首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 921 毫秒
1.
为减少水葫芦高温堆肥过程中氮素损失,采用静态高温好氧堆肥的方法,分析了水葫芦堆肥过程中氮素转化规律,研究了添加化学保氮剂对减少堆肥中氮素损失的效果。结果表明,水葫芦堆肥过程中总氮及有机氮含量均呈上升趋势,铵态氮与硝态氮含量均呈先上升后下降的趋势,总氮损失率为12.84%;水葫芦堆肥过程中氮素损失途径主要为以NH3、N2O等气态形式逸出,其中,堆肥前10d是NH3挥发的高峰期,堆制后第5~9d的N2O排放速率最大;添加化学保氮剂对水葫芦堆肥过程第4~10d的氨挥发具有显著的抑制作用,NH3挥发量可减少23.82%,另外,化学保氮剂处理降低了堆制后第0~5d的N2O排放速率,增加了第9d以后的N2O排放速率;使用化学保氮剂原位控制水葫芦堆肥过程的氮素损失具有较好的效果,与常规对照相比,化学保氮剂对水葫芦堆体的保氮效率为32.70%。  相似文献   

2.
脲酶抑制剂NBPT对鸡粪好氧堆肥的保氮效果   总被引:2,自引:0,他引:2  
利用堆肥反应器, 以鸡粪和蘑菇渣为原料进行好氧堆肥, 在堆肥中添加不同浓度的脲酶抑制剂NBPT, 研究其对堆肥氮素转化的影响及保氮效果。结果表明: 添加不同浓度的脲酶抑制剂NBPT对堆肥进程中温度无显著影响, 在堆肥的高温阶段可有效控制堆料pH的升高, 在堆肥高温前期的0~10 d可有效降低堆肥的脲酶活性, 在堆肥中后期10~25 d明显提高全氮含量。堆肥25 d后, 添加0.04 mL·kg-1、0.08 mL·kg-1、0.16 mL·kg-1脲酶抑制剂NBPT分别比CK减少氮素损失6.61%、4.89%和13.51%。堆肥过程中, 堆料铵态氮含量呈升-降-升-降的双峰趋势, 且大部分时间CK处理的铵态氮含量高于添加脲酶抑制剂NBPT处理, 且CK处理铵态氮的两次升高速度均高于添加脲酶抑制剂NBPT处理。在堆肥的升温和高温期硝态氮含量不稳定, 但堆肥结束时, 各添加脲酶抑制剂NBPT处理的硝态氮含量显著高于CK处理。本试验结果表明, 在堆肥过程中添加脲酶抑制剂NBPT可延缓鸡粪中的尿素态氮向铵态氮的转化, 增加堆肥成品中的硝态氮含量。在畜禽粪好氧堆肥中加入脲酶抑制NBPT可起到一定的保氮作用。  相似文献   

3.
不同碳氮比下牛粪高温堆肥腐熟进程研究   总被引:9,自引:0,他引:9  
为有效处理奶牛场养殖粪污,建立以之为原料的牛粪有机肥高效堆肥工艺,本文通过工厂堆肥试验,以牛粪为主料,以蘑菇渣、稻壳为辅料,设置C/N=15、C/N=25、C/N=35三个处理,研究不同碳氮比原料高温堆肥过程中堆体温度、pH值、EC、C/N和养分等理化指标的变化。结果表明,C/N=25堆体达到的温度最高,达到最高温度所需时间最短且保持65℃以上时间最长。堆肥过程中各处理pH值变化基本一致,均是先升高后降低再升高最后趋于稳定,各处理EC都是先波动上升后在波动中逐渐下降并趋于稳定。各处理堆体在堆肥过程中,C/N也都呈现逐步减小的趋势,并最终保持稳定。至堆肥结束时,各处理C/N分别11.7、15.0和21.3。各处理铵态氮含量逐渐下降,硝态氮含量逐渐增加,至堆肥结束时,铵态氮的损失量分别为80.7%、36.6%和46.7%,硝态氮含量分别增加到0.61 g kg~(-1)、0.50 g kg~(-1)、0.41 g kg~(-1)。堆肥结束时,各处理胡敏酸类、富里酸类等物质成为DOM的主体部分,N1、N3处理发芽指数大于50%但小于85%,N2处理发芽指数大于85%。各处理堆肥全磷、全钾含量在堆肥结束时比堆肥初始均有所增加。因此,牛粪高温堆肥能有效处理奶牛场养殖废弃物,且C/N=25时堆肥效果最佳。  相似文献   

