首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of yellow-seeded Brassica napus through interspecific crosses   总被引:12,自引:0,他引:12  
M. H. Rahman   《Plant Breeding》2001,120(6):463-472
Yellow‐seeded Brassica napus was developed from interspecific crosses between yellow‐seeded Brassica rapa var.‘yellow sarson’ (AA), black‐seeded Brassica alboglabra (CC), yellow‐seeded Brassica carinata (Bbcc) and black‐seeded B. napus (AACC). Three different interspecific crossing approaches were undertaken. Approaches 1 and 2 were designed directly to develop yellow‐seeded B. napus while approach 3 was designed to produce a yellow‐seeded CC genome species. Approaches 1 and 2 differed in the steps taken after trigenomic interspecific hybrids (ABC) were generated from B. carinata×B. rapa crosses. The aim of approach 1 was to transfer the yellow seed colour genes from the A to the C genome as an intermediate step in developing yellow‐seeded B. napus. For this purpose, the ABC hybrids were crossed with black‐seeded B. napus and the three‐way interspecific hybrids were self‐pollinated for a number of generations. The F7 generation resulted in the yellowish‐brown‐seeded B. napus line, No. 06. Crossing this line with the B. napus line No. 01, resynthesized from a black‐seeded B. alboglabra x B. rapa var.‘yellow sarson’ cross (containing the yellow seed colour genes in its AA genome), yielded yellow‐seeded B. napus. This result indicated that the yellow seed colour genes were transferred from the A to the C genome in the yellowish‐brown seed colour line No. 06. In approach 2, trigenomic diploids (AABBCC) were generated from the above‐mentioned trigenomic haploids (ABC). The seed colour of the trigenomic diploid was brown, in contrast to the yellow seed colour of the parental species. Trigenomic diploids were crossed with the resynthesized B. napus line No. 01 to eliminate the B genome chromosomes, and to develop yellow‐seeded B. napus with the AA genome of ‘yellow sarson’ and the CC genome of B. carinata with yellow seed colour genes. This interspecific cross failed to generate any yellow‐seeded B. napus. Approach 3 was to develop yellow‐seeded CC genome species from B. alboglabra×B. carinata crosses. It was possible to obtain a yellowish‐brown seeded B. alboglabra, but crossing this B. alboglabra with B. rapa var.‘yellow sarson’ failed to produce yellow seed in the resynthesized B. napus. The results of approaches 2 and 3 demonstrated that yellow‐seeded B. napus cannot be developed by combining the yellow seed colour genes of the CC genome of yellow‐seeded B. carinata and the AA genome of ‘yellow sarson’.  相似文献   

2.
The oilseed Brassica rapa flowers and matures earlier than B. oleracea, as well as their amphidiploid B. napus. Therefore, earliness of B. rapa has been investigated as a source of variation for earliness in B. napus breeding programs. Variation for days to flower exists in B. oleracea; however, its earliest flowering variant B. alboglabra flowers 2–3 weeks later than B. napus. We hypothesized that the C genome of B. alboglabra carries alleles for early flowering which are different from the C-genome alleles of B. napus; and these alleles can be used for the improvement of B. napus. To test this, we examined flowering time in pedigree and DH populations from two B. napus × B. alboglabra crosses. A B. napus line with about a week earlier flowering than the B. napus parent was achieved through reconstitution of its C genome following pedigree selection. Introgression of the B. alboglabra allele in the early flowering pedigree lines is also evident from the presence of B. alboglabra-specific SSR alleles in this line. However, application of doubled haploidy failed to generate any line that flowered earlier than the B. napus parent, which is probably due to the difficulty of obtaining large numbers of euploid B. napus DH lines from this interspecific cross. Thus, we demonstrate that a trait of the diploid species, which apparently looks undesirable, might in fact be highly valuable for the improvement of amphidiploids; and knowledge from this research can also be applied for other traits.  相似文献   

