首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ma DD  Lee CS  Au FC  Tong SY  Lee ST 《Science (New York, N.Y.)》2003,299(5614):1874-1877
Small-diameter (1 to 7 nanometers) silicon nanowires (SiNWs) were prepared, and their surfaces were removed of oxide and terminated with hydrogen by a hydrofluoric acid dip. Scanning tunneling microscopy (STM) of these SiNWs, performed both in air and in ultrahigh vacuum, revealed atomically resolved images that can be interpreted as hydrogen-terminated Si (111)-(1 x 1) and Si (001)-(1 x 1) surfaces corresponding to SiH3 on Si (111) and SiH2 on Si (001), respectively. These hydrogen-terminated SiNW surfaces seem to be more oxidation-resistant than regular silicon wafer surfaces, because atomically resolved STM images of SiNWs were obtained in air after several days' exposure to the ambient environment. Scanning tunneling spectroscopy measurements were performed on the oxide-removed SiNWs and were used to evaluate the electronic energy gaps. The energy gaps were found to increase with decreasing SiNW diameter from 1.1 electron volts for 7 nanometers to 3.5 electron volts for 1.3 nanometers, in agreement with previous theoretical predictions.  相似文献   

2.
Fluorescence microscopy of nanoscale silver oxide (Ag2O) reveals strong photoactivated emission for excitation wavelengths shorter than 520 nanometers. Although blinking and characteristic emission patterns demonstrate single-nanoparticle observation, large-scale dynamic color changes were also observed, even from the same nanoparticle. Identical behavior was observed in oxidized thin silver films that enable Ag2O particles to grow at high density from silver islands. Data were readily written to these films with blue excitation; stored data could be nondestructively read with the strong red fluorescence resulting from green (wavelengths longer than 520 nanometers) excitation. The individual luminescent species are thought to be silver nanoclusters that are photochemically generated from the oxide.  相似文献   

3.
4.
During Cassini's approach to Saturn, the Cosmic Dust Analyser (CDA) discovered streams of tiny (less than 20 nanometers) high-velocity (approximately 100 kilometers per second) dust particles escaping from the saturnian system. A fraction of these impactors originated from the outskirts of Saturn's dense A ring. The CDA time-of-flight mass spectrometer recorded 584 mass spectra from the stream particles. The particles consist predominantly of oxygen, silicon, and iron, with some evidence of water ice, ammonium, and perhaps carbon. The stream particles primarily consist of silicate materials, and this implies that the particles are impurities from the icy ring material rather than the ice particles themselves.  相似文献   

5.
Rapid formation of sulfuric acid particles at near-atmospheric conditions   总被引:1,自引:0,他引:1  
We investigated the formation of new particles in a laboratory study, starting from H2SO4 produced in situ through the reaction of OH radicals with SO2. Newly formed particles were observed for H2SO4 concentrations above 7 x 10(6) per cubic centimeter. At 293 kelvin, a rough estimate yielded a nucleation rate of 0.3 to 0.4 particles per cubic centimeter per second for approximately 10(7) particles per cubic centimeter of H2SO4 (particle size >/= 3 nanometers). These findings are in agreement with observations from the atmosphere. The results demonstrate that under laboratory conditions similar to the atmosphere, particle formation occurs at atmospheric H2SO4 concentration levels.  相似文献   

6.
Chemical vapor deposition of germanium onto the silicon (001) surface at atmospheric pressure and 600 degrees Celsius has previously been shown to produce distinct families of smaller (up to 6 nanometers high) and larger (all approximately 15 nanometers high) nanocrystals. Under ultrahigh-vacuum conditions, physical vapor deposition at approximately the same substrate temperature and growth rate produced a similar bimodal size distribution. In situ scanning tunneling microscopy revealed that the smaller square-based pyramids transform abruptly during growth to significantly larger multifaceted domes, and that few structures with intermediate size and shape remain. Both nanocrystal shapes have size-dependent energy minima that result from the interplay between strain relaxation at the facets and stress concentration at the edges. A thermodynamic model similar to a phase transition accounts for this abrupt morphology change.  相似文献   