4.
为研究不同比例的过磷酸钙添加剂对病死猪堆肥过程中氮素转化和保氮效果的影响,本试验将病死猪尸体、水稻秸秆按一定比例混合后,设置未添加(CK)、添加5%(T1)和10%(T2)过磷酸钙3个处理,进行了为期30 d的堆肥发酵试验。结果表明,各堆体大于50℃的高温均能保持10 d以上,满足堆肥无害化的要求;添加初始物料鲜重的5%和10%的过磷酸钙对降低堆肥的p H值,增加堆肥的铵态氮、硝态氮、全氮含量均具有明显的效果。堆肥结束时,T1、T2处理的堆肥产品的总氮含量分别比对照高10.7%、10.1%,保氮效果显著。添加5%过磷酸钙处理的堆肥产品在第14 d时种子发芽指数达101.4%,高于对照,过磷酸钙促进了病死猪堆肥的快速腐熟。在病死猪堆肥中添加适量的过磷酸钙,可以降低堆体氮的损失,在堆肥工程中具有较广阔的应用前景。  相似文献   

5.
为探寻硝态氮和铵态氮及其配施对专用型小麦蛋白质形成的影响规律,以郑麦366、矮抗58和郑麦004为供试材料,在大田试验条件下,研究了硝态氮和铵态氮及其配施对专用型小麦籽粒蛋白质组分和GMP含量的影响。结果表明,籽粒蛋白及其组分含量、GMP含量和蛋白质产量均表现为郑麦366矮抗58郑麦004,品种间差异显著。N3处理(硝态氮∶铵态氮=50∶50)下3品种在灌浆期籽粒蛋白质含量均显著高于其它处理,成熟期N4(硝态氮∶铵态氮=25∶75)或N5(硝态氮∶铵态氮=0∶100)蛋白质含量最低。籽粒蛋白质组分含量的变化因氮素配施和品种不同而异,N3处理能促进3品种小麦清蛋白、醇溶蛋白和谷蛋白含量的提高,硝态氮处理次之,铵态氮处理最低。成熟期3品种籽粒谷蛋白大聚合体含量均以N3处理最高,N4或N5最低。为强化专用小麦的优质专用特性,强筋小麦和中筋小麦以硝态氮:铵态氮=75∶25或硝态氮∶铵态氮=50∶50为宜,弱筋小麦以硝态氮∶铵态氮=25∶75或硝态氮∶铵态氮=0∶100为宜。  相似文献   

6.
为探明甘薯叶光合特性与块根主要性状对不同氮素形态供应的响应特点,以徐薯18为研究对象,在盆栽条件下,设置铵态氮、 硝态氮和酰胺态氮3种氮素处理,研究不同形态氮素供应对甘薯叶光合特性、 块根产量与品质性状影响的差异。结果表明,在移栽后30 d 和50 d 时,酰胺态氮处理叶片叶绿素含量(CCI)为最高,70 d时,铵态氮处理的CCI最高;铵态氮处理显著提高叶片的光合速率与有效辐射(PAR);氮素处理明显提高甘薯块根产量,其中,铵态氮处理较硝态氮和酰胺态氮处理块根产量分别增加10.6%与17.2%,增产显著(P0.05);铵态氮处理提高甘薯块根的淀粉率和蛋白质含量,而酰胺态氮处理增加可溶性糖和还原糖含量;铵态氮处理有利于增加甘薯淀粉最高粘度值(PKV)、 崩解值(BDV)和回复值(CSV),而硝态氮处理促进最低粘度值(HPV)和最终粘度值(CPV)的上升。  相似文献   

