首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.  相似文献   

2.
We prepared 31 monoclonal antibodies (MAbs) against either FIPV strain 79-1146 or FECV strain 79-1683, and tested them for reactivity with various coronaviruses by indirect fluorescent antibody assay (IFA). Sixteen MAbs which reacted with all of the 11 strains of feline coronaviruses, also reacted with canine coronavirus (CCV) and transmissible gastroenteritis virus (TGEV). In many of them, the polypeptide specificity was the recognition of transmembrane (E1) protein of the virus. We succeeded in obtaining MAbs which did not react with eight strains of FIPV Type I viruses (showing cell-associated growth) but reacted with FIPV Type II (79-1146, KU-1) and/or FECV Type II (79-1683) (showing non-cell associated growth). These MAbs also reacted with CCV or TGEV. These MAbs recognized peplomer (E2) glycoprotein, and many antigenic differences were found in this E2 protein. These results suggest that FIPV Type II and FECV Type II viruses are antigenically closer to TGEV or CCV than to FIPV Type I viruses. Furthermore, the MAb prepared in this study has enabled discrimination between FIPV strain 79-1146 and FECV strain 79-1683, which was thought to be impossible by the previous serological method.  相似文献   

3.
Immunoperoxidase antibody (IPA) method as a titrating method of feline infectious peritonitis (FIP) virus (FIPV) was developed for titrating antibody to FIPV (IPA-titer). By this method the immune responses of the cats that had been infected with FIPV, were traced. The infected cats could be grouped into three types by their immune response to FIPV and clinical appearances. Type I cats lived for a long time, formed a major group among infected cats, had 160 to 1 x 10(4) IPA-titers, and showed healthy appearances without any changes both on autopsy and histopathologically. From among type I cats, type II cats appeared sporadically with rapid elevation of IPA titers to 3.2 x 10(5) and showing clinical signs of FIP, and died. Type III cats lived healthily for a long time with gradual elevation of IPA-titers to a plateau of about 1 x 10(5), then showed neuronal disorder of hind leg paralysis with the descending IPA-titers to 2 x 10(4), and died. Thus, typical FIP appeared as a hyper-immune disease. Other related problems are discussed.  相似文献   

4.
5.
The Type II feline infectious peritonitis virus (FIPV) infection of feline macrophages is enhanced by a monoclonal antibody (MAb) to the S protein of FIPV. This antibody-dependent enhancement (ADE) activity increased with the MAb that showed a neutralizing activity with feline kidney cells, suggesting that there was a distinct correlation between ADE activity and the neutralizing activity. The close association between enhancing and neutralizing epitopes is an obstacle to developing a vaccine containing only neutralizing epitopes without enhancing epitopes. In this study, we immunized cats with cell lysate with recombinant baculovirus-expressed N protein of the Type I FIPV strain KU-2 with an adjuvant and investigated its preventive effect on the progression of FIP. Cats immunized with this vaccine produced antibodies against FIPV virion-derived N protein but did not produce virus-neutralizing antibodies. A delayed type hypersensitivity skin response to N protein was observed in these vaccinated cats, showing that cell mediated immunity against the FIPV antigen was induced. When these vaccinated cats were challenged with a high dose of heterologous FIPV, the survival rate was 75% (6/8), while the survival rate in the control group immunized with SF-9 cell-derived antigen was 12.5% (1/8). This study showed that immunization with the cell lysate with baculovirus-expressed N protein was effective in preventing the progression of FIP without inducing ADE of FIPV infection in cats.  相似文献   

6.
FELINE infections peritonitis (FIP) is a systemic, fatal, immune-mediated vasculitis caused by a feline coronavirus (FCoV). Historically, FIP virus (FIPV) and feline enteritis by a feline enteric coronavirus (FECV). Recent studies have shown that there is essentially only one FCoV in the field, although laboratory strains may vary in virulence.  相似文献   