7.
Atmospheric aerosol formation is known to occur almost all over the world, and the importance of these particles to climate and air quality has been recognized. Although almost all of the processes driving aerosol formation take place below a particle diameter of 3 nanometers, observations cover only larger particles. We introduce an instrumental setup to measure atmospheric concentrations of both neutral and charged nanometer-sized clusters. By applying the instruments in the field, we come to three important conclusions: (i) A pool of numerous neutral clusters in the sub-3 nanometer size range is continuously present; (ii) the processes initiating atmospheric aerosol formation start from particle sizes of approximately 1.5 nanometers; and (iii) neutral nucleation dominates over the ion-induced mechanism, at least in boreal forest conditions.  相似文献   

8.
The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe(2+).  相似文献   

9.
Critical-current density (Jc) is a parameter of primary importance for potential applications of high-temperature copper oxide superconductors. It is limited principally by the breakdown of zero-resistive current due to thermally activated flux flow at high temperatures and high magnetic fields. One promising method to overcome this limitation is to introduce efficient pinning centers into crystals that can suppress the flux flow. A marked increase in Jc was observed in Bi2Sr2CaCu2O8+delta (Bi-2212) single crystals doped with a large amount of Pb. By electron microscopy, characteristic microstructures were revealed that probably underlie the observed enhancement in Jc: thin (10 to 50 nanometers), platelike domains having a modulation-free structure appeared with spacings of 50 to 100 nanometers along the b axis.  相似文献   

10.
An unusual distribution of particle sizes has been observed following the formation of molybdenum particles by argon ion sputtering. Many of the molybdenum particles produced by sputtering at the threshold pressure for particle formation in the vapor appear to be single crystalline cubes. There are two prominent peaks in the edge length distribution of the cubes, one centered at 4.8 nanometers with a halfwidth of approximately 1.3 nanometers and the other at 17.5 nanometers. The peak for the larger cubes is approximately square and has a total width of 7.0 nanometers. Evidence is presented that the larger cubes are formed by a 3 by 3 by 3 self-arrangement of the smaller cubes, which contain approximately 7000 atoms. Self-arrangement in inorganic structures is normally only observed when the building blocks are atoms, molecules, or clusters of less than 100 atoms.  相似文献   

11.
The malting barley-producing regions in Montana and Canada are threatened with a new virus-like barley disease that appears to be etiologically novel. Ultrathin sections of diseased tissue contained enveloped, filamentous virus-like particles that measured 64 nanometers by 126 to 4000 nanometers. These lengths are unique for plant viruses. Unexpectedly, the spider mite,Petrobia latens, which has never been reported to be a vector of a pathogen, was found to transmit the causal agent from diseased plants to healthy barley, while noninfective mites failed to do so unless they were allowed prior access to diseased tissue.  相似文献   

12.
An unusual phycoerythrin from a marine cyanobacterium   总被引:1,自引:0,他引:1  
Phycoerythrin conjugates are reagents for cell sorting and analyses in which the argon-ion laser line at 488 nanometers is used for excitation. Many marine Synechococcus strains contain phycoerythrins with absorption maxima at approximately 490 and 550 nanometers; these maxima indicate the presence of phycourobilin and phycoerythrobilin prosthetic groups in the protein. Phycoerythrins of red algae contain both groups, but those of freshwater and soil cyanobacteria contain only phycoerythrobilin. Phycoerythrin purified from Synechococcus WH8103 has molecular properties typical of red algal phycoerythrins, but its phycourobilin content is higher than that of other phycoerythrins. The protein has absorption maxima at 492 and 543 nanometers and corresponding molar extinction coefficients of 2.78 and 1.14 x 10(6); it fluoresces maximally at 565 nanometers with a quantum yield of 0.5. Conjugates of Synechococcus WH8103 phycoerythrin could increase the sensitivity of cell analysis techniques to almost twice that possible with other phycoerythrin conjugates.  相似文献   