7.
不同氮源与镁配施对甘蓝产量、品质和养分吸收的影响   总被引:5,自引:0,他引:5  
采用田间试验和室内分析相结合的方法,研究不同氮源与镁配施对甘蓝(Brassica oleracea L.)产量、品质和养分吸收的影响。试验在等氮条件下设4个氮源,分别为不施氮肥、100%铵态氮、50%铵态氮+50%硝态氮、100%硝态氮;设4个硫酸镁施用量,分别为0、75 kg·hm-2、150 kg·hm-2、300 kg·hm-2。结果表明,100%硝态氮与中量(150 kg·hm-2)镁配施处理的甘蓝产量比不施肥处理、100%铵态氮与中量镁配施处理和50%铵态氮+50%硝态氮与中量镁配施处理分别增产56.9%、14.7%和5.2%。施用100%硝态氮处理的甘蓝产量略高于50%硝态氮+50%铵态氮处理,比施用100%铵态氮处理和不施肥处理分别增产13.0%和44.2%。施用低量(75kg·hm-2)镁肥的甘蓝产量比不施镁肥增产9.3%,而增加镁肥用量对甘蓝产量没有显著影响。施用100%硝态氮、50%铵态氮+50%硝态氮和100%铵态氮处理的甘蓝硝酸盐含量比不施氮肥处理分别增加84.4%、63.4%和6.9%。100%硝态氮与高量(300 kg·hm-2)镁肥配合施用的甘蓝硝酸盐含量比不施肥处理、100%铵态氮与高量镁肥配施处理和50%铵态氮+50%硝态氮与高镁肥配施处理分别增加101.4%、82.3%和14.1%。施用高量镁肥处理甘蓝硝酸盐含量比不施肥处理增加11.2%。随着硝态氮比例增加,甘蓝维生素C、还原糖、总氨基酸含量相应增加,镁肥施用量对甘蓝维生素C、还原糖、总氨基酸含量影响明显。随着硝态氮比例增加,甘蓝对磷、钾和钙吸收量显著增加;随着镁施用量增加,磷、钾和镁吸收量相应增加。不同氮源与镁肥相互作用对甘蓝维生素C含量,氮、磷、钾、钙和镁养分吸收均有明显的影响。本研究表明,50%硝态氮和50%铵态氮混合与适量镁肥配合施用,既能增加甘蓝产量,提高维生素C、还原糖和总氨基酸含量,又能减少硝酸盐含量,提高甘蓝品质。  相似文献   

8.
用鸡粪与小麦秸秆为堆肥原料进行高温好氧堆肥试验,研究添加鸡粪对小麦秸秆高温好氧堆肥过程中堆体温度、pH值、碳氮比和养分等理化指标的影响,寻求鸡粪与小麦秸秆高温堆肥的最佳配比,为农作物秸秆快速资源化利用提供科学依据和技术指导。结果表明,鸡粪与小麦秸秆在C/N=25时堆体达到的温度最高,为62℃,达到最高温度所需的时间最短,为2 d。堆肥过程中各处理pH值变化基本一致,都是先上升后下降的过程。堆肥结束时A2处理C/N=14.4,NH4+-N含量比最高时降低了76.2%,腐殖质比初始增加了50.2%,胡敏酸相对于最低点升高了160%,富里酸与堆肥前相比降低57.1%。堆肥结束时,全氮含量除A1处理有所降低外,其余处理均有所增加。各处理堆肥全磷、全钾、速效磷和速效钾含量在堆肥结束时比堆肥初始均有所增加。综合判断,鸡粪与小麦秸秆C/N=25进行堆肥较为适宜。  相似文献   

9.
为了探究生物强化技术在污泥堆肥处理中的优势,以接种量分别为0.2%和0.4%的复合生物菌剂研究对污泥堆肥的作用效果,分析了温度、有机质含量、铵态氮、硝态氮、重金属含量、蛔虫卵死亡率和种子发芽指数(GI)的动态变化,结果表明:接种复合生物菌剂处理较对照组(CK)对堆肥指标有一定的影响,能够提高堆体升温速率及延长高温持续时间、加速有机质的降解、促进铵态氮与硝态氮的转化、降低重金属含量、提高蛔虫卵死亡率、提高种子发芽指数,其中复合生物菌剂接种量为0.4%时作用效果较为明显,有利于污泥堆肥。  相似文献   