7.
Serologic virus neutralization tests, indirect immunofluorescence tests, and ELISA, using tissue culture-adapted feline infectious peritonitis virus (FIPV) or feline enteric coronavirus (FECV) were compared for their ability to distinguish specific virus exposure in cats. Sera of specific-pathogen-free cats inoculated with virulent or modified FIPV or FECV were used to compare the sensitivity and specificity of the homologous assays to a heterologous assay that measures antibody reactivity with transmissible gastroenteritis virus of swine. The geometric means of the serologic titers in FIPV and FECV assays were higher for FIPV- or FECV-infected specific-pathogen-free cats than the geometric means of the transmissible gastroenteritis virus assays for most groups. None of the assays was specific enough to discern the virus to which a cat had been exposed. However, the FIPV virus neutralization test appeared to be more sensitive for detection of an early response to FIPV infection than did the FIPV immunofluorescence test or FIPV-ELISA.  相似文献   

8.
This review presents some current thoughts regarding the epizootiology of the feline coronaviruses; feline infectious peritonitis virus (FIPV) and feline coronavirus (FECV) with primary emphasis on the pathogenesis of these viruses in nature. Although the mechanism(s) whereby FIPV causes disease are still incompletely understood, there have been significant contributions to the literature over the past decade which provide a framework upon which plausible explanations can be postulated. Two concepts are presented which attempt to clarify the pathogenesis of FIPV and at the same time may serve as an impetus for further research. The first involves the hypothesis, originally promulgated by Pedersen in 1981, that FIPV is derived from FECV during virus replication in the gastrointestinal tract. The second involves a unique mechanism of the mucosal immune system referred to as oral tolerance, which under normal conditions promotes the production of secretory immunity and suppresses the production of systemic immunity. In the case of FIPV infection, we propose that oral tolerance is important in the control of the virus at the gastrointestinal tract level. Once oral tolerance is disrupted, FIPV is capable of systemic spread resulting in immune-mediated vasculitis and death. Thus, it may be that clinical forms of FIP are due to a combination of two events, the first being the generation of FIPV from FECV, and the second being the capacity of FIPV to circumvent oral tolerance.  相似文献   

9.
Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683   总被引:13,自引:0,他引:13  
Two feline coronavirus isolates were characterized by their disease-causing potential in cats. The 79-1683 feline coronavirus isolate caused an inapparent-to-mild enteritis when given oronasally to specific-pathogen-free kittens and was not a cause of feline infectious peritonitis (FIP). Target tissues for the virus were the mature apical epithelium of the small intestine, mesenteric lymph nodes, tonsils, thymus, and (to a lesser extent) the lungs. Inoculated kittens shed high numbers of virus in their feces for 14 to 17 days, but remained infectious to susceptible kittens for longer periods of time, as evidenced by contact-exposure studies. Because the 79-1683 isolate induced only enteritis, it was designated feline enteric coronavirus (FECV) 79-1683. The 79-1146 feline coronavirus isolate induced effusive abdominal FIP in specific-pathogen-free kittens after oronasal and intraperitoneal inoculation. Clinical signs of disease appeared within 12 to 14 days in almost all inoculated kittens. Because this isolate caused FIP, it was designated FIP virus (FIPV) 79-1146. Cross-protective immunity was not induced by the various coronavirus infections. Kittens preimmunized with the UCD strain of FECV (FECV-UCD) or with FECV-79-1683 were not immune to infection with FIPV-79-1146. Likewise, kittens previously inoculated with FECV-79-1683 were not immune to infection with FIPV-UCD1. In fact, preexisting heterologous FECV-79-1683 immunity often accelerated and enhanced the severity of disease caused by inoculation with FIPV-UCD1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Feline infectious peritonitis (FIP) is a terminal disease of cats caused by systemic infection with a feline coronavirus (FCoV). FCoV biotypes that cause FIP are designated feline infectious peritonitis virus (FIPV), and are distinguished by their ability to infect macrophages and monocytes. Antigenically similar to their virulent counterparts are FCoV biotypes designated feline enteric coronavirus (FECV), which usually cause only mild enteritis and are unable to efficiently infect macrophages and monocytes. The FCoV spike protein mediates viral entry into the host cell and has previously been shown to determine the distinct tropism exhibited by certain isolates of FIPV and FECV, however, the molecular mechanism underlying viral pathogenesis has yet to be determined. Here we show that the FECV strain WSU 79-1683 (FECV-1683) is highly dependent on host cell cathepsin B and cathepsin L activity for entry into the host cell, as well as on the low pH of endocytic compartments. In addition, both cathepsin B and cathepsin L are able to induce a specific cleavage event in the FECV-1683 spike protein. In contrast, host cell entry by the FIPV strains WSU 79-1146 (FIPV-1146) and FIPV-DF2 proceeds independently of cathepsin L activity and low pH, but is still highly dependent on cathepsin B activity. In the case of FIPV-1146 and FIPV-DF2, infection of primary feline monocytes was also dependent on host cell cathepsin B activity, indicating that host cell cathepsins may play a role in the distinct tropisms displayed by different feline coronavirus biotypes.  相似文献   