3.
B. Zhang    C. M. Lu    F. Kakihara  M. Kato 《Plant Breeding》2002,121(4):297-300
The effect of genome composition and cytoplasm on petal colour was studied in Brassica. Three accessions of yellow‐petalled B. rapa (2n= 20, AA) were crossed with a white‐petalled B. oleracea var. alboglabra (2n= 18, CC) and with three cream‐yellow‐petalled B. oleracea var. gongylodes (2n= 18, CC) to produce resynthesized B. napus (2n= 38, AACC or CCAA) and sesquidiploids (2n= 29, AAC or CAA). Petal colour was measured with a Hunter automatic colour difference meter. The results revealed that petal colour in Brassica is controlled by nuclear genes and by cytoplasmic factors. Additive and epistatic gene effects were involved in the action of nuclear genes. When crosses were made between yellow‐petalled B. rapa and white‐petalled B. oleracea var. alboglabra, significant additive, epistatic and cytoplasmic effects were found. White petal colour was partially epistatic over yellow petal colour. When crosses were made between yellow‐petalled B. rapa and cream‐yellow‐petalled B. oleracea var. gongylodes, only epistatic effects were detected. Yellow petal colour was epistatic over cream‐yellow.  相似文献   

4.
W. K. Heneen  K. Brismar   《Plant Breeding》2001,120(4):325-329
Most oilseed rape, Brassica napus, cultivars are black‐seeded. The progenitor species, Brassica rapa, has either yellow or black seeds, while known cultivars of the other progenitor species Brassica oleracea/alboglabra have black seeds. To determine which chromosomes of B. alboglabra are carriers of seed colour genes, B. rapaalboglabra monosomic addition lines were produced from a B. napus resynthesized from yellow‐seeded B. rapa and brown/black‐seeded B. alboglabra. Eight out of nine possible lines have been developed and transmission frequencies of the alien chromosomes were estimated. Three B. alboglabra chromosomes in three of these lines influenced seed colour. B. rapa plants carrying alien chromosome 1 exhibited a maternal control of seed colour and produced only brown seeds, which gave rise to plants with either yellow or brown seeds. However, B. rapa plants carrying alien chromosome 4 or another as yet unidentified alien chromosome exhibited an embryonal control of seed colour and produced a mixture of yellow and brown seeds. The yellow seeds gave rise to yellow‐seeded plants, while the brown seeds gave rise to plants that yielded a mixture of yellow and brown seeds, depending on the absence or presence, respectively, of the B. alboglabra chromosome. Consequently, both maternal and embryonal control of seed colour are expected to contribute to the black‐seeded phenotype of oilseed rape.  相似文献   

5.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

6.
Erucic acid heredity in Brassica juncea - some additional information   总被引:1,自引:0,他引:1  
Genetic studies were undertaken to reassess erucic acid heredity in Brassica juncea. Analysis of segregation in F2 and BC1 generations from two zero × high erucic acid crosses indicated that higher erucic acid in B. juncea was controlled by two dominant genes with additive effects, whereas segregation in a cross involving ‘CCWF 16′, a genotype having intermediate erucic acid (25.6%), and a zero erucic acid strain, indicated monogenic dominant control for intermediate erucic acid content. The B. juncea strain ‘CCWF 16’ was developed by hybridizing high‐erucic acid B. juncea cv.‘WF‐1’ with a ‘0’ erucic B. rapa cv.‘Candle’ followed by backcrossing with ‘WF‐1’ and half‐seed selection for low erucic acid in each backcross generation. This strategy resulted in substitution of the high erucic acid allele present in the A genome of B. juncea (AABB) by the zero erucic acid allele associated with ‘A’ genome of ‘Candle’. The intermediate erucic acid content in ‘CCWF 16’ was thus attributed to a gene present in the ‘BB’ genome. Experimental data clearly suggested that the gene (E2) associated with the A genome had a greater contribution to the total erucic acid content in B. juncea than the gene (E1) located on the B genome. This provided experimental evidence for a previous suggestion of unequal contributions of two dominant genes (E1= 12%, E2= 20%) to high erucic acid content in conventional digenomic Brassica species.  相似文献   