10.
不同覆盖措施对鸡粪堆肥氨挥发的影响   总被引:8,自引:1,他引:7  
采用箱式抽气法对不同鸡粪堆肥体系中氨气挥发释放速率及其影响因素进行了研究.结果表明,鸡粪堆肥的氨挥发强度在堆置后20d内最大.氨挥发速率最高达到0.28 g/(kg·h),覆盖粘土能有效抑制堆体的氨挥发.覆盖处理中铵态氮有累积的现象,铵态氮浓度最高达到6.68 g/kg,导致其pH值和电导率显著高于不覆盖处理.从全氮含量的变化来看,覆盖秸秆和篷布处理的氮素损失率分别为21-79%和19.78%,是对照处理的73.71%和66.91%,表现出良好的保氮效果.  相似文献   

11.
An incubation experiment was carried out to test the effects of biogenic municipal waste (compost I) and shrub/grass (compost II) composts in comparison to peat on respiration and microbial biomass in soil. The amounts of these three substrates added were linearly increased in the range of field application rates (0.5%, 1.0%, 1.5%, 2.0%). The sum of CO2 evolved during the incubation was markedly raised by the three substrates and increased with the rate of substrate concentration. However, the percentage of substrate mineralized to CO2 decreased with the addition rate from 103 to 56% for compost I, from 81 to 56% for compost II, and from 21 to 8% for peat. During the first 25 days of incubation, compost I enlarged the biomass C content, which remained constant until the end. In contrast, compost II did not raise biomass C initially. But at the end of the incubation, the biomass C content of all 4 compost II treatments almost reached the level of the respective compost I treatment. The increase was significantly larger the more of the two composts was added. In contrast to the two composts, the addition of peat did not have any significant effect on microbial biomass C. The average qCO2 values at day 25 declined in the order compost I > compost II > peat, at day 92 the order was changed to compost II > peat > compost 1. This change in the order was caused by a significant decrease in qCO2 values of the compost I treatments, a significant increase in qCO2 values of the peat treatments and constant qCO2 values in the compost II treatments.  相似文献   

12.
Crop residue and fertilizer management practices alter some soil properties, but the magnitude of change depends on soil type and climatic conditions. Field experiments with mainly barley (and canola, wheat, triticale, or pea in a few years) under conventional tillage were conducted from 1983 to 2009 at Breton (Gray Luvisol (Typic Haplocryalf) loam) and Ellerslie (Black Chernozem (Albic Argicryoll) clay loam), Alberta, Canada, to determine the effects of straw management (straw removed (S Rem) and straw retained (S Ret)) and N fertilizer rate (0, 25, 50, and 75 kg N ha−1) on total organic C (TOC) and N (TON), light fraction organic C (LFOC), and N (LFON) in the 0–7.5 and 7.5–15 cm, pH in the 0–7.5, 7.5–15, and 15–20 cm and extractable P, ammonium-N, and nitrate-N in the 0–15, 15–30, 30–60, and 60–90 cm soil layers. The S Ret and N fertilizer treatments usually had higher mass of TOC, TON, LFOC, and LFON in soil at Breton, but only of LFOC and LFON in soil at Ellerslie compared with the corresponding S Rem and zero-N control treatments. The responses of soil organic C and N to management practices were more pronounced for N fertilization than straw management. There were significant correlations among most soil organic C or N fractions, especially at Breton. Linear regressions between crop residue C or N input, or rate of fertilizer N applied and soil organic C or N were significant in most cases at Breton, but only for LFOC and LFON at Ellerslie. At Breton, compared with zero-N rate, the C sequestration efficiency of additional crop residue C input was 5.8%, 20.1%, and 20.4% in S Ret and 17.2%, 28.0%, and 30.1% in S Rem treatments at the 25, 50, and 75 kg N ha−1 rates, respectively. The effects of crop residue management and N fertilization on chemical properties were generally similar for both contrasting soil types. There was no effect of crop residue management on soil pH, extractable P and residual nitrate-N. Extractable P and pH in the top 0–15 cm soil decreased significantly with N application in both soil types. Residual nitrate-N (though quite low in Breton soil) increased with application of N and also indicated some downward movement in the soil profile up to 90 cm depth in Ellerslie soil. There was generally no effect of any treatment on ammonium-N in soil. In conclusion, straw retention and N application improved organic C and N in soil, and generally differences were more pronounced for light fraction than total organic C and N, and between the most extreme treatments (S Rem0 vs. S Ret75). Application of N fertilizer reduced extractable P and pH in the surface soil, and showed accumulation and downward leaching of nitrate-N in the soil profile.  相似文献   