11.
Various techniques were used to look for protective, non-cross-reactive antibodies in the sera of cats exposed to virulent feline infectious peritonitis virus (FIPV). Antibodies reactive with feline enteric coronavirus (FECV) from FIPV-exposed cats were adsorbed by several passages over an FECV-Sepharose column. In an ELISA against FECV and FIPV, the activity against both viruses was removed at the same rate; thus, no FIPV-specific antibodies could be identified. By gel electrophoresis-derived ELISA, the responses of cats surviving FIPV exposure were compared with those of cats succumbing to FIPV exposure to determine whether survival could be correlated with an antibody response against a particular virus protein. Results indicated that both groups responded in the same way to the matrix envelope protein and nucleocapsid proteins. Even though the response to peplomer in each group was weak, the survivor group responded better to this protein. Furthermore, the response of this group to the peplomer protein had the highest correlation with virus neutralization titer.  相似文献   

12.
Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) infection. FCoV can be divided into serotypes I and II. The virus that causes FIP (FIPV) is believed to occur sporadically and spread infrequently from cat to cat. Recently, an FIP outbreak from an animal shelter was confirmed in Taiwan. FCoV from all the cats in this shelter were analyzed to determine the epidemiology of this outbreak. Thirteen of 46 (28.2%) cats with typical signs of FIP were identified. Among them, seven cats were confirmed by necropsy and/or histopathological examinations. Despite the fact that more than one FCoV was identified in this multi-cat environment, the eight FIP cats were invariably found to be infected with a type II FCoV. Sequence analysis revealed that the type II FIPV detected from fecal samples, body effusions and granulomatous tissue homogenates from the cats that succumbed to FIP all harbored an identical recombination site in their S gene. Two of the cats that succumbed to FIP were found to harbor an identical nonsense mutation in the 3c gene. Fecal shedding of this type II virus in the effusive form of FIP can be detected up to six days before death. Taken together, our data demonstrate that horizontal transmission of FIPV is possible and that FIP cats can pose a potential risk to other cats living in the same environment.  相似文献   

13.
Feline coronavirus (FCoV) is divided into two types I and II, based on their growth in vitro and antigenicity. In this study, virus neutralization (VN) test was applied for type differentiation of FCoV infections. Sera of cats which were clinically and serologically diagnosed as feline infectious peritonitis (FIP) possessed significantly higher VN titers to type I FCoV, and sera from cats experimentally infected with FIPV type II had high VN titers to type II but not type I viruses. A total of 79 cat sera collected in the years between 2004 and 2005 were examined to evaluate seroprevalence by the VN test, showing the following results: (1) 50 cats (63.3%) were sero-positive to FCoV; (2) of the 50 FCoV positive cat serum samples, 49 (98%) showed significantly higher titers to type I virus and only one (2%) for type II virus. These results indicate that the VN test described here can be used for serological differentiation of FCoV infections of cats, and that FCoV type I is a dominant type in recent years of Japan.  相似文献   