7.
X. P. Liu    J. X. Tu    B. Y. Chen  T. D. Fu 《Plant Breeding》2005,124(1):9-12
A yellow‐seeded doubled haploid (DH) line no. 2127‐17, derived from a resynthesized Brassica napus L., was crossed with two black‐seeded Brassica cultivars ‘Quantum’ and ‘Sprint’ of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ‘Quantum’× no. 2127‐17. Seed colour analysis was performed with the colorimeter CR‐300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self‐pollinated seeds of the respective black‐ and yellow‐seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow‐brown seeds that were darker in colour than the seeds of no. 2127‐17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black‐ and yellow‐seeded plants fit well with a 1 : 1 ratio. In the cross with ‘Quantum’, the frequencies of yellow‐seeded and black‐seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow‐seeded and black‐seeded plants in the F2 progeny of the cross with ‘Sprint’. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow‐seeded gene (Y) was identified in no. 2127‐17 that had epistatic effects on the two independent dominant black‐seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments.  相似文献   

8.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

9.
Shattering of siliquae causes significant seed loss in canola (Brassica napus) production worldwide. There is little genetic variation for resistance to shatter in canola and, hence, the trait has been studied in B. rapa. Previous studies have shown two randomly segregating recessive genes to be responsible for shatter resistance. Three random amplified polymorphic DNA markers were identified as being linked to shatter resistance using bulked segregant analysis in a F3B. rapa population. The population was derived from a cross between a shatter‐susceptible Canadian cultivar and a shatter‐resistant Indian line. Of the three markers, RAC‐3900 and RX‐71000 were linked to recessive sh1 and sh2 alleles, and SAC‐201300 was linked to both dominant Sh1 and Sh2 alleles. The common marker for the dominant wild‐type allele for the two loci was explained to have resulted from duplication of an original locus and the associated markers through chromosome duplication and rearrangements in the process of evolution of the modern B. rapa from its progenitor that had a lower number of chromosomes. Segregation data from double heterozygous F3 families, although limited, indicated the markers were not linked to each other and provided further evidence for the duplication hypothesis.  相似文献   

10.
Use of self‐incompatibility (SI) as a pollination control method for Brassica napus hybrid production requires the development of a sufficient number of S‐alleles that are expressed consistently in a range of B. napus lines. Self‐incompatibility (SI) alleles have been transferred from Brassica oleracea and Brassica rapa into B. napus var. oleifera. An understanding of expression of these alleles in B. napus is essential for their commercial use. Four SI B. napus doubled haploids containing the B. oleracea S‐alleles S2, S5, S13 and S24 were crossed to three B. napus cultivars to measure the B. napus genetic background effect on S‐allele expression. A line x tester analysis indicated that the largest source of variation in the expression rate of SI was the S‐allele itself. The B. napus genotypes tested contained modifier gene(s), some that enhanced SI expression and others that inhibited SI expression. The B. napus Canadian cultivar ‘Westar’ generally had a negative effect on SI expression while the European cultivar ‘Topas’ had a positive effect on the B. oleracea S‐allele expression. The B. oleracea S‐allele S24 was very similar in expression to the B. rapa allele W1. The application of these results for the use of B. oleracea S‐alleles for hybrid production in B. napus is discussed.  相似文献   

11.
The synthetic Brassica napus L. line No7076 was obtained from a cross between yellow-flowered and zero-erucic turnip rape (B. campestris) Sv85-38301 and white-flowered and high-erucic (41.4%) B. oleracea ssp. alboglabra No6510. This synthetic B. napus is pale-flowered and has an average erucic acid content of 25.8 %. It was crossed with the yellow-flowered and zero-erucic B. napus line SvS4-2S053 and segregation of the erucic acid content and flower colour was studied in F1 and F2 generations. The high erucic acid content was controlled by a single gene in the C-genome and was additively inherited. Strong evidence was obtained in support of independent segregation of the erucic-arid content and the flower colour characters controlled by the C-genome of B. napus.  相似文献   