13.
Field production of ornamental shrubs often results in significant topsoil removal and degradation of surface soil physical properties. Building soil organic matter through compost amendments is one way to ameliorate effects from topsoil removal in woody ornamentals production. We amended field soils with three composts to evaluate their effects on soil physical properties and shrub biomass production. Specifically, we applied either duck manure-sawdust (DM), potato cull-sawdust-dairy manure (PC) or paper mill sludge-bark (PMB) composts to a Plano silt loam soil using two application methods: 2.5 cm of compost incorporated into the top 15 cm of soil (incorporated-only) or 2.5 cm of compost incorporated plus 2.5 cm of compost applied over the soil surface (mulched). We grew three shrub species from liners: Spirea japonicum ‘Gumball’, Juniper chinensis ‘Pfitzeriana’, and Berberis thunbergia ‘Atropurpurea’. Shrub species and soil amendment treatments were established in triplicate in a randomized split plot design. Total soil carbon (TC), bulk density (ρb), aggregate stability, soil moisture retention capacity (MRC), volumetric moisture content (θv), and saturated hydraulic conductivity (Ksat) were measured over three years (1998 to 2000). We measured above and below ground shrub dry matter production at the end of the first (1998) and second (1999) growing seasons. Mulched treatments resulted in 15%-21% higher TC than the incorporated-only and no-amendment control treatments. Bulk density decreased with increasing TC contents. Greater aggregate stability and the formation of larger aggregates were related to increased TC. Field moisture retention capacity tended to be higher in the incorporated treatments compared to the mulched and nonamended control treatments. Compost amended treatments increased saturated hydraulic conductivity (Ksat) sevenfold over the nonamended control. There were no compost effects on shrub biomass until the second year of growth. Barberry was the only species to respond significantly and positively to compost application. Specifically, mulched DM compost produced 39-42% greater total Barberry biomass than the other compost treatments and the nonamended control. Our findings showed that compost effects on soil physical properties differed among composts and their subsequent effects on shrub growth were species specific.  相似文献   

14.
We studied the effects of applying different composts (urban organic waste, green waste, manure and sewage sludge), mineral fertilizer and compost plus mineral fertilizer on chemical, biological and soil microbiological parameters over a 12‐year period. The organic C and total N levels in soils were increased by all compost and compost + N treatments. Microbial biomass C was significantly (P ≤ 0.05) increased for some compost treatments. In addition, basal respiration and the metabolic quotient (qCO2) were significantly higher in all soils that had received sewage sludge compost. The Shannon diversity index (H), based on community level physiological profiling, showed a higher consumption of carbon sources in soils treated with compost and compost + N compared with the control. The utilization of different guilds of carbon sources varied amongst the treatments (compost, compost + N or mineral fertilizer). Cluster analysis of polymerase chain reaction‐denaturing gradient gel electrophoresis patterns showed two major clusters, the first containing the mineral fertilization and compost treatments, and the second, the composts + N treatments. No differences in bacterial community structure could be determined between the different types of compost. However, the results suggest that long‐term compost treatments do have effects on the soil biota. The results indicate that the effects on the qCO2 may be due to shifts in community composition. In this study, it was not possible to distinguish with certainty between the effects of different composts except for compost derived from sewage sludge.  相似文献   

15.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

16.
Measuring the phosphorus (P) solubility in animal manure compost (AMC) is important to estimate both the risk of P loss from agricultural land and the P availability for crops in agriculture that use AMC as fertilizer. Water-extractable phosphorus (WEP) has most often been used to estimate P solubility in AMC. A single water extraction with a high ratio of compost to water is usually used to determine WEP, but in many cases, this may not evaluate the maximum WEP. In this study, we extracted the P included in AMC by using a continuous extraction method with a large amount of water, and tested this approach for 16 AMCs: four cattle manure composts, five swine manure composts, five layer (chicken) manure composts, and two broiler (chicken) litter composts. The P dissolution patterns were fitted to kinetic models, and the maximum WEP (WEPmax) was determined by the coefficient of the non-linear regression equation. The WEPmax values corresponded to the sum of H2O- and sodium bicarbonate (NaHCO3)-extractable P measured using the modified Hedley sequential extraction method. The result also suggests that the maximum amount of WEP from AMC can be estimated rapidly using a sequential extraction (the Hedley method) that has been widely used to characterize P in manure or AMC. The maximum water-extractable magnesium (Mg) (WEMgmax) was significantly positively correlated with WEPmax (r = 0.854, P < 0.01). This suggests that WEPmax in the AMCs is affected by water-soluble magnesium compounds.  相似文献   