14.
Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). The antibody-dependent enhancement (ADE) of FIPV infection has been recognised in experimentally infected cats, and cellular immunity is considered to play an important role in preventing the onset of FIP. To evaluate the importance of cellular immunity for FIPV infection, monoclonal antibodies (MAbs) against feline interferon (fIFN)-γ were first created to establish fIFN-γ detection systems using the MAbs. Six anti-fIFN-γ MAbs were created. Then, the difference in epitope which those MAbs recognise was demonstrated by competitive enzyme-linked immunosorbent assay (ELISA) and IFN-γ neutralisation tests. Detection systems for fIFN-γ (sandwich ELISA, ELISpot assay, and two-colour flow cytometry) were established using anti-fIFN-γ MAbs that recognise different epitopes. In all tests, fIFN-γ production from peripheral blood mononuclear cells (PBMCs) obtained from cats experimentally infected with an FIPV isolate that did not develop the disease was significantly increased by heat-inactivated FIPV stimulation in comparison with medium alone. Especially, CD8(+)fIFN-γ(+) cells, but not CD4(+)fIFN-γ(+) cells, were increased. In contrast, fIFN-γ production from PBMCs isolated from cats that had developed FIP and specific pathogen-free (SPF) cats was not increased by heat-inactivated FIPV stimulation. These results suggest that cellular immunity plays an important role in preventing the development of FIP. Measurement of fIFN-γ production with the anti-fIFN-γ MAbs created in this study appeared to be useful in evaluating cellular immunity in cats.  相似文献   

15.
Non-immune kittens passively immunized with feline serum containing high-titered antibodies reactive with feline infectious peritonitis virus (FIPV) developed a more rapid disease after FIPV challenge than did kittens pretreated with FIPV antibody-negative serum. Antibody-sensitized, FIPV challenged—kittens developed earlier clinical signs (including pyrexia, icterus, and thrombocytopenia) and died more rapidly than did non-sensitized, FIPV-challenged kittens. Mean survival time in sensitized kittens was significantly (P < 0.05) reduced compared to non-sensitized kittens (mean ± SEM, 10.0 ± 0.6 days vs. 28.8 ± 8.3 days, respectively). Lesions induced included fibrinous peritonitis, disseminated pyogranulomatous inflammation and necrotizing phlebitis and periphlebitis. FIPV antigen, immunoglobulin G, complement (C3) and fibrinogen were demonstrated in lesions by immunofluorescence microscopy.The pathogenesis of dengue hemorrhagic fever (DHF) in persons bears striking resemblance to that of FIP in experimental kittens. In both FIP and DHF, non-neutralizing antibody may promote acute disease by enhancement of virus infection in mononuclear phagocytes or by formation of immune complexes, activation of complement and secondary vascular disturbances.  相似文献   

16.
Feline infectious peritonitis (FIP) is a fatal Arthus-type immune response of cats to infection with FIP virus, a mutant of the ubiquitous feline enteric coronavirus (FECV). The disease may occur systemically or in any single organ system, and primary neurologic disease is a common subset of such manifestations. We examined 16 domestic cats with clinical neurologic FIP and 8 control cats with nonneurologic FIP, with the intention of identifying the ante-and postmortem diagnostic tests that most contribute to accurate diagnosis. Of the 16 cats with neurologic FIP, 15 were less than 2 years of age and all 16 originated from large multiplecat households. The most useful antemortem indicators of disease were positive anti-coronavirus IgG titer in cerebrospinal fluid, high serum total protein concentration, and findings on magnetic resonance imaging suggesting periventricular contrast enhancement, ventricular dilatation, and hydrocephalus. Postmortem diagnosis was facilitated by FIP monoclonal antibody staining of affected tissue and coronavirus-specific polymerase chain reaction. Most cats with neurologic and ocular forms of FIP had patchy, focal lesions, suggesting that recently developed technologies described in this report may be useful for evaluation of cats with suspected FIP.  相似文献   