12.
Crosses were made to produce interspecific hybrids between Brassica napus × B. juncea and their reciprocals with the aid of embryo culture techniques. A better response of hybrid embryo culture was obtained from two cross combinations of B. juncea × B. napus (Ames 24521 × Huyou 15 and Vittasso × Zheshuang 72) than from their reciprocals. Embryo culture was more effective in terms of plant regeneration when embryos were cultured in vitro at 15 days after pollination (DAP), while more calli were initiated when embryos were excised and cultured at 10 DAP. A better response was observed on the MS medium with 0.3 mg l?1 naphthylacetic acid (NAA) + 1.5 mg l?1 6‐benzylaminopurine (BAP) and with 0.3 mg l?1 NAA + 2.0 mg l?1 BAP. Callus formation and plant regeneration on these two media reached 55.43 and 26.65 %, and 66.98 and 24.61 %, respectively.  相似文献   

13.
C. M. Lu    B. Zhang    F. Kakihara  M. Kato 《Plant Breeding》2001,120(5):405-410
Fifteen lines of Brassica napus were resynthesized via ovule culture through 24 interspecific crosses between four Brassica oleracea and three Brassica campestris accessions. The degree of success in the interspecific crosses was significantly influenced by maternal genotypes. The interspecific hybrid production rate (HPR) varied with combinations from 0 to 76.9%, with a mean HPR of 24.7% for the crosses with B. campestris as the female parent and 6.9% for the crosses with B. oleracea as female parent. Twenty‐four crosses between seven natural and six resynthesized B. napus gave, on average, 10.3 seeds per pod, and ranged from 1.2 to 22.0 seeds per pod, depending on genotypes of both parents. Resynthesized lines of B. napus showed high erucic acid content and variable content of linolenic acid, ranging from 3.4% to 9.9%. The fatty acid composition in hybrid seeds between natural and resynthesized B. napus was dominated by the embryo genotypes; an additive mode was shown for erucic acid and positive over‐dominance for linolenic acid content.  相似文献   

14.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

15.
Interspecific hybrids were produced from reciprocal crosses between Brassica napus (2n = 38, AACC) and B. oleracea var. alboglabra (2n = 18, CC) to introgress the zero-erucic acid alleles from B. napus into B. oleracea. The ovule culture embryo rescue technique was applied for production of F1 plants. The effects of silique age, as measured by days after pollination (DAP), and growth condition (temperature) on the efficiency of this technique was investigated. The greatest numbers of hybrids per pollination were produced under 20°/15°C (day/night) at 16 DAP for B. oleracea (♀) × B. napus crosses, while under 15°/10°C at 14 DAP for B. napus (♀) × B. oleracea crosses. Application of the ovule culture technique also increased the efficiency of BC1 (F1 × B. oleracea) hybrid production by 10-fold over in vivo seed set. The segregation of erucic acid alleles in the self-pollinated backcross generation, i.e. in BC1S1 seeds, revealed that the gametes of the F1 and BC1 plants carrying a greater number of A-genome chromosomes were more viable. This resulted in a significantly greater number of intermediate and a smaller number of high-erucic acid BC1S1 seeds.  相似文献   

16.
M. H. Rahman   《Plant Breeding》2001,120(3):197-200
The inheritance of petal (flower) colour and seed colour in Brassica rapa was investigated using two creamy‐white flowered, yellow‐seeded yellow sarson (an ecotype from Indian subcontinent) lines, two yellow‐flowered, partially yellow‐seeded Canadian cultivars and one yellow‐flowered, brown‐seeded rapid cycling accession, and their F1, F2, F3 and backcross populations. A joint segregation of these two characters was examined in the F2 population. Petal colour was found to be under monogenic control, where the yellow petal colour gene is dominant over the creamy‐white petal colour gene. The seed colour was found to be under digenic control and the yellow seed colour (due to a transparent coat) genes of yellow sarson are recessive to the brown/partially yellow seed colour genes of the Canadian B. rapa cvs.‘Candle’ and ‘Tobin’. The genes governing the petal colour and seed colour are inherited independently. A distorted segregation for petal colour was found in the backcross populations of yellow sarson × F1 crosses, but not in the reciprocal backcrosses, i.e. F1× yellow sarson. The possible reason is discussed in the light of genetic diversity of the parental genotypes.  相似文献   