13.
Clouds of impurity atoms near line defects are believed to affect the plastic deformation of alloys. Three-dimensional atom probe techniques were used to image these so-called Cottrell atmospheres directly. Ordered iron-aluminum alloys (40 atomic percent aluminum) doped with boron (400 atomic parts per million) were investigated on an atomic scale along the <001> direction. A boron enrichment was observed in the vicinity of an <001> edge dislocation. The enriched region appeared as a three-dimensional pipe 5 nanometers in diameter, tangent to the dislocation line. The dislocation was found to be boron-enriched by a factor of 50 (2 atomic percent) relative to the bulk. The local boron enrichment is accompanied by a strong aluminum depletion of 20 atomic percent.  相似文献   

14.
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene.  相似文献   

15.
Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.  相似文献   

16.
Herpes-type virus particles associated with a fungus   总被引:4,自引:0,他引:4  
A cultutre of the fungus Thraustochytrium, isolated from an estuary, was infected by ani enveloped virus. The nucleocapsid measured 110 nanometers in diameter and containied a core of DNA. The virus replicated in the nucleus. These findings stronigly suggest that the particles are a herpes-type virus.  相似文献   

17.
Freeze-fracture transmission electron micrographs of the smectic A(*) phase confirm the twist grain boundary model of Renn and Lubensky. The fracture surface has an undulating structure with a 0.5-micrometer helical pitch parallel to 4.1-nanometer smectic layers. The layers are disrupted by a lattice of screw dislocations oriented normal to the helical axis. Optical diffraction shows that rotation of smectic blocks occurs in discrete steps of about 17 degrees ; hence, the screw dislocations are 14 to 15 nanometers apart and the grain boundaries are 24 nanometers apart. These observations show that the SmA(*) phase is the liquid-crystal analog of the Abrikosov phase in superconductors.  相似文献   

18.
Eleven complementary DNA (cDNA) clones were generated from messenger RNA isolated from abdominal light organs of the bioluminescent click beetle, Pyrophorus plagiophthalamus. When expressed in Escherichia coli, these clones can elicit bioluminescence that is readily visible. The clones code for luciferases of four types, distinguished by the colors of bioluminescence they catalyze: green (546 nanometers), yellow-green (560 nanometers), yellow (578 nanometers), and orange (593 nanometers). The amino acid sequences of the different luciferases are 95 to 99 percent identical with each other, but are only 48 percent identical with the sequence of firefly luciferase (Photinus pyralis). Because of the different colors, these clones may be useful in experiments in which multiple reporter genes are needed.  相似文献   

19.
Electron microscopy of small perivenous demyelinating lesions in a formalin-fixed brain of a multiple sclerosis subject revealed nuclear and cytoplasmic particles resembling paramyxovirus nucleocapsids. These particles, 18 to 20 nanometers in diameter, were found in mononuclear cells related to the central vein and infiltrating the zone of active demyelination. It is suggested that multiple sclerosis lesions may be initiated by seeding of lymphocytes bearing latent paramyxovirus to white matter of the central nervous system.  相似文献   

20.
Static and dynamic mechanical deflections were electrically induced in cantilevered, multiwalled carbon nanotubes in a transmission electron microscope. The nanotubes were resonantly excited at the fundamental frequency and higher harmonics as revealed by their deflected contours, which correspond closely to those determined for cantilevered elastic beams. The elastic bending modulus as a function of diameter was found to decrease sharply (from about 1 to 0.1 terapascals) with increasing diameter (from 8 to 40 nanometers), which indicates a crossover from a uniform elastic mode to an elastic mode that involves wavelike distortions in the nanotube. The quality factors of the resonances are on the order of 500. The methods developed here have been applied to a nanobalance for nanoscopic particles and also to a Kelvin probe based on nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号