17.
Preexisting antibody to feline infectious peritonitis virus (FIPV) causes acceleration and enhancement of disease on subsequent infection of cats with FIPV. Other workers have shown that canine coronavirus (CCV) can infect cats subclinically, but have found no evidence of enhancement of, or protection against, subsequent FIPV infection. With various isolates of CCV, we determined that 1 strain of CCV can induce transient mild diarrhea in cats and, furthermore, that previous infection with CCV causes acceleration and enhancement of subsequent infection with FIPV. In addition, sequential inoculation of cats with another strain of CCV caused lesions indistinguishable from those of FIP, without exposure at any time to FIPV.  相似文献   

18.
Twenty-one cases of feline infectious peritonitis (FIP) were diagnosed using a direct immunofluorescence test on cytocentrifuged pleural and peritoneal effusions from cats sampled in vivo (11 cases) and at necropsy (10 cases). A commercial fluorescent polyclonal antiserum of feline origin reacting with FIPV and cross reacting with transmissible gastroenteritis virus and canine coronavirus was used. Eleven cats with ascites of a different origin were used as negative controls. The direct immunofluorescence test was 97 per cent reliable (31 cases of 32) and can be used in routine diagnosis.  相似文献   

19.
Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.  相似文献   

20.
Delayed-type hypersensitivity (DTH)-like reactions to feline infectious peritonitis (FIP) virus (FIPV) were induced in the skin of nine cats that were asymptomatic after a previous challenge-exposure with FIPV. Four of the nine previously challenge-exposed cats were negative for virus-neutralizing antibodies against FIPV at the time of intradermal (ID) testing for DTH. Two other cats tested for DTH when acutely ill with clinical FIP did not have cutaneous DTH responses to FIPV. Gross skin reactions to FIPV injected ID were observed in six of nine asymptomatic cats (67%) at postintradermal inoculation hours (PIH) 24, 48, and/or 72. The reactions consisted of focal, 1-5-mm to 2.5-cm diameter indurated or semi-firm, nonerythematous, slightly raised nodules. Microscopically, DTH-like reactions were observed in biopsies taken from the FIPV-inoculated skin of asymptomatic cats at PIH 24 to 72. The lesions consisted of perivascular and diffuse dermal infiltrations by macrophages, lymphocytes, and polymorphonuclear leukocytes (PMN). The dermal infiltrates, which were maximal at PIH 48 or 72, were predominantly mixed inflammatory cells (five of nine cats) or PMN (four of nine cats) at PIH 24, but later were predominantly mononuclear cells (six of nine cats) or mixed inflammatory cells (two of nine cats) at PIH 72. Five of nine cats (56%) with positive DTH skin responses had increased survival times after lethal ID challenge-exposure with FIPV compared to mean survival times in FIPV-naive, non-immune control cats that were DTH-negative when ID challenge-exposed. Four of nine DTH-positive cats (44%) resisted an ID challenge-exposure dose of FIPV that was fatal in both control cats, and two of the four remaining DTH-positive cats survived a third challenge-exposure with highly lethal doses of FIPV given intraperitoneally. Four of the six DTH-positive cats (67%) that died after re-challenge and were necropsied had lesions of noneffusive FIP, suggesting that cellular immunity may also be involved in the pathogenesis of noneffusive disease, whereas both control cats and both DTH-negative cats with clinical disease succumbed to effusive FIP. Seemingly, DTH responses to FIPV can be associated with an increased level of resistance to disease; however, this state of immunity is variable and apparently can be lost with time in some cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号