17.
The possibility of gene transfer between Brassica rapa and the two weedy species B. nigra and Sinapis arvensis was evaluated with the special concern on transgene escape from B. rapa to these two weedy species. B. rapa cultivar Tobin was reciprocally crossed to five and four strains of B. nigra and S. arvensis, respectively, using controlled cross. A single interspecific hybrid was obtained from the cross B. rapa×B. nigra, but no other cross was successful. The fertility of this hybrid on open pollination, selfing and backcrosses was investigated. The data of the present study and the information available to date indicate that gene transfer between B. rapa and B. nigra is possible. The chance of transgene escape from B. rapa to B. nigra depends essentially on whether natural cross can occur between these two species. Gene transfer between B. rapa and S. arvensis is at the most difficult, whereas trans-gene escape directly from B. rapa to S. arvensis appears very unlikely.  相似文献   

18.
Z. Liu    C. Guan    F. Zhao  S. Chen 《Plant Breeding》2005,124(1):5-8
A novel cytoplasmic male sterility‐fertility restoration system has been developed in rapeseed (Brassica napus). The cytoplasmic male sterile line 681A was derived from a spontaneous male sterile mutant in a newly released double‐low rapeseed cultivar ‘Xiangyou 13′. The restorer line 714R was identified in the interspecific progeny from a B. napus×B. juncea‐cross. Genetic analysis showed that fertility restoration for 681A cytoplasmic male sterility was controlled by a single dominant nuclear gene which might originate from B. juncea. The RAPD marker S1039‐520 was found to be linked to the restorer gene in F2 progeny of 681A × 714R with a recombination frequency of 5.45%.  相似文献   

19.
The inheritance of siliqua locule number and seed coat colour in Brassica juncea was investigated, using three lines each of tetralocular brown seeded and bilocular yellow seeded. Three crosses of tetralocular brown seeded × bilocular yellow seeded lines were attempted and their F1, F2 and backcross generations were examined for segregation of these two traits. Brown seed colour and bilocular siliqua characters were found to be dominant over yellow seed and tetralocular siliqua, respectively. Chi‐square tests indicated that each trait is controlled by different sets of duplicate pairs of genes. Bilocular siliquae or brown seeds can result from the presence of either of two dominant alleles, whereas tetralocular siliquae or yellow seeds are produced when alleles at both loci are recessive. A joint segregation analysis of F2 data indicated that the genes governing siliqua locule number and seed colour were inherited independently.  相似文献   

20.
S. Mohring    V. Horstmann  E. Esch 《Plant Breeding》2005,124(2):105-110
Using primers annealing to S locus sequences the cleaved amplified polymorphic sequences (CAPS) method was applied to develop a marker and to characterize different alleles at the self‐incompatibility locus in Brassica napus. A segregating F2 population from a cross of a self‐incompatible (SI) and a self‐compatible parent, as well as seven SI lines representing four different S alleles were used. Several primers specific to the S locus in B. oleracea and B. campestris, chosen from the literature, allow polymerase chain reaction (PCR) amplification of genomic DNA. However, only one primer pair amplified a single specific and reproducible PCR fragment of the expected length in B. napus. Digestion with restriction endonucleases revealed polymorphisms for two CAPS markers absolutely linked to the S locus. Using the codominant marker efMboI it was possible to discriminate all three F2 genotypes. With this marker and an additional marker using another primer pair it was possible to distinguish between three of the four different S alleles and five of the seven SI lines, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号