17.
Municipal solid waste (MSW) compost from aerobic or anaerobic bioprocesses was evaluated as components of substrates for potted plant production. Experiments were conducted with potted media consisting of MSW compost mixed with other conventional substrates (peat or composted pine bark). Spring barley (Hordeum vulgare L.) and cress (Lepidium sativum L.) were used to evaluate the biological quality of composts. Higher germination rates of spring barley were obtained when MSW compost from aerobic treatment was employed as compared with MSW compost from the anaerobic bioprocess. Improved biological indices were observed when MSW composts were mixed with composted pine bark rather than with peat. Mixtures of 75% aerobic MSW compost and 25% composted pine bark were more favorable for cress growth than peat as sole substrate.  相似文献   

18.
Abstract

A pot experiment was conducted to assess the effect of different kinds of composts on the growth and nitrogen (N) composition of Chinese mustard in acid red soil. There were six treatments including a lime‐chemical fertilizer treatment and a control plot of conventional chemical fertilizer. The plants were harvested 37 days after transplanting and the growth and N composition of these plants were measured. The soil was also sampled, and selected chemical properties were determined after harvesting the plants. The results show that different composts affected the growth and soil chemical properties significantly. The pH, nitrate nitrogen (NO3‐N), ammonium N (NH4‐N), electrical conductivity (EC), and 1 N ammonium acetate exchangeable potassium (K), calcium (Ca), magnesium (Mg), aluminum (Al), manganese (Mn), and iron (Fe) were all significantly affected by the compost treatment. The growth of plants in the control treatment was significantly lower than that of the compost‐treated and lime‐treated plants, suggesting that the acid Oxisol is unfavorable for the growth of Chinese mustard. Some composts could increase the growth of Chinese mustard. The lime‐treated plants had higher concentrations of chlorophyll a and chlorophyll b than those of the compost‐treated plants. There were no significant differences between treatments in the concentrations of chlorophyll a and chlorophyll b, however, there was a close correlation between the total chlorophyll concentrations and the shoot yield of the plants. The NO3‐N, soluble reduced N, and insoluble N concentrations in leaf blades and petioles of Chinese mustard varied significantly according to the compost applied. The hog dung compost B could adequately supply nutrients especially N for plant growth and caused little NO3‐N accumulation in plant tissues.  相似文献   

19.
Abstract

This study evaluated the effects of four different kinds of compost: pea–rice hull compost (PRC), cattle dung–tea compost (CTC), hog dung–rice hull compost (HDR), and hog dung–sawdust compost (HDS). These types of compost differ in nitrogen composition and in the dry matter yield and nutrient accumulation [nitrogen (N), phosphorus (P), potassium (K)], of rice plants. The rice (Oryza sativa L.) plants were planted in an Oxisol soil. Plants were cultivated in pots, which contained 3 kg of soil, mixed with the four different composts (PRC, 404 g; CTC, 395 g; HDR, and HDS, 450 g) and chemical fertilizer (CHEM) (N:P2O5:K2O=120:96:72) The residual effect was studied after the crop was harvested. All treatments were replicated four times, with a randomized complete block design. The nutrient concentrations in the root, leaf sheath, leaf blade, stalk, and grain were analyzed at different growth stages. After the first crop, the dry matter yield and the amount of N, P, and K absorbed from the CTC or HDS treatments were higher than those of the other treatments, at the most active tillering stage. The growth and nutrient accumulation of rice plants given the PRC treatment were higher than those given the CHEM treatment at the heading stage or the HDR treatment at the maturity stage. In the second crop, the dry matter yield from the PRC, CTC, and HDR treatments was higher than from the other treatments. The nutrient accumulation of the rice plants was positively correlated with the dry matter yield. The residual effect of the HDS compost was the least among all four composts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号