and both the total anthocyanin content and the calculated TAC value remained significantly constant in comparison to the levels in pre-stored grapes. In addition CO2 treatment had a positive effect on the amount of Pg-3-G concomitant with a pronounced decline in delphinidin 3-glucoside (Dp-3-G) and smaller decreases in petunidin 3-glucoside (Pt-3-G) and malvidin 3-glucoside (Mv-3-G). These effects of high CO2 levels on the profile of individual anthocyanins were progressively lost when grapes were transferred to air. Indeed, after prolonged low-temperature storage when the colour of the berries become dark violet, similar calculated TAC values were quantified in untreated grapes and in those exposed to 20% CO2. These data provide new insights about the effect of low temperature and high CO2 levels on the concentration of the individual anthocyanins identified in cardinal table grapes.  相似文献   

19.
Nutrient element concentrations and grain quality were assessed in spring wheat grown under elevated CO2 concentrations and contrasting levels of tropospheric ozone at different nitrogen supply rates at several European sites. Carbon dioxide enrichment proved to affect nutrient concentrations in a complex manner. In green leaves, all elements (with exception of phosphorus and iron) decreased. In contrast, effects on the element composition of grains were restricted to reductions in nitrogen, calcium, sulphur and iron. Ozone exposure resulted in no significant effects on nutrient element concentrations in different tissues in the overall analysis. The nitrogen demand of green tissues was reduced due to CO2 enrichment as shown by reductions in the critical leaf nitrogen concentration and also enhanced nitrogen use efficiency. Reductions in the content of ribulose-bisphosphate carboxylase/oxygenase and repression of the photorespiratory pathway and reduced nitrogen allocation to enzymes driving the photosynthetic carbon oxidation cycle were chiefly responsible for this effect. Thus, nitrogen acquisition by the crop did not match carbon acquisition under CO2 enrichment. Since crop nitrogen uptake from the soil was already completed at anthesis, nitrogen allocated to the grain after anthesis originated from vegetative pools—causing grain nitrogen concentrations to decrease under CO2 enrichment (on average by 15% when CO2 concentrations increased from 360 to 680 μmol mol−1). Correspondingly, grain quality was reduced by CO2 enrichment. The Zeleny value, Hagberg value and dry/wet gluten content decreased significantly with increasing [CO2]. Despite the beneficial impact of CO2 enrichment on growth and yield of C3 cereal crops, declines in flour quality due to reduced nitrogen content are likely in a future, [CO2]-rich world.  相似文献   

20.
The physiological effects of elevated CO2 and/or O3 on Solanum tuberosum cv. Bintje were examined in Open-Top Chambers during 1998 and 1999 at experimental sites across Europe as part of the EU ‘Changing Climate and Potential Impacts on Potato Yield and Quality’ programme (CHIP). At tuber initiation (≈20 days after emergence, DAE) elevated CO2 (680 μl l−1) induced a 40% increase in the light saturated photosynthetic rate (Asat) of fully expanded leaves in the upper canopy. This was 16% less than expected from short-term exposures of plants grown under ambient CO2 (360 μl l−1) to elevated CO2, indicating that photosynthetic acclimation began at an early stage of crop growth. This effect resulted from a combination of a 12% reduction in stomatal conductance (gs) and a decline in photosynthetic capacity, as indicated by the significant reductions in the maximum carboxylation rate of Rubisco (Vcmax) and light-saturated rate of electron transport (Jmax) under elevated CO2. The seasonal decline in the promotion of photosynthesis by elevated CO2 reflected the concurrent decrease in gs. Vcmax and Jmax were both reduced in plants grown under elevated CO2 until shortly after maximum leaf area (MLA) was attained. Although non-photorespiratory mitochondrial respiration in the light (Rd) increased during the later stages of the season, net photosynthesis was consistently increased by elevated CO2 during the main part of the season. Photosynthetic rate declined more rapidly in response to elevated O3 under ambient CO2, and the detrimental impact of O3 was most obvious after MLA was attained (DAE 40–50). Several exposure indices were compared, with the objective of determining the critical ozone level required to induce physiological effects. The critical O3 exposure above which a 5% reduction in light saturated photosynthetic rate may be expected (expressed in terms of cumulative exposure above 0 nl l−1 O3 between emergence and specific dates during the season (AOT0-cum)) was 11 μl l−1 h; however this value should only be extrapolated beyond the CHIP dataset with caution. The interaction between O3 and stomatal behaviour was more complex, as it was influenced by both long-term and daily exposure levels. Elevated CO2 counteracted the adverse effect of O3 on photosynthesis, perhaps because the observed reduction in stomatal conductance decreased O3 fluxes into the leaves. The results are discussed in the context of nitrogen deficiency, carbohydrate accumulation